Research Article
BibTex RIS Cite

Influences on to Nutrient Uptake of Lead, Chromium and Cadmium Toxicity in Switchgrass (Panicum virgatum L.) Plant and Linear Regression Analyses

Year 2023, , 1187 - 1199, 29.12.2023
https://doi.org/10.53433/yyufbed.1277632

Abstract

Mining, urban or industrial solid, gas and liquid wastes, pesticide and artificial fertilizer use, paint industry and car exhaust gases cause the release of heavy metals to the nature. This heavy metal stress caused by environmental pollutants limits the growth of plants and reduces product yield and quality. At the same time, heavy metal stress interferes uptake, transport, and utilization of plant nutrients by plants. Consequently, this study was performed to evaluate toxicity and tolerance of lead, cadmium and chromium in switchgrass that can adapt to a wide range of habitats and climates. In order to determine the effects of heavy metals on the nutrient uptake, the switchgrass plant (Panicum virgatum L.) was grown in artificially contaminated soil with different concentrations of Cd, Pb, Cr solutions. The changes in macro- and micro-nutrient contents in the switchgrass as affected by the different concentrations of the applied metals were evaluated. Although chromium, cadmium and lead have phytotoxic effect and are non-essential elements for plants, it was observed that these elements easily absorbed and accumulated in the aboveground parts of switchgrass. In general, it was found that macro- and micro-nutrient concentrations in the switchgrass were significantly or relatively decreased in different doses of Pb, Cd and Cr applications. Only Ca concentrations in the plant increased significantly with the applied different Pb doses, due to the competition of Ca2+ and Pb2+ for introduction to stem cells. However, the obtained results were interpreted using linear regression and Pearson correlation.

Supporting Institution

-

Project Number

-

Thanks

-

References

  • Adhikari, T., Tel-Or, E., Libal, Y., & Shenker, M. (2006). Effect of cadmium and iron on rice (Oryza sativa L.) plant in chelator-buffered nutrient solution. Journal of Plant Nutrition, 29, 1919-1940. doi:10.1080/01904160600927435
  • Akhtar, T., Zia-ur-Rehman, M., Naeem, A., Nawaz, R., Ali, S., Murtaza, G., Maqsood, M. A., Azhar, M., Khalid, H., & Rizwan, M. (2017). Photosynthesis and growth response of maize (Zea mays L.) hybrids exposed to cadmium stress. Environmental Science and Pollution Research, 24(6), 5521-5529. doi:10.1007/s11356-016-8246-0
  • Akinci, I. E., Akinci, S., & Yilmaz, K. (2010). Response of tomato (Solanum lycopersicum L.) to lead, toxicity: Growth, element uptake, chlorophyll and water content. African Journal of Agricultural Research, 5(6), 416-423.
  • Alacabey, İ., & Zorer Çelebi, Ş. (2020). Determination of Switchgrass (Panicum Virgatum)'s lead, cadmium, crom tolerance and accumulation potential. Journal of the Institute of Science and Technology, 10(3), 2199-2206. doi:10.21597/jist.731527
  • Ali, S., Chaudhary, A., Rizwan, M., Anwar, H. T., Adrees, M., Farid, M., Irshad, M. K., Hayat, T., & Anjum, S. A. (2015). Alleviation of chromium toxicity by glycinebetaine is related to elevated antioxidant enzymes and suppressed chromium uptake and oxidative stress in wheat (Triticum aestivum L.). Environmental Science and Pollution Research, 22, 10669-10678. doi:10.1007/s11356-015-4193-4
  • Arshad, M., Ali, S., Nomana, A., Rizwan, M., Farid, M., & Irshad, M. K. (2016). Phosphorus amendment decreased cadmium (Cd) uptake and ameliorates chlorophyll contents, gas exchange attributes, antioxidants, and mineral nutrients in wheat (Triticum aestivum L.) under Cd stress. Archives of Agronomy and Soil Science, 62(4), 533-546. doi:10.1080/03650340.2015.1064903
  • Boussama, N., Ouariti, O., & Ghorbal, M. H. (1999). Changes in growth and nitrogen assimilation in barley seedlings under cadmium stress. Journal of Plant Nutrition, 22(4-5), 731-752. doi:10.1080/01904169909365668
  • Calles Torrez, V., Johnson, P. J., & Boe, A. (2013). Infestation rates and tiller morphology effects by the switchgrass moth on six cultivars of switchgrass. Bioenergy Research, 6, 808-812. doi:10.1007/s12155-013-9306-7
  • Campbell, P. G. C. (2006). Cadmium: A priority pollutant. Environmental Chemistry, 3(6), 387-388. doi:10.1071/EN06075
  • Chien, H. F., & Kao, C. H. (2000). Accumulation of ammonium in rice leaves in response to excess cadmium. Plant Science, 156(1), 111-115. doi:10.1016/S0168-9452(00)00234-X
  • Clysters, H., & Van Assche, F. (1985). Inhibition of photosynthesis by metal. Photosynthesis Research, 7(1), 31-40. doi:10.1007/BF00032920
  • Cseh, E., Fodor, F., Varga, A., & Zaray, G. (2000). Effect of lead treatment on the distribution of essential elements in cucumber. Journal of Plant Nutrition, 23(8), 1095-1105. doi:10.1080/01904160009382084
  • Daud, M. K., Ali, S., Variath, M. T., & Zhu, S. J. (2013). Differential physiological, ultra morphological and metabolic responses of cotton cultivars under cadmium stress. Chemosphere. 93(10), 2593-2602. doi:10.1016/j.chemosphere.2013.09.082
  • Eren, A. (2018). The effects of cadmium applications on grown rough cocklebur (Xanthium strumarium L.). Ege Üniversitesi Ziraat Fakültesi Dergisi, 55(3), 265-270. doi:10.20289/zfdergi.358586
  • Farooq, M., Ali, S., Hameed, A., Bharwana, S., Rizwan, M., Ishaque, W., Farid, M., Mahmood, K., & Iqbal, Z. (2016). Cadmium stress in cotton seedlings: physiological, photosynthesis and oxidative damages alleviated by glycinebetaine. South African Journal of Botany, 104, 61-68. doi:10.1016/j.sajb.2015.11.006
  • Godbold, D. L., & Kettner, C. (1991). Lead influences root growth and mineral nutrition of Picea abies seedlings. Journal of Plant Physiology, 139(1), 95-99. doi:10.1016/S0176-1617(11)80172-0
  • Kabata-Pendias, A., & Pendias, H. (1992). Trace elements in soils and plants. 2nd ed. CRC Press, Boca Raton, London.
  • Kısa, D., Ozturk, L., Doker, S., & Gokce, I. (2017). Expression analysis of metallothioneins and mineral contents in tomato (Lycopersicon esculentum) under heavy metal stress. Journal of the Science of Food and Agriulture, 97(6), 1916-1923. doi:10.1002/jsfa.7995
  • Kim, Y. Y., Yang, Y. Y., & Lee, Y. (2002). Pb and Cd uptake in rice roots. Physiologia Plantarum, 116, 368-372. doi:10.1034/j.1399-3054.2002.1160312.x
  • Kim, C. G., Bell, J. N. B., & Power, S. A. (2003). Effects of soil cadmium on Pinus sylvestris L. seedlings. Plant and Soil, 257, 443-449.
  • Liu, Z. L., He, X. Y., & Chen, W. (2011). Effects of cadmium hyperaccumulation on the concentrations of four trace elements in Lonicera japonica Thunb. Ecotoxicology, 20(4), 698-705. doi:10.1007/s10646-011-0609-1
  • Malkowski, E., Kita, A., Galas, W., Karcz, W., & Kuperberg, J. M. (2002). Lead distribution in corn seedlings (Zea mays L.) and its effect on growth and the concentrations of potassium and calcium. Plant Growth Regulation, 37, 69-76. doi:10.1023/A:1020305400324
  • Mann, D. G. J., Lafayette, P. R., Abercrombie, L. L., King, Z. R., Mazarei, M., Halter, M. C., Poovaiah, C. R., Baxter, H., Shen, H., Dixon, R. A., Parrott, W. A., & Stewart Jr, C.N. (2012). Gateway‐compatible vectors for high‐throughput gene functional analysis in switchgrass (Panicum virgatum L.) and other monocot species. Plant Biotechnology Journal, 10(2), 226-236. doi:10.1111/j.1467-7652.2011.00658.x
  • Mengel, K., & Kirkby, E. A. (1987). Copper, further elements of importance, Principles of plant nutrition. 4th ed. International Potash Institute, Berne, Switzerland.
  • Nagajyoti, P. C., Lee, K. D., & Sreekanth, T. V. M. (2010). Heavy metals, occurrence and toxicity for plants: a review. Environmental Chemistry Letter, 8, 199-216. doi:10.1007/s10311-010-0297-8
  • Nareshkumar, A., Krishnappa, B. V., Kirankumar, T. V., Kiranmai, K., Lokesh, U., Sudhakarbabu, O., & Sudhakar, C. (2014). Effect of Pb-stress on growth and mineral status of two groundnut (Arachis hypogaea L.) cultivars. Journal of Plant Science, 2(6), 304-310. doi:10.11648/j.jps.20140206.17
  • Nightingale, E. R. (1959). Phenomenological theory of ion solvation. Effective radii of hydrated ions. The Journal of Physical Chemistry, 63(9), 1381-1387. doi:10.1021/j150579a011
  • Päivöke, A. E. A. (2002). Soil lead alters phytase activity and mineral nutrient balance of Pisum sativum. Environmental and Experimental Botany, 48(1), 61-73. doi:10.1016/S0098-8472(02)00011-4
  • Patel, V. J., Patel, J. C., Rathod, S. V., & Mori, B. J. (2017). Phosphorus uptake by fodder maize (zea mays l.) influenced by different levels of lead and farm yard manure grown in texturally different soils. International Journal of Current Microbiology and Applied Sciences (IJCMAS), 6(8), 697-701. doi:10.20546/ijcmas.2017.608.088
  • Reale, L., Ferranti, F., Mantilacci, S., Corboli, M., Aversa, S., Landucci, F., Baldisserotto, C., Ferroni, L., Pancaldi, S., & Venanzoni, R. (2016). Cyto-histological and morpho-physiological responses of common duckweed (Lemna minor L.) to chromium. Chemosphere, 145, 98-105. doi:10.1016/j.chemosphere.2015.11.047
  • Reeves, R. D., & Baker, A. J. M. (2000). Metal-accumulating plants. In I. Raskin, & B. D. Ensley (Eds.), Phytoremediation of toxic metals: using plants to clean up the environment (pp. 193-229). New York: Wiley
  • Rivelli, A. R., Puschenreiter, M., & De Maria, S. (2014). Assessment of cadmium uptake and nutrient content in sunflower plants grown under Cd stress. Plant, Soil and Environment, 60(2), 80-86. doi:10.17221/520/2013-PSE
  • Rizwan, M., Meunier, J. D., Davidian, J. C., Pokrovsky, O. S., Bovet, N., & Keller, C. (2016). Silicon alleviates Cd stress of wheat seedlings (Triticum turgidum L. cv. Claudio) grown in hydroponics. Environmental Science and Pollution Research, 23, 1414-1427. doi:10.1007/s11356-015-5351-4
  • Samantaray, S., Rout, G. R., & Das, P. (1998). Role of chromium on plant growth and metabolism. Acta Physiologiae Plantarum, 20, 201-212. doi:10.1007/s11738-998-0015-3
  • Shanker, A. K. (2003). Physiological, biochemical and molecular aspects of chromium toxicity and tolerance in selected crops and tree species. Dissertation. Tamil Nadu Agricultural University, Coimbatore, India.
  • Shanker, A. K., Cervantes, C., Loza-Tavera, H., & Avudainayagam, S. (2005). Chromium toxicity in plants. Environmental International, 31(5), 739-753. doi:10.1016/j.envint.2005.02.003
  • Sharma, P., & Dubey, R. S. (2005). Lead toxicity in plants. Brazilian Journal of Plant Physiology, 17(1), 35-52. doi:10.1590/S1677-04202005000100004
  • Shukla, U. C., Singh, J., Joshi, P. C., & Kakkar, P. (2003). Effect of bioaccumulation of cadmium on biomass productivity, essential trace elements, chlorophyll biosynthesis and macromolecules of wheat seedlings. Biological Trace Element Research, 92(3), 257-274. doi:10.1385/BTER:92:3:257
  • Sikka, R., & Nayyar, V. (2012). Cadmium accumulation and its effects on uptake of micronutrients in Indian mustard Brassica juncea (L.) Czern. grown in a loamy sand soil artificially contaminated with cadmium. Communications in Soil Science and Plant Analysis, 43(4), 672-688. doi:10.1080/00103624.2012.644007
  • Sinha, P., Dube, B. K., Srivastava, P., & Chatterjee, C. (2006). Alteration in uptake and translocation of essential nutrients in cabbage by excess lead. Chemosphere, 65(4), 651-656. doi:10.1016/j.chemosphere.2006.01.068
  • Sokhansanj, S., Mani, S., Turhollow, A., Kumar, A., Bransby, D., Lynd, L., & Laser, M. (2009). Large‐scale production, harvest and logistics of switchgrass (Panicum virgatum L.)–current technology and envisioning a mature technology. Biofuels, Bioproducts and Biorefining (Biofpr), 3(2), 124-141. doi:10.1002/bbb.129
  • Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy Metals Toxicity and the Environment. In A. Luch (Ed.) Molecular, Clinical and Environmental Toxicology Experientia Supplementum (vol 101. pp.133-164). Basel: Springer.
  • Wahid, A., Ghani, A., & Javed, F. (2008). Effect of cadmium on photosynthesis, nutrition, and growth of mungbean. Agronomy for Sustainable Development, 28, 273-280. doi:10.1051/agro:2008010
  • Walker, W. M., Miller, J. E., & Hassett, J. J. (1997). Effect of lead and cadmium upon the calcium, magnesium, potassium, and phosphorus concentration in young corn plants. Soil Science, 124(3), 145-151. doi:10.1097/00010694-197709000-00004
  • Wang, C., Lu, J., Zhang, S., Wang, P. F., Hou, J., & Qian, J. (2011). Effects of Pb stress on nutrient uptake and secondary metabolism in submerged macrophyte Vallisneria natans. Ecotoxicology and Environmental Safety, 74(5), 1297-1303. doi:10.1016/j.ecoenv.2011.03.005
  • Wintz, H., Fox, T., & Vulpe, C. (2002). Responses of plants to iron, zinc and copper deficiencies. Biochemical Society Transactions, 30(4), 766-768. doi:10.1042/bst0300766
  • Wojcik, M., & Tukiendorf, A. (2014). Accumulation and tolerance of lead in two contrasting ecotypes of Dianthus carthusianorum. Phytochemistry, 100, 60-65. doi.org/10.1016/j.phytochem.2014.01.008

Switchgrass (Panicum virgatum L.) Bitkisinde Kurşun, Krom ve Kadmiyum Toksisitesinin Besin Alımı Üzerindeki Etkileri ve Lineer Regresyon Analizleri

Year 2023, , 1187 - 1199, 29.12.2023
https://doi.org/10.53433/yyufbed.1277632

Abstract

Madencilik, kentsel veya endüstriyel katı, gaz ve sıvı atıklar, pestisit ve suni gübre kullanımı, boya sanayi ve araba egzoz gazları ağır metallerin doğaya salınmasına neden olur. Çevresel kirleticilerin neden olduğu bu ağır metal stresi, bitkilerin büyümesini sınırlamakta, ürün verimini ve kalitesini düşürmektedir. Aynı zamanda, ağır metal stresi bitki besin maddelerinin bitkiler tarafından alınmasını, taşınmasını ve kullanılmasını engeller. Sonuç olarak, bu çalışma, geniş bir habitat ve iklim yelpazesine uyum sağlayabilen switchgrass’taki kurşun, kadmiyum ve kromun toksisitesini ve toleransını değerlendirmek için yapılmıştır. Ağır metallerin besin alımı üzerindeki etkilerini belirlemek amacıyla, Switchgrass (Panicum virgatum L.) bitkisi farklı konsantrasyonlarda Cd, Pb, Cr çözeltileri ile suni olarak kontamine edilmiş toprakta yetiştirilmiştir. Uygulanan metallerin farklı konsantrasyonlarından etkilenen switchgrasstaki makro ve mikro besin içeriklerindeki değişiklikler değerlendirilmiştir. Krom, kadmiyum ve kurşun fitotoksik etkiye sahip ve bitkiler için esansiyel olmayan elementler olmalarına rağmen, bu elementlerin switchgrass bitkisinin toprak üstü kısımlarında kolayca emilip biriktiği gözlenmiştir. Genel olarak, switchgrass bitkisindeki makro ve mikro besin konsantrasyonlarının farklı dozlarda Pb, Cd ve Cr uygulamalarında önemli ölçüde veya nispeten azaldığı bulunmuştur. Ca2+ ve Pb2+'nın kök hücrelere giriş için rekabet etmesi nedeniyle, uygulanan farklı Pb dozları ile sadece bitkideki Ca konsantrasyonları önemli ölçüde artmıştır. Bununla birlikte elde edilen sonuçlar lineer regresyon ve Pearson korelasyonu kullanılarak yorumlanmıştır.

Project Number

-

References

  • Adhikari, T., Tel-Or, E., Libal, Y., & Shenker, M. (2006). Effect of cadmium and iron on rice (Oryza sativa L.) plant in chelator-buffered nutrient solution. Journal of Plant Nutrition, 29, 1919-1940. doi:10.1080/01904160600927435
  • Akhtar, T., Zia-ur-Rehman, M., Naeem, A., Nawaz, R., Ali, S., Murtaza, G., Maqsood, M. A., Azhar, M., Khalid, H., & Rizwan, M. (2017). Photosynthesis and growth response of maize (Zea mays L.) hybrids exposed to cadmium stress. Environmental Science and Pollution Research, 24(6), 5521-5529. doi:10.1007/s11356-016-8246-0
  • Akinci, I. E., Akinci, S., & Yilmaz, K. (2010). Response of tomato (Solanum lycopersicum L.) to lead, toxicity: Growth, element uptake, chlorophyll and water content. African Journal of Agricultural Research, 5(6), 416-423.
  • Alacabey, İ., & Zorer Çelebi, Ş. (2020). Determination of Switchgrass (Panicum Virgatum)'s lead, cadmium, crom tolerance and accumulation potential. Journal of the Institute of Science and Technology, 10(3), 2199-2206. doi:10.21597/jist.731527
  • Ali, S., Chaudhary, A., Rizwan, M., Anwar, H. T., Adrees, M., Farid, M., Irshad, M. K., Hayat, T., & Anjum, S. A. (2015). Alleviation of chromium toxicity by glycinebetaine is related to elevated antioxidant enzymes and suppressed chromium uptake and oxidative stress in wheat (Triticum aestivum L.). Environmental Science and Pollution Research, 22, 10669-10678. doi:10.1007/s11356-015-4193-4
  • Arshad, M., Ali, S., Nomana, A., Rizwan, M., Farid, M., & Irshad, M. K. (2016). Phosphorus amendment decreased cadmium (Cd) uptake and ameliorates chlorophyll contents, gas exchange attributes, antioxidants, and mineral nutrients in wheat (Triticum aestivum L.) under Cd stress. Archives of Agronomy and Soil Science, 62(4), 533-546. doi:10.1080/03650340.2015.1064903
  • Boussama, N., Ouariti, O., & Ghorbal, M. H. (1999). Changes in growth and nitrogen assimilation in barley seedlings under cadmium stress. Journal of Plant Nutrition, 22(4-5), 731-752. doi:10.1080/01904169909365668
  • Calles Torrez, V., Johnson, P. J., & Boe, A. (2013). Infestation rates and tiller morphology effects by the switchgrass moth on six cultivars of switchgrass. Bioenergy Research, 6, 808-812. doi:10.1007/s12155-013-9306-7
  • Campbell, P. G. C. (2006). Cadmium: A priority pollutant. Environmental Chemistry, 3(6), 387-388. doi:10.1071/EN06075
  • Chien, H. F., & Kao, C. H. (2000). Accumulation of ammonium in rice leaves in response to excess cadmium. Plant Science, 156(1), 111-115. doi:10.1016/S0168-9452(00)00234-X
  • Clysters, H., & Van Assche, F. (1985). Inhibition of photosynthesis by metal. Photosynthesis Research, 7(1), 31-40. doi:10.1007/BF00032920
  • Cseh, E., Fodor, F., Varga, A., & Zaray, G. (2000). Effect of lead treatment on the distribution of essential elements in cucumber. Journal of Plant Nutrition, 23(8), 1095-1105. doi:10.1080/01904160009382084
  • Daud, M. K., Ali, S., Variath, M. T., & Zhu, S. J. (2013). Differential physiological, ultra morphological and metabolic responses of cotton cultivars under cadmium stress. Chemosphere. 93(10), 2593-2602. doi:10.1016/j.chemosphere.2013.09.082
  • Eren, A. (2018). The effects of cadmium applications on grown rough cocklebur (Xanthium strumarium L.). Ege Üniversitesi Ziraat Fakültesi Dergisi, 55(3), 265-270. doi:10.20289/zfdergi.358586
  • Farooq, M., Ali, S., Hameed, A., Bharwana, S., Rizwan, M., Ishaque, W., Farid, M., Mahmood, K., & Iqbal, Z. (2016). Cadmium stress in cotton seedlings: physiological, photosynthesis and oxidative damages alleviated by glycinebetaine. South African Journal of Botany, 104, 61-68. doi:10.1016/j.sajb.2015.11.006
  • Godbold, D. L., & Kettner, C. (1991). Lead influences root growth and mineral nutrition of Picea abies seedlings. Journal of Plant Physiology, 139(1), 95-99. doi:10.1016/S0176-1617(11)80172-0
  • Kabata-Pendias, A., & Pendias, H. (1992). Trace elements in soils and plants. 2nd ed. CRC Press, Boca Raton, London.
  • Kısa, D., Ozturk, L., Doker, S., & Gokce, I. (2017). Expression analysis of metallothioneins and mineral contents in tomato (Lycopersicon esculentum) under heavy metal stress. Journal of the Science of Food and Agriulture, 97(6), 1916-1923. doi:10.1002/jsfa.7995
  • Kim, Y. Y., Yang, Y. Y., & Lee, Y. (2002). Pb and Cd uptake in rice roots. Physiologia Plantarum, 116, 368-372. doi:10.1034/j.1399-3054.2002.1160312.x
  • Kim, C. G., Bell, J. N. B., & Power, S. A. (2003). Effects of soil cadmium on Pinus sylvestris L. seedlings. Plant and Soil, 257, 443-449.
  • Liu, Z. L., He, X. Y., & Chen, W. (2011). Effects of cadmium hyperaccumulation on the concentrations of four trace elements in Lonicera japonica Thunb. Ecotoxicology, 20(4), 698-705. doi:10.1007/s10646-011-0609-1
  • Malkowski, E., Kita, A., Galas, W., Karcz, W., & Kuperberg, J. M. (2002). Lead distribution in corn seedlings (Zea mays L.) and its effect on growth and the concentrations of potassium and calcium. Plant Growth Regulation, 37, 69-76. doi:10.1023/A:1020305400324
  • Mann, D. G. J., Lafayette, P. R., Abercrombie, L. L., King, Z. R., Mazarei, M., Halter, M. C., Poovaiah, C. R., Baxter, H., Shen, H., Dixon, R. A., Parrott, W. A., & Stewart Jr, C.N. (2012). Gateway‐compatible vectors for high‐throughput gene functional analysis in switchgrass (Panicum virgatum L.) and other monocot species. Plant Biotechnology Journal, 10(2), 226-236. doi:10.1111/j.1467-7652.2011.00658.x
  • Mengel, K., & Kirkby, E. A. (1987). Copper, further elements of importance, Principles of plant nutrition. 4th ed. International Potash Institute, Berne, Switzerland.
  • Nagajyoti, P. C., Lee, K. D., & Sreekanth, T. V. M. (2010). Heavy metals, occurrence and toxicity for plants: a review. Environmental Chemistry Letter, 8, 199-216. doi:10.1007/s10311-010-0297-8
  • Nareshkumar, A., Krishnappa, B. V., Kirankumar, T. V., Kiranmai, K., Lokesh, U., Sudhakarbabu, O., & Sudhakar, C. (2014). Effect of Pb-stress on growth and mineral status of two groundnut (Arachis hypogaea L.) cultivars. Journal of Plant Science, 2(6), 304-310. doi:10.11648/j.jps.20140206.17
  • Nightingale, E. R. (1959). Phenomenological theory of ion solvation. Effective radii of hydrated ions. The Journal of Physical Chemistry, 63(9), 1381-1387. doi:10.1021/j150579a011
  • Päivöke, A. E. A. (2002). Soil lead alters phytase activity and mineral nutrient balance of Pisum sativum. Environmental and Experimental Botany, 48(1), 61-73. doi:10.1016/S0098-8472(02)00011-4
  • Patel, V. J., Patel, J. C., Rathod, S. V., & Mori, B. J. (2017). Phosphorus uptake by fodder maize (zea mays l.) influenced by different levels of lead and farm yard manure grown in texturally different soils. International Journal of Current Microbiology and Applied Sciences (IJCMAS), 6(8), 697-701. doi:10.20546/ijcmas.2017.608.088
  • Reale, L., Ferranti, F., Mantilacci, S., Corboli, M., Aversa, S., Landucci, F., Baldisserotto, C., Ferroni, L., Pancaldi, S., & Venanzoni, R. (2016). Cyto-histological and morpho-physiological responses of common duckweed (Lemna minor L.) to chromium. Chemosphere, 145, 98-105. doi:10.1016/j.chemosphere.2015.11.047
  • Reeves, R. D., & Baker, A. J. M. (2000). Metal-accumulating plants. In I. Raskin, & B. D. Ensley (Eds.), Phytoremediation of toxic metals: using plants to clean up the environment (pp. 193-229). New York: Wiley
  • Rivelli, A. R., Puschenreiter, M., & De Maria, S. (2014). Assessment of cadmium uptake and nutrient content in sunflower plants grown under Cd stress. Plant, Soil and Environment, 60(2), 80-86. doi:10.17221/520/2013-PSE
  • Rizwan, M., Meunier, J. D., Davidian, J. C., Pokrovsky, O. S., Bovet, N., & Keller, C. (2016). Silicon alleviates Cd stress of wheat seedlings (Triticum turgidum L. cv. Claudio) grown in hydroponics. Environmental Science and Pollution Research, 23, 1414-1427. doi:10.1007/s11356-015-5351-4
  • Samantaray, S., Rout, G. R., & Das, P. (1998). Role of chromium on plant growth and metabolism. Acta Physiologiae Plantarum, 20, 201-212. doi:10.1007/s11738-998-0015-3
  • Shanker, A. K. (2003). Physiological, biochemical and molecular aspects of chromium toxicity and tolerance in selected crops and tree species. Dissertation. Tamil Nadu Agricultural University, Coimbatore, India.
  • Shanker, A. K., Cervantes, C., Loza-Tavera, H., & Avudainayagam, S. (2005). Chromium toxicity in plants. Environmental International, 31(5), 739-753. doi:10.1016/j.envint.2005.02.003
  • Sharma, P., & Dubey, R. S. (2005). Lead toxicity in plants. Brazilian Journal of Plant Physiology, 17(1), 35-52. doi:10.1590/S1677-04202005000100004
  • Shukla, U. C., Singh, J., Joshi, P. C., & Kakkar, P. (2003). Effect of bioaccumulation of cadmium on biomass productivity, essential trace elements, chlorophyll biosynthesis and macromolecules of wheat seedlings. Biological Trace Element Research, 92(3), 257-274. doi:10.1385/BTER:92:3:257
  • Sikka, R., & Nayyar, V. (2012). Cadmium accumulation and its effects on uptake of micronutrients in Indian mustard Brassica juncea (L.) Czern. grown in a loamy sand soil artificially contaminated with cadmium. Communications in Soil Science and Plant Analysis, 43(4), 672-688. doi:10.1080/00103624.2012.644007
  • Sinha, P., Dube, B. K., Srivastava, P., & Chatterjee, C. (2006). Alteration in uptake and translocation of essential nutrients in cabbage by excess lead. Chemosphere, 65(4), 651-656. doi:10.1016/j.chemosphere.2006.01.068
  • Sokhansanj, S., Mani, S., Turhollow, A., Kumar, A., Bransby, D., Lynd, L., & Laser, M. (2009). Large‐scale production, harvest and logistics of switchgrass (Panicum virgatum L.)–current technology and envisioning a mature technology. Biofuels, Bioproducts and Biorefining (Biofpr), 3(2), 124-141. doi:10.1002/bbb.129
  • Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy Metals Toxicity and the Environment. In A. Luch (Ed.) Molecular, Clinical and Environmental Toxicology Experientia Supplementum (vol 101. pp.133-164). Basel: Springer.
  • Wahid, A., Ghani, A., & Javed, F. (2008). Effect of cadmium on photosynthesis, nutrition, and growth of mungbean. Agronomy for Sustainable Development, 28, 273-280. doi:10.1051/agro:2008010
  • Walker, W. M., Miller, J. E., & Hassett, J. J. (1997). Effect of lead and cadmium upon the calcium, magnesium, potassium, and phosphorus concentration in young corn plants. Soil Science, 124(3), 145-151. doi:10.1097/00010694-197709000-00004
  • Wang, C., Lu, J., Zhang, S., Wang, P. F., Hou, J., & Qian, J. (2011). Effects of Pb stress on nutrient uptake and secondary metabolism in submerged macrophyte Vallisneria natans. Ecotoxicology and Environmental Safety, 74(5), 1297-1303. doi:10.1016/j.ecoenv.2011.03.005
  • Wintz, H., Fox, T., & Vulpe, C. (2002). Responses of plants to iron, zinc and copper deficiencies. Biochemical Society Transactions, 30(4), 766-768. doi:10.1042/bst0300766
  • Wojcik, M., & Tukiendorf, A. (2014). Accumulation and tolerance of lead in two contrasting ecotypes of Dianthus carthusianorum. Phytochemistry, 100, 60-65. doi.org/10.1016/j.phytochem.2014.01.008
There are 47 citations in total.

Details

Primary Language English
Subjects Agricultural, Veterinary and Food Sciences
Journal Section Agriculture / Zirai Bilimler
Authors

Şeyda Zorer Çelebi 0000-0003-1278-1994

Özlem Selçuk Zorer 0000-0002-6486-8365

Abdullah Yeşilova 0000-0002-0666-8170

Project Number -
Publication Date December 29, 2023
Submission Date April 5, 2023
Published in Issue Year 2023

Cite

APA Zorer Çelebi, Ş., Selçuk Zorer, Ö., & Yeşilova, A. (2023). Influences on to Nutrient Uptake of Lead, Chromium and Cadmium Toxicity in Switchgrass (Panicum virgatum L.) Plant and Linear Regression Analyses. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28(3), 1187-1199. https://doi.org/10.53433/yyufbed.1277632