Research Article
BibTex RIS Cite

Metal Nanoparticle Based Electrocatalyst Synthesis and Electrochemical Hydrogen Peroxide Sensor

Year 2024, , 260 - 274, 30.04.2024
https://doi.org/10.53433/yyufbed.1202386

Abstract

Hydrogen peroxide plays an active role in biological processes. Therefore, the detection of hydrogen peroxide is very important in the food, medical, pharmaceutical, chemical industries, and medical fields. H2O2 is essential for human health and plays an active role in the regulation of various physiological processes. H2O2 concentrations are considered to be an important marker for various diseases such as Parkinson's and Alzheimer's disease, stroke, stress syndromes, atherosclerosis, malignancies, and mitochondrial abnormalities. Therefore, it is important to develop fast, inexpensive, reliable and suitable methods for the detection of hydrogen peroxide. It can be said that electrochemical methods are more sensitive, efficient, low-cost and time-saving methods than traditional methods for the determination of hydrogen peroxide. To update the latest research, the researchers were more interested in the study of the development of existing nanostructured electrocatalysts, electrode modification and the applications of new electrochemical sensors. This study focused on the synthesis of metal-supported particles, the investigation of the electrochemical behavior of hydrogen peroxide, and the development of electrodes with high catalytic activity for the hydrogen peroxide sensor. For this purpose, the electrocatalysts Cr-Fe-P/CNT, Cr-Fe-P/Eupergit CM, and Cr-Fe-P/CNT were prepared easily and quickly. The electrodes developed with these prepared electrocatalysts, the electrochemical behavior of hydrogen peroxide and the sensor activities of hydrogen peroxide were investigated by cyclic voltammetry.

References

  • Abbaspour, A., & Norouz-Sarvestani, F. (2013). High electrocatalytic effect of Au–Pd alloy nanoparticles electrodeposited on microwave assisted sol–gel-derived carbon ceramic electrode for hydrogen evolution reaction. International Journal of Hydrogen energy, 38(4), 1883-1891. doi:10.1016/j.ijhydene.2012.11.096
  • Aguilar-Bolados, H., Vargas-Astudillo, D., Yazdani-Pedram, M., Acosta-Villavicencio, G., Fuentealba, P., Contreras-Cid, A., ..., & Lopez-Manchado M. A. (2017). Facile and scalable one-step method for amination of graphene using leuckart reaction. Chemistry of Materials, 29, 6698-6705. doi:10.1021/acs.chemmater.7b01438
  • Amatore, C., Arbault, S., Bruce, D., de Oliveira, P., Erard, M., & Vuillaume, M. (2001). Characterization of the electrochemical oxidation of peroxynitrite: relevance to oxidative stress bursts measured at the single cell level. Chemistry–A European Journal, 7(19), 4171-4179. doi:10.1002/1521-3765(20011001)7:19%3C4171::AID-CHEM4171%3E3.0.CO;2-5
  • Avci, C., Cicek, F., Celik Kazici, H., Kivrak, A., & Kivrak, H. (2018). A novel study on the stepwise electrodeposition approach for the synthesis of Pd based nanoparticles, characterization, and their enhanced electrooxidation activities. International Journal of Nano Dimension, 9(1), 15-23.
  • Bracamonte, M. V., Melchionna, M., Giuliani, A., Nasi, L., Tavagnacco, C., Prato, M., & Fornasiero, P. (2017). H2O2 sensing enhancement by mutual integration of single walled carbon nanohorns with metal oxide catalysts: The CeO2 case, Sensors and Actuators B: Chemical, 239, 923-932. doi:10.1016/j.snb.2016.08.112
  • Caglar, A., Kazıcı, H. Ç., Alpaslan, D., Yılmaz, Y., Kivrak, H., & Aktas, N. (2019). 3-Acrylamidopropyl-trimethylammoniumchloride cationic hydrogel modified graphite electrode and its superior sensitivity to hydrogen peroxide. Fullerenes, Nanotubes and Carbon Nanostructures, 27(9), 736-745. doi:10.1080/1536383X.2019.1634056
  • Celik Kazici, H., & Yayla, M. (2019). An electrocatalyst for detection of glucose in human blood: synergy in Pd–AuNPs/GOx/C surfaces. Chemical Engineering Communications, 206(12), 1731-1742. doi:10.1080/00986445.2019.1576645
  • Chen, W., Cai, S., Ren, Q. Q., Wen, W., & Zhao, Y. D. (2012). Recent advances in electrochemical sensing for hydrogen peroxide: a review. Analyst, 137(1), 49-58. doi:10.1039/C1AN15738H
  • Chen, S., Yuan, R., Chai, Y., & Hu, F. (2013). Electrochemical sensing of hydrogen peroxide using metal nanoparticles: a review. Microchimica Acta, 180(1), 15-32. doi:10.1007/s00604-012-0904-4
  • Duan, Z., Huang, C., Yang, X., Hu, A., Lu, X., & Jiang, Q. (2020). Preparation of SnS2/MWCNTs chemically modified electrode and its electrochemical detection of H2O2. Analitycal and Bioanalytical Chemistry, 412, 4403-4412. doi:10.1007/s00216-020-02682-w
  • Düzenli, D., Sahin, Ö., Kazıcı, H. Ç., Aktaş, N., & Kivrak, H. (2018). Synthesis and characterization of novel Ti doped hexagonal mesoporous silica catalyst for nonenzymatic hydrogen peroxide oxidation. Microporous and Mesoporous Materials, 257, 92-98. doi:10.1016/j.micromeso.2017.08.030
  • Gupta, V. K., Jain, S., & Chandra, S. (2003). Chemical sensor for lanthanum (III) determination using aza-crown as ionophore in poly (vinyl chloride) matrix. Analytica Chimica Acta, 486(2), 199-207. doi:10.1016/S0003-2670(03)00506-3
  • Gupta, V. K., Ganjali, M. R., Norouzi, P., Khani, H., Nayak, A., & Agarwal, S. (2011). Electrochemical analysis of some toxic metals by ion–selective electrodes. Critical Reviews in Analytical Chemistry, 41(4), 282-313. doi:10.1080/10408347.2011.589773
  • Hai, B., & Zou, Y. (2015). Carbon cloth supported NiAl-layered double hydroxides for flexible application and highly sensitive electrochemical sensors. Sensors and Actuators B: Chemical, 208, 143-150. doi:10.1016/j.snb.2014.11.022
  • Hu, H., Fan, Y., & Liu, H. (2010). Optimization of NiMo catalyst for hydrogen production in microbial electrolysis cells. International Journal of Hydrogen Energy, 35(8), 3227-3233. doi:10.1016/j.ijhydene.2010.01.131
  • Huang, X., Yin, Z., Wu, S., Qi, X., He, Q., Zhang, Q., ..., & Zhang, H. (2011). Graphene‐based materials: synthesis, characterization, properties, and applications. Small, 7(14), 1876-1902. doi:10.1002/smll.201002009
  • Isaacs, M., Armijo, F., Ramírez, G., Trollund, E., Biaggio, S. R., Costamagna, J., & Aguirre, M. J. (2005). Electrochemical reduction of CO2 mediated by poly-M-aminophthalocyanines (M= Co, Ni, Fe): poly-Co-tetraaminophthalocyanine, a selective catalyst. Journal of Molecular Catalysis A: Chemical, 229(1-2), 249-257. doi:10.1016/j.molcata.2004.11.026
  • Karam, P., & Halaoui, L. I. (2008). Sensing of H2O2 at low surface density assemblies of Pt nanoparticles in polyelectrolyte. Analytical Chemistry, 80(14), 5441-5448. doi:10.1021/ac702358d
  • Karuppiah, C., Venkatesh, K., Arunachalam, P., Ramaraj, S. K., Al-Mayouf, A. M., & Yang, C-C. (2021). Optimization of S-dopanton N, S co-doped graphene/CNT-Fe3C nanocomposite electrode for non-enzymatic H2O2 sensor. Materials Letters, 285, 129001. doi:10.1016/j.matlet.2020.129001
  • Kazıcı, H. Ç., Yayla, M., Ulaş, B., Aktaş, N., & Kivrak, H. (2019). Development of nonenzymatic benzoic acid detection on PdSn/GCE/Vulcan XC‐72R prepared via polyol method. Electroanalysis, 31(6), 1118-1124. doi:10.1002/elan.201900088
  • Lai, R. Y., Fabrizio, E. F., Lu, L., Jenekhe, S. A., & Bard, A. J. (2001). Synthesis, cyclic voltammetric studies, and electrogenerated chemiluminescence of a new donor acceptor molecule: 3, 7-[Bis [4-phenyl-2-quinolyl]]-10-methylphenothiazine. Journal of the American Chemical Society, 123(37), 9112-9118. doi:10.1021/ja0102235
  • Lee, S. R., Han, Y. S., Park, M., Park, G. S., & Choy, J. H. (2003). Nanocrystalline sodalite from Al2O3 pillared clay by solid− solid transformation. Chemistry of Materials, 15(25), 4841-4845. doi:10.1021/cm034614p
  • Liu, X., Zhao, Z., Shen, T., & Qin, Y. (2019). Graphene/Gold nanoparticle composite-based paper sensor for electrochemical detection of hydrogen peroxide, Fullerenes, Nanotubes and Carbon Nanostructures, 27(1), 23-27 doi:10.1080/1536383X.2018.1479695
  • Lorestani, F., Shahnavaz, Z., Mn, P., Alias, Y., & Manan, N. S. A. (2015). One-step hydrothermal green synthesis of silver nanoparticle-carbon nanotube reduced-graphene oxide composite and its application as hydrogen peroxide sensor, Sensors and Actuators B: Chemical, 208, 389-398. doi:10.1016/j.snb.2014.11.074
  • Lu, D., Zhang, Y., Lin, S., Wang, L., & Wang, C. (2013). Synthesis of PtAu bimetallic nanoparticles on graphene–carbon nanotube hybrid nanomaterials for nonenzymatic hydrogen peroxide sensor. Talanta, 112, 111-116. doi:10.1016/j.talanta.2013.03.010
  • Mert, M. E. (2005). Nikel kaplı gümüş, bakır ve çinko elektrotlarda bazik ortamda hidrojen eldesi. (Yüksek lisans tezi), Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Adana.
  • Miller, E. W., Albers, A. E., Pralle, A., Isacoff, E. Y., & Chang, C. J. (2005). Boronate-based fluorescent probes for imaging cellular hydrogen peroxide. Journal of the American Chemical Society, 127(47), 16652-16659. doi:10.1021/ja054474f
  • Nayak, P., Santhosh, P. N., & Ramaprabhu, S. (2014). Synthesis of Au-MWCNT–graphene hybrid composite for the rapid detection of H2O2 and glucose. RSC Advances, 4(78), 41670-41677.
  • Occelli, M. L. (1986). New routes to the preparation of pillared montmorillonite catalysts. Journal of Molecular Catalysis, 35(3), 377-389. doi:10.1016/0304-5102(86)87085-7
  • Okada, T., Abe, T., & Kaneko, M. (2009). Historical Overview and Fundamental Aspects of Molecular Catalysts for Energy Conversion. In T. Okada & M. Kaneko (Eds.), Molecular Catalysts for Energy Conversion (pp. 1-36). Berlin: Springer.
  • Raman, R. K., & Shukla, A. K. (2007). A direct borohydride/hydrogen peroxide fuel cell with reduced alkali crossover. Fuel Cells, 7(3), 225-231. doi:10.1002/fuce.200600023
  • Sahin, O., Kivrak, H., Kivrak, A., Kazıcı, H. Ç., Alal, O., & Atbas, D. (2018). Corrigendum to" Facile and Rapid Synthesis of Microwave Assisted Pd Nanoparticles as Non-Enzymatic Hydrogen Peroxide Sensor"[Int. J. Electrochem. Sci., 12 (2017) 762–769]. International Journal of Electrochemical Science, 13(2), 2186-2192. doi:10.20964/2017.01.26
  • Salman, F., Kazici, H. C., & Kivrak, H. (2020). Electrochemical sensor investigation of carbon-supported PdCoAg multimetal catalysts using sugar-containing beverages. Frontiers of Chemical Science and Engineering, 14(4), 629-638. doi:10.1007/s11705-019-1840-1
  • Sarathy, S. R., & Mohseni, M. (2007). The impact of UV/H2O2 advanced oxidation on molecular size distribution of chromophoric natural organic matter. Environmental Science & Technology, 41(24), 8315-8320. doi:10.1021/es071602m
  • Sheela, G., Pushpavanam, M., & Pushpavanam, S. (2002). Zinc–nickel alloy electrodeposits for water electrolysis. International Journal of Hydrogen Energy, 27(6), 627-633. doi:10.1016/S0360-3199(01)00170-7
  • Stetter, J. R., Penrose, W. R., & Yao, S. (2003). Sensors, chemical sensors, electrochemical sensors, and ECS. Journal of The Electrochemical Society, 150(2), S11. doi:10.1149/1.1539051
  • Wang, W. Y., Yang, Y. Q., Luo, H. A., & Liu, W. Y. (2010). Effect of additive (Co, La) for Ni–Mo–B amorphous catalyst and its hydrodeoxygenation properties. Catalysis Communications, 11(9), 803-807. doi:10.1016/j.catcom.2010.02.019
  • Vielstich, W., Lamm, A., & Gasteiger, H. A. (2003). Handbook of FuelCells, Vol.2. John Wiley and Sons.
  • Zhang, F., Wang, Z., Zhang, Y., Zheng, Z., Wang, C., Du, Y., & Ye, W. (2012). Microwave-assisted synthesis of Pt/Graphene nanocomposites for nonenzymatic hydrogen peroxide sensor. International Journal of Electrochemical Science, 7, 1968-1977.
  • Zhang, Y., Cao, Q., Zhu, F., Xu, H., Zhang, Y., Xu, W., & Liao, X. (2020). An amperometric hydrogen peroxide sensor based on reduced graphene Oxide/Carbon nanotubes/Pt NPs modified glassy carbon electrode. International Journal of Electrochemical Science, 15(9), 8771-8785. doi:10.20964/2020.09.62

Metal Nanopartikül Temelli Elekrokatalizör Sentezi ve Elektrokimyasal Hidrojen Peroksit Sensörü

Year 2024, , 260 - 274, 30.04.2024
https://doi.org/10.53433/yyufbed.1202386

Abstract

Hidrojen peroksit biyolojik süreçlerde aktif bir rol oynar. Bundan dolayı gıda, medikal, ilaç, kimya endüstrileri ve tıp alanlarında hidrojen peroksitin tespiti çok önemlidir. H2O2 insan sağlığı için gereklidir ve çeşitli fizyolojik süreçlerin düzenlenmesinde aktif rol oynar. Parkinson ve alzheimer hastalığı, felç, stres sendromları, damar sertliği, maligniteler ve mitokondriyal anormallikler gibi çeşitli hastalıklar için H2O2 konsantrasyonlarının önemli bir belirteç olduğu kabul edilmektedir. Bu yüzden hidrojen peroksitin tespiti için hızlı, ucuz, güvenilir uygun yöntemler geliştirmek önemlidir. Hidrojen peroksit tayini için geleneksel yöntemlere karşı elektrokimyasal yöntemler, daha hassas, verimli, düşük maliyetli ve zaman kazandıran yöntemler olduğu söylenebilir. Araştırmacılar, en son araştırmaları güncellemek için mevcut nanoyapılı elektrokatalizörlerin geliştirilmesi, elektrot modifikasyonu ve yeni elektrokimyasal sensörlerin uygulamaları çalışmalarına daha fazla ilgilendiler. Bu çalışmada metal destekli partiküllerin sentezlenmesi, hidrojen peroksitin elektrokimyasal davranışının incelenmesi ve hidrojen peroksit sensörü için katalitik aktivitesi yüksek elektrotlar geliştirilmesi üzerine odaklanıldı. Bu amaçla Cr-Fe-P/CNT, Cr-Fe-P/Eupergit CM, Cr-Fe-P/CNT elektrokatalizörleri kolay ve hızlı bir şekilde hazırlandı. Hazırlanan bu elektrokatalizörler ile geliştirilen elektrotlar, hidrojen peroksitin elektrokimyasal davranışı ve hidrojen peroksit sensör aktiviteleri döngüsel voltametri ile incelenmiştir.

References

  • Abbaspour, A., & Norouz-Sarvestani, F. (2013). High electrocatalytic effect of Au–Pd alloy nanoparticles electrodeposited on microwave assisted sol–gel-derived carbon ceramic electrode for hydrogen evolution reaction. International Journal of Hydrogen energy, 38(4), 1883-1891. doi:10.1016/j.ijhydene.2012.11.096
  • Aguilar-Bolados, H., Vargas-Astudillo, D., Yazdani-Pedram, M., Acosta-Villavicencio, G., Fuentealba, P., Contreras-Cid, A., ..., & Lopez-Manchado M. A. (2017). Facile and scalable one-step method for amination of graphene using leuckart reaction. Chemistry of Materials, 29, 6698-6705. doi:10.1021/acs.chemmater.7b01438
  • Amatore, C., Arbault, S., Bruce, D., de Oliveira, P., Erard, M., & Vuillaume, M. (2001). Characterization of the electrochemical oxidation of peroxynitrite: relevance to oxidative stress bursts measured at the single cell level. Chemistry–A European Journal, 7(19), 4171-4179. doi:10.1002/1521-3765(20011001)7:19%3C4171::AID-CHEM4171%3E3.0.CO;2-5
  • Avci, C., Cicek, F., Celik Kazici, H., Kivrak, A., & Kivrak, H. (2018). A novel study on the stepwise electrodeposition approach for the synthesis of Pd based nanoparticles, characterization, and their enhanced electrooxidation activities. International Journal of Nano Dimension, 9(1), 15-23.
  • Bracamonte, M. V., Melchionna, M., Giuliani, A., Nasi, L., Tavagnacco, C., Prato, M., & Fornasiero, P. (2017). H2O2 sensing enhancement by mutual integration of single walled carbon nanohorns with metal oxide catalysts: The CeO2 case, Sensors and Actuators B: Chemical, 239, 923-932. doi:10.1016/j.snb.2016.08.112
  • Caglar, A., Kazıcı, H. Ç., Alpaslan, D., Yılmaz, Y., Kivrak, H., & Aktas, N. (2019). 3-Acrylamidopropyl-trimethylammoniumchloride cationic hydrogel modified graphite electrode and its superior sensitivity to hydrogen peroxide. Fullerenes, Nanotubes and Carbon Nanostructures, 27(9), 736-745. doi:10.1080/1536383X.2019.1634056
  • Celik Kazici, H., & Yayla, M. (2019). An electrocatalyst for detection of glucose in human blood: synergy in Pd–AuNPs/GOx/C surfaces. Chemical Engineering Communications, 206(12), 1731-1742. doi:10.1080/00986445.2019.1576645
  • Chen, W., Cai, S., Ren, Q. Q., Wen, W., & Zhao, Y. D. (2012). Recent advances in electrochemical sensing for hydrogen peroxide: a review. Analyst, 137(1), 49-58. doi:10.1039/C1AN15738H
  • Chen, S., Yuan, R., Chai, Y., & Hu, F. (2013). Electrochemical sensing of hydrogen peroxide using metal nanoparticles: a review. Microchimica Acta, 180(1), 15-32. doi:10.1007/s00604-012-0904-4
  • Duan, Z., Huang, C., Yang, X., Hu, A., Lu, X., & Jiang, Q. (2020). Preparation of SnS2/MWCNTs chemically modified electrode and its electrochemical detection of H2O2. Analitycal and Bioanalytical Chemistry, 412, 4403-4412. doi:10.1007/s00216-020-02682-w
  • Düzenli, D., Sahin, Ö., Kazıcı, H. Ç., Aktaş, N., & Kivrak, H. (2018). Synthesis and characterization of novel Ti doped hexagonal mesoporous silica catalyst for nonenzymatic hydrogen peroxide oxidation. Microporous and Mesoporous Materials, 257, 92-98. doi:10.1016/j.micromeso.2017.08.030
  • Gupta, V. K., Jain, S., & Chandra, S. (2003). Chemical sensor for lanthanum (III) determination using aza-crown as ionophore in poly (vinyl chloride) matrix. Analytica Chimica Acta, 486(2), 199-207. doi:10.1016/S0003-2670(03)00506-3
  • Gupta, V. K., Ganjali, M. R., Norouzi, P., Khani, H., Nayak, A., & Agarwal, S. (2011). Electrochemical analysis of some toxic metals by ion–selective electrodes. Critical Reviews in Analytical Chemistry, 41(4), 282-313. doi:10.1080/10408347.2011.589773
  • Hai, B., & Zou, Y. (2015). Carbon cloth supported NiAl-layered double hydroxides for flexible application and highly sensitive electrochemical sensors. Sensors and Actuators B: Chemical, 208, 143-150. doi:10.1016/j.snb.2014.11.022
  • Hu, H., Fan, Y., & Liu, H. (2010). Optimization of NiMo catalyst for hydrogen production in microbial electrolysis cells. International Journal of Hydrogen Energy, 35(8), 3227-3233. doi:10.1016/j.ijhydene.2010.01.131
  • Huang, X., Yin, Z., Wu, S., Qi, X., He, Q., Zhang, Q., ..., & Zhang, H. (2011). Graphene‐based materials: synthesis, characterization, properties, and applications. Small, 7(14), 1876-1902. doi:10.1002/smll.201002009
  • Isaacs, M., Armijo, F., Ramírez, G., Trollund, E., Biaggio, S. R., Costamagna, J., & Aguirre, M. J. (2005). Electrochemical reduction of CO2 mediated by poly-M-aminophthalocyanines (M= Co, Ni, Fe): poly-Co-tetraaminophthalocyanine, a selective catalyst. Journal of Molecular Catalysis A: Chemical, 229(1-2), 249-257. doi:10.1016/j.molcata.2004.11.026
  • Karam, P., & Halaoui, L. I. (2008). Sensing of H2O2 at low surface density assemblies of Pt nanoparticles in polyelectrolyte. Analytical Chemistry, 80(14), 5441-5448. doi:10.1021/ac702358d
  • Karuppiah, C., Venkatesh, K., Arunachalam, P., Ramaraj, S. K., Al-Mayouf, A. M., & Yang, C-C. (2021). Optimization of S-dopanton N, S co-doped graphene/CNT-Fe3C nanocomposite electrode for non-enzymatic H2O2 sensor. Materials Letters, 285, 129001. doi:10.1016/j.matlet.2020.129001
  • Kazıcı, H. Ç., Yayla, M., Ulaş, B., Aktaş, N., & Kivrak, H. (2019). Development of nonenzymatic benzoic acid detection on PdSn/GCE/Vulcan XC‐72R prepared via polyol method. Electroanalysis, 31(6), 1118-1124. doi:10.1002/elan.201900088
  • Lai, R. Y., Fabrizio, E. F., Lu, L., Jenekhe, S. A., & Bard, A. J. (2001). Synthesis, cyclic voltammetric studies, and electrogenerated chemiluminescence of a new donor acceptor molecule: 3, 7-[Bis [4-phenyl-2-quinolyl]]-10-methylphenothiazine. Journal of the American Chemical Society, 123(37), 9112-9118. doi:10.1021/ja0102235
  • Lee, S. R., Han, Y. S., Park, M., Park, G. S., & Choy, J. H. (2003). Nanocrystalline sodalite from Al2O3 pillared clay by solid− solid transformation. Chemistry of Materials, 15(25), 4841-4845. doi:10.1021/cm034614p
  • Liu, X., Zhao, Z., Shen, T., & Qin, Y. (2019). Graphene/Gold nanoparticle composite-based paper sensor for electrochemical detection of hydrogen peroxide, Fullerenes, Nanotubes and Carbon Nanostructures, 27(1), 23-27 doi:10.1080/1536383X.2018.1479695
  • Lorestani, F., Shahnavaz, Z., Mn, P., Alias, Y., & Manan, N. S. A. (2015). One-step hydrothermal green synthesis of silver nanoparticle-carbon nanotube reduced-graphene oxide composite and its application as hydrogen peroxide sensor, Sensors and Actuators B: Chemical, 208, 389-398. doi:10.1016/j.snb.2014.11.074
  • Lu, D., Zhang, Y., Lin, S., Wang, L., & Wang, C. (2013). Synthesis of PtAu bimetallic nanoparticles on graphene–carbon nanotube hybrid nanomaterials for nonenzymatic hydrogen peroxide sensor. Talanta, 112, 111-116. doi:10.1016/j.talanta.2013.03.010
  • Mert, M. E. (2005). Nikel kaplı gümüş, bakır ve çinko elektrotlarda bazik ortamda hidrojen eldesi. (Yüksek lisans tezi), Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Adana.
  • Miller, E. W., Albers, A. E., Pralle, A., Isacoff, E. Y., & Chang, C. J. (2005). Boronate-based fluorescent probes for imaging cellular hydrogen peroxide. Journal of the American Chemical Society, 127(47), 16652-16659. doi:10.1021/ja054474f
  • Nayak, P., Santhosh, P. N., & Ramaprabhu, S. (2014). Synthesis of Au-MWCNT–graphene hybrid composite for the rapid detection of H2O2 and glucose. RSC Advances, 4(78), 41670-41677.
  • Occelli, M. L. (1986). New routes to the preparation of pillared montmorillonite catalysts. Journal of Molecular Catalysis, 35(3), 377-389. doi:10.1016/0304-5102(86)87085-7
  • Okada, T., Abe, T., & Kaneko, M. (2009). Historical Overview and Fundamental Aspects of Molecular Catalysts for Energy Conversion. In T. Okada & M. Kaneko (Eds.), Molecular Catalysts for Energy Conversion (pp. 1-36). Berlin: Springer.
  • Raman, R. K., & Shukla, A. K. (2007). A direct borohydride/hydrogen peroxide fuel cell with reduced alkali crossover. Fuel Cells, 7(3), 225-231. doi:10.1002/fuce.200600023
  • Sahin, O., Kivrak, H., Kivrak, A., Kazıcı, H. Ç., Alal, O., & Atbas, D. (2018). Corrigendum to" Facile and Rapid Synthesis of Microwave Assisted Pd Nanoparticles as Non-Enzymatic Hydrogen Peroxide Sensor"[Int. J. Electrochem. Sci., 12 (2017) 762–769]. International Journal of Electrochemical Science, 13(2), 2186-2192. doi:10.20964/2017.01.26
  • Salman, F., Kazici, H. C., & Kivrak, H. (2020). Electrochemical sensor investigation of carbon-supported PdCoAg multimetal catalysts using sugar-containing beverages. Frontiers of Chemical Science and Engineering, 14(4), 629-638. doi:10.1007/s11705-019-1840-1
  • Sarathy, S. R., & Mohseni, M. (2007). The impact of UV/H2O2 advanced oxidation on molecular size distribution of chromophoric natural organic matter. Environmental Science & Technology, 41(24), 8315-8320. doi:10.1021/es071602m
  • Sheela, G., Pushpavanam, M., & Pushpavanam, S. (2002). Zinc–nickel alloy electrodeposits for water electrolysis. International Journal of Hydrogen Energy, 27(6), 627-633. doi:10.1016/S0360-3199(01)00170-7
  • Stetter, J. R., Penrose, W. R., & Yao, S. (2003). Sensors, chemical sensors, electrochemical sensors, and ECS. Journal of The Electrochemical Society, 150(2), S11. doi:10.1149/1.1539051
  • Wang, W. Y., Yang, Y. Q., Luo, H. A., & Liu, W. Y. (2010). Effect of additive (Co, La) for Ni–Mo–B amorphous catalyst and its hydrodeoxygenation properties. Catalysis Communications, 11(9), 803-807. doi:10.1016/j.catcom.2010.02.019
  • Vielstich, W., Lamm, A., & Gasteiger, H. A. (2003). Handbook of FuelCells, Vol.2. John Wiley and Sons.
  • Zhang, F., Wang, Z., Zhang, Y., Zheng, Z., Wang, C., Du, Y., & Ye, W. (2012). Microwave-assisted synthesis of Pt/Graphene nanocomposites for nonenzymatic hydrogen peroxide sensor. International Journal of Electrochemical Science, 7, 1968-1977.
  • Zhang, Y., Cao, Q., Zhu, F., Xu, H., Zhang, Y., Xu, W., & Liao, X. (2020). An amperometric hydrogen peroxide sensor based on reduced graphene Oxide/Carbon nanotubes/Pt NPs modified glassy carbon electrode. International Journal of Electrochemical Science, 15(9), 8771-8785. doi:10.20964/2020.09.62
There are 40 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Engineering and Architecture / Mühendislik ve Mimarlık
Authors

Fırat Salman 0000-0002-8854-9406

Hilal Çelik Kazıcı 0000-0003-4603-6917

Mehmet Sait İzgi 0000-0003-3685-3219

Publication Date April 30, 2024
Submission Date November 10, 2022
Published in Issue Year 2024

Cite

APA Salman, F., Çelik Kazıcı, H., & İzgi, M. S. (2024). Metal Nanopartikül Temelli Elekrokatalizör Sentezi ve Elektrokimyasal Hidrojen Peroksit Sensörü. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 29(1), 260-274. https://doi.org/10.53433/yyufbed.1202386