Research Article
BibTex RIS Cite

Investigation of Hemp-Added Green Composite Production for Recycling Waste Tires

Year 2024, , 690 - 707, 31.08.2024
https://doi.org/10.53433/yyufbed.1386928

Abstract

Increasing environmental problems today have led to the preference for organic-based biodegradable materials instead of petroleum-derived materials, which are frequently used in the industry. For this reason, composites doped with natural fibers such as hemp, flax and jute are prepared to increase the mechanical strength of polymers with low strength. Within the scope of the study, the production and use of hemp-added composite (flooring) material for recycling end-of-life waste tires, the main ingredient of which is rubber, was investigated. For this purpose, hemp-added composite products were prepared by mixing granulated rubber tires with 90-125-250 μm hemp tow binder material in the ratios of 10% and 20%. As the final product, it is aimed to obtain a green product containing hemp. It is a nature-friendly, environmentally friendly, hemp-added flooring material that is not harmful to health and the environment, in areas open to human use such as recreation areas. As a result of the analyses carried out to investigate the potential to be used as an adhesive, 10% and 20% hemp-added composite samples with 90 μm particle size showed similar and superior properties to raw rubber. In addition to obtaining an environmentally friendly floor covering material that reduces carbon emissions, the composite material produced also provides cost savings by reducing the binder ratio used by the manufacturer as a binding agent.

References

  • Adhikari, B., De, D., & Maiti, S. (2000). Reclamation and recycling of waste rubber. Progress in Polymer Science, 25, 909-948. https://doi.org/10.1016/S0079-6700(00)00020-4
  • Ahmad Saidi, M. A., Ahmad, M., Arjmandi, A. Hassan, R., & Rahmat, A. (2018). The effect of titanate coupling agent on water absorption and mechanical properties of rice husk filled poly (vinyl Chloride) composites. Woodhead Publishing, 197-210. https://doi.org/10.1016/B978-0-08-102160-6.00010-X
  • Amaducci, S., & Gusovius, H. J. (2010). Hemp–cultivation, extraction and processing. In: Müsig, J. (Ed.), Industrial Applications of Natural Fibres (pp. 109-134). John Wiley & Sons, Ltd, Chichester, UK,
  • Amaducci, S., Scordia, D., Liu, F. H., Zhang, Q., Guo, H., Testa, G., & Cosentino, S. L. (2015). Key cultivation techniques for hemp in Europe and China. Industrial Crops and Products, 68, 2-16. https://doi.org/10.1016/j.indcrop.2014.06.041
  • Antakya Belediyesi. (2014). Ömrünü tamamlamış lastiklerin toplanması. Erişim tarihi: 23.02.2024 https://www.antakya.bel.tr/NotFound.aspx?aspxerrorpath=/icerik/102/145/omrunutamamlamis-lastiklerin-toplanmasi.aspx
  • Arikan, V., & Sayman, O. (2015). Comparative study on repeated impact response of E glass fiber reinforced polypropylene & epoxy matrix composites. Composites Part B: Engineering, 83,1-6. https://doi.org/10.1016/j.compositesb.2015.08.051
  • Babu, K. S., & Ratnam, C. (2021). Mechanical and thermophysical behavior of hemp fiber reinforced gypsum composites. Materials Today: Proceedings, 44, 2245-2249. https://doi.org/10.1016/j.matpr.2020.12.363
  • Caminero, M. A., García-Moreno, I., & Rodríguez, G. P. (2018). Experimental study of the influence of thickness and ply-stacking sequence on the compression after impact strength of carbon fibre reinforced epoxy laminates. Polymer Testing, 66, 360-370. https://doi.org/10.1016/j.polymertesting.2018.02.009
  • Candau, N., Oguz, O., Le´ on Albiter, N., Forster, G., & Maspoch, M. L. (2021). Poly (lactic acid)/ground tire rubber blends using peroxide vulcanization. Polymers (Basel), 13, 1496, https://doi.org/10.3390/polym13091496
  • Casas, X. A., & Pons, J. R. I. (2005). Environmental analysis of the energy use of hemp-analysis of the comparative life cycle: diesel oil vs. Hemp-diesel. International Journal of Agricultural Resources Governance Ecology, 4(2),133–9. https://doi.org/10.1504/IJARGE.2005.007195
  • Cazan, C., Cosnita, M., & Isac, L. (2019). The influence of temperature on the performance of rubber- PET-HDPE waste -based composites with different inorganic fillers. Journal of Clean. Production, 208, 1030-1040. https://doi.org/10.1016/j.jclepro.2018.10.045
  • Chawla, K. K. (2012). Composite materials: Science and engineering. Springer Science & Business Media. https://doi.org/10.1007/978-0-387-74365-3
  • Chen, R. S., Salleh, M., Ab Ghani, M., Ahmad, S., & Gan, S. (2015). Biocomposites based on rice husk flour and recycled polymer blend: effects of interfacial modification and high fibre loading. BioResources, 10(4), 6872-6885. https://doi.org/10.15376/biores.10.4.6872-6885
  • Choi, G. G., Oh, S. J., & Kim, J. S. (2017). Clean pyrolysis oil from a continuous two-stage pyrolysis of scrap tires using in-situ and ex-situ desulfurization. Energy, 141, 2234-2241. https://doi.org/10.1016/j.energy.2017.12.015
  • Dabhi, A. S. (2016). Biodegradable natural fiber composites: fabrication and characterization of hemp fiber with PLA powder composites. (MSc.) Thesis, The University of Texas at Austin, Austin, U.S.A.
  • Datta, J., & Włoch, M. (2015). Morphology and properties of recycled polyethylene/ground tyre rubber/thermoplastic poly (esterurethane) blends. Macromolecular Research, 23, 1117-1125. https://doi.org/10.1007/s13233-015-3155-5
  • Datta, J., Parcheta, P., & Surówka, J. (2016). Softwood-lignin/natural rubber composites containing novel plasticizing agent: preparation and characterization. Industrial Crops and Products, 95, 675-685. https://doi.org/10.1016/j.indcrop.2016.11.036
  • Deeraj, B. D. S., Joseph, K., Jayan, J. S., & Saritha, A. (2021). Dynamic mechanical performance of natural fiber reinforced composites: a brief review. Applied Science and Engineering Progress, 14(4), 614-623. https://doi.org/10.14416/j.asep.2021.06.003
  • De Sousa, F. D. B. (2016). Vulcanization of natural rubber: past, present and future perspectives. (pp. 47–88.) In: Hamilton, J. L. (Ed.), Natural rubber: Properties, behavior and applications. Nova Science Publishers: New York.
  • Dhakal, H. N., Zhang, Z. Y., & Richardson, M. O. W. (2007). Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites. Composites Science and Technology. 67(7-8), 1674-1683. https://doi.org/10.1016/j.compscitech.2006.06.019
  • Dittrich, B., Wartig, K. A., Mülhaupt, R., & Schartel, B. (2014). Flame-retardancy properties of intumescent ammonium poly (phosphate) and mineral filler magnesium hydroxide in combination with graphene. Polymers, 6, 2875-2895. https://doi.org/10.3390/polym6112875
  • Dobrotă, D., & Dobrotă, G. (2018). An innovative method in the regeneration of waste rubber and the sustainable development. Journal of Clean. Production, 172, 3591–3599. https://doi.org/10.1016/j.jclepro.2017.03.022
  • Donfouet, H. P. P., Barczak, A., Detang-Dessendre, C., & Maigne, E. (2017). Crop production and crop diversity in France: a spatial analysis. Ecological Economics; 134, 29–39. https://doi.org/10.1016/j.ecolecon.2016.11.016
  • Dubkov, K. A., Semikolenov, S. V., Ivanov, D. P., Babushkin, D. E., Panov, G. I., & Parmon, V. N. (2012). Reclamation of waste tyre rubber with nitrous oxide. Polymer Degradation and Stability, 97, 1123-1130. https://doi.org/10.1016/j.polymdegradstab.2012.04.006
  • El-Shekeil, Y. A., AL-Oqla, F. M. Refaey, H. A., Bendoukha, S., & Barhoumi, N. (2024). Investigating the mechanical performance and characteristics of nitrile butadiene rubber date palm fiber reinforced composites for sustainable bio-based materials. Journal of Materials Research and Technology, 29, 101-108. https://doi.org/10.1016/j.jmrt.2024.01.092
  • Fazli, A., & Rodrigue, D. (2020). Waste rubber recycling: A review on the evolution and properties of thermoplastic elastomers. Materials, 13, 782. https://doi.org/10.3390/ma13030782
  • Fernea, R., Manea, D.L., Tamas-Gavrea, D.R., & Rosca, I.C. (2019). Hemp-clay building materials-an investigation on acoustic, thermaland mechanical properties. Procedia Manufacturing, 32, 216-223. https://doi.org/10.1016/j.promfg.2019.02.205
  • Finnan, J., & Styles D. (2013). Hemp: a more sustainable annual energy crop for climate and energy policy. Energy Policy, 58, 152–62. https://doi.org/10.1016/j.enpol.2013.02.046
  • Fuqua, M. A., Huo, S., & Ulven, C. A. (2012). Natural fiber reinforced composites. Polymer Reviews, 52, 259-320. https://doi.org/10.1080/15583724.2012.705409
  • Gopinath, G., Zheng, J. Q., & R. C. (2012). Effect of matrix on ballistic performance of soft body armor. Composite Structures, 94, 2690-2696. https://doi.org/10.1016/j.compstruct.2012.03.038
  • Gupta, V. K., Ganjali, M. R., Nayak, A., Bhushan, B., & Agarwal, S. (2012). Enhanced heavy metals removal and recovery by mesoporous adsorbent prepared from waste rubber tire. Chemical Engineering Journal, 197, 330-342. https://doi.org/10.1016/j.cej.2012.04.104
  • Haghighatnia, T., Abbasian, A., & Morshedian, J. (2017). Hemp fiber reinforced thermoplastic polyurethane composite: An investigation in mechanical properties. Industrial Crops and Products, 108, 853-863. https://doi.org/10.1016/j.indcrop.2017.07.020
  • Halász, I.Z., Kocsis, D., Simon, D. A., Kohari, A., & Barany, T. (2020). Development of polypropylene-based thermoplastic elastomers with crumb rubber by dynamic vulcanization: a potential route for rubber recycling. Periodica Polytechnica Chemical Engineering, 64, 248-254. https://doi.org/10.3311/PPch.13962
  • Jawaid, M., Abdul Khalil, H.P.S., Khanam, P.N., & Bakar, A. A. (2011). Hybrid composites made from oil palm empty fruit bunches/jute fibres: water absorption, thickness swelling and density behaviours. Journal Polymers Environment, 19, 106-109. https://doi.org/10.1007/s10924-010-0203-2
  • Jawaid, M., & Abdul Khalil, H. P. S. (2011). Cellulosic/synthetic fibre reinforced polymer hybrid composites: a review. Carbohydrate Polymers, 86(1), 1-18. https://doi.org/10.1016/j.carbpol.2011.04.043
  • Kabir, M. M., Wang, H., Lau, K. T., & Cardona, F. (2012). Chemical treatments on plant-based natural fibre reinforced polymer composites: an overview. Composites Part B: Engineering, 43(7), 2883- 2892. https://doi.org/10.1016/j.compositesb.2012.04.053
  • Kakroodi, A. D., Kazemi, Y., & Rodrigue, D. (2013). Mechanical, rheological, morphological and water absorption properties of maleated polyethylene/hemp composites: Effect of ground tire rubber addition. Composites Part B: Engineering, 51, 337-344. https://doi.org/10.1016/j.compositesb.2013.03.032
  • Karger-Kocsis, J., Meszaros, L., & Barany, T. (2013). Ground tyre rubber (GTR) in thermoplastics, thermosets, and rubbers. Journal of Material Science, 48, 1-38. https://doi.org/10.1007/s10853-012-6564-2
  • Katz, S., Grossman, E., Gouzman, I., Murat, M., Wiesel, E. & Wagner, HD. (2008). Response of composite materials to hypervelocity impact. International Journal Impact Engineering, 35, 1606-1611. https://doi.org/10.1016/j.ijimpeng.2008.07.032
  • Kumar, G. S., Rathan, A., Bandhu, D., Reddy, B. M., Rao, H. R., Swami, S., Saxena, K.K., Eldin, S.M., & Prashanth, N. N. A. (2023). Mechanical and thermal characterization of coir/hemp/polyester hybrid composite for lightweight applications. Journal of Materials Research and Technology, 26, 8242-8253. https://doi.org/10.1016/j.jmrt.2023.09.144
  • Lee, B. L., Walsh, T. F., Won, S. T., Patts, H. M., Song, J. W., & Mayer, A. H. (2001). Penetration failure mechanisms of armor-grade fiber composites under impact. Journal of Composite Material, 35, 1605-1633. https://doi.org/10.1106/YRBH-JGT9-U6PT-L555
  • Lee, J. M., Mohd Ishak, Z. A., Mat Taib, R., Law, T. T., & Ahmad Thirmizir, M. Z. (2013). Mechanical, thermal and water absorption propertiesof kenaf-fiber-based polypropylene and poly (butylene succinate) composites. Journal of Polymers and Environment, 21, 293-302. https://doi.org/10.1007/s10924-012-0516-4
  • Li, S., Tian, H., Wu, H., Ning, N., Tian, M., & Zhang, L. (2020). Coupling effect of molecular weight and crosslinking kinetics on the formation of rubber nanoparticles and their agglomerates in EPDM/PP TPVs during dynamic vulcanization. Soft Matter, 16, 2185-2198. https://doi.org/10.1039/c9sm02059d
  • Li, Y., Zhao, S., & Wang, Y. (2011). Microbial desulfurization of ground tire rubber by thiobacillus ferrooxidans. Polymer Degradation and Stability, 96, 1662-1668. https://doi.org/10.1016/j.polymdegradstab.2011.06.011
  • Liu, S., Ge, L., Gao, S., Zhuang, L., Zhu, Z., & Wang, H. (2017). Activated carbon derived from biowaste hemp hurd and retted hemp hurd for CO2 adsorption. Composites Communications, 5, 27–30. https://doi.org/10.1016/j.coco.2017.06.002
  • Liu, H.L., Wang, X.P. & Jia, D.M. (2020). Recycling of waste rubber powder by mechanochemical modification. Journal of Cleaner Production, 245, https://doi.org/10.1016/j.jclepro.2019.118716
  • Lu, N., & Oza, S. (2013a). A comparative study of the mechanical properties of hemp fiber with virgin and recycled high density polyethylene matrix. Composites Part B: Engineering, 45, 1651-1656. https://doi.org/10.1016/j.compositesb.2012.09.076
  • Lu, N., & Oza, S. (2013b). Thermal stability and thermo-mechanical properties of hemp-high density polyethylene composites: effect of two different chemical modifications. Composites Part B: Engineering, 44, 484-490. https://doi.org/10.1016/j.compositesb.2012.03.024
  • Mahesh, V., Joladarashi, S., & Kulkarni, S. (2019). Investigation on effect of using rubber as core material in sandwich composite plate subjected to low velocity normal and oblique impact loading. Sci Iran Trans Mech Eng, 6, 897-907. https://doi.org/10.24200/sci.2018.5538.1331
  • Mangili, I., Oliveri, M., Anzano, M., Collina, E., Demetrio, P., & Lasagni, Marina. (2014). Full factorial experimental design to study the devulcanization of ground tire rubber in supercritical carbon dioxide. The Journal of Supercritical Fluids. 92. https://doi.org/10.1016/j.supflu.2014.06.001
  • Mangili, I., Lasagni, M., Anzano, M., Collina, E., Tatangelo, V., Franzetti, A., Caracino, P., & Isayev, A. I. (2015). Mechanical and rheological properties of natural rubber compounds containing devulcanized ground tire rubber from several methods. Polymer Degradation and Stability, 121, 369-377. https://doi.org/10.1016/j.polymdegradstab.2015.10.004
  • Manuel, H. J. (2001). Standards for rubber granulates and powders. KGK-Kautschuk und Gummi Kunststoffe, 54, 101-105.
  • Marrot, L., Meile, K., Zouari, M., DeVallance, D., Sandak, A., & Herrera R. (2022). Characterization of the compounds released in the gaseous waste stream during the slow pyrolysis of hemp (Cannabis sativa L.). Molecules, 27(9), 2794. https://doi.org/10.3390/molecules27092794
  • Martín del Campo, A., Robledo-Ortíz, J.R., Arellano, M., Jasso-Gastinel, C. F., Silva-Jara, J. M., L´opez-Naranjo, E. J., & Perez Fonseca, A. A. (2020). Glycidyl methacrylate as compatibilizer of poly (lactic acid)/nanoclay/agave fiber hybrid biocomposites: effect on the physical and mechanical properties. Revista Mexicana de Ingenieria Quimica, 19, 455-469. https://doi.org/10.24275/rmiq/Mat627
  • Mohammed, L., Ansari, M. N., Pua, G., Jawaid, M., & Islam, M. S. (2015). A review on natural fiber reinforced polymer composite and its applications. International Journal of Polymer Science. 2015, 243947. https://doi.org/10.1155/2015/243947
  • Moni Ribeiro Filho, S. L., Oliveira, P. R., Panzera, T. H., & Scarpa, F. (2019). Impact of hybrid composites based on rubber tyres particles and sugarcane bagasse fibres. Composites Part B: Engineering, 159, 157-164. https://doi.org/10.1016/j.compositesb.2018.09.054
  • Müssig, J. (2010). Industrial Applications of Natural Fibres. John Wiley & Sons, Ltd: Chichester, UK.
  • Müssig, J., Amaducci, S., Bourmaud, A., Beaugrand, J., & Shah, D.U. (2020). Transdisciplinary top-down review of hemp fibre composites: from an advanced product design to crop variety selection. Composites Part C: Open Access, 2, 100010. https://doi.org/10.1016/j.jcomc.2020.100010
  • Müssig, J., & Christian, S. (2010). Industrial Applications of Natural Fibres: Structure, Properties and Technical Applications. John Wiley & Sons.
  • Mwaikambo, L. Y., Tucker, N., & Clark, A. J. (2007). Mechanical properties of hemp-fibre-reinforced euphorbia composites. Macromolecular Materials Engineering, 292, 993-1000. https://doi.org/10.1002/mame.200700092
  • Myhre, M., & MacKillop, D. A. (2002). Rubber recycling. Rubber Chemistry and Technology, 75(3), 429-474. https://doi.org/10.5254/1.3547678
  • Nuzaimah, M., Sapuan, S. M., Nadlene, R., & Jawaid, M. (2018). Recycling of waste rubber as fillers: A review. IOP Conf. Ser. Materials Science Engineering, 368, 012016. https://doi.org/10.1088/1757-899X/368/1/012016
  • Okçuer, T. H. (2021). Endüstriyel kenevirden kompozit malzeme geliştirilmesi. (Yüksek Lisans Tezi), Aksaray Üniversitesi, Fen Bilimleri Enstitüsü, Aksaray, Türkiye.
  • Parvez, A. M., Lewis, J. D., & Afzal, M. T. (2021). Potential of industrial hemp (Cannabis sativa L.) for bioenergy production in Canada: status, challenges and outlook. Renewable and Sustainable Energy Reviews, 141, 110784. https://doi.org/10.1016/j.rser.2021.110784
  • Pittau, F., Krause, F., Lumia, G., & Habert, G. (2018). Fast-growing bio-based materials as an opportunity for storing carbon in exterior walls. Building and Environment, 129, 117-129. https://doi.org/10.1016/j.buildenv.2017.12.006
  • Pittau, F., Lumia, G., Heeren, N., Iannaccone, G., & Habert, G. (2019). Retrofit as a carbon sink: the carbon storage potentials of the EU housing stock. Journal of Clean Production, 214, 365-76. https://doi.org/10.1016/j.jclepro.2018.12.304
  • Ramarad, S., Khalid, M., Ratnam, C.T., Chuah, A.L., & Rashmi, W. (2015). Waste tire rubber in polymer blends: a review on the evolution, properties and future. Progress Materials Science, 72, 100-140. https://doi.org/10.1016/j.pmatsci.2015.02.004.
  • Ramlee, N. A., Jawaid, M., Zainudin, E. S., & Yamani, S. A. K. (2019). Tensile, physical, and morphological properties of oil palm empty fruit bunch/sugarcane bagasse fibre reinforced phenolic hybrid composites. Journal of Materials Research and Technology, 8(4), 3466-3474. https://doi.org/10.1016/j.jmrt.2019.06.016
  • Ranalli, P., & Venturi, G. (2004). Hemp as a raw material for industrial applications. Euphytica, 140, 1-6. https://doi.org/10.1007/s10681-004-4749-8
  • Rolere, S., Liengprayoon, S., Vaysse, L., Sainte-Beuve, J., & Bonfils, F. (2015). Investigating natural rubber composition with Fourier Transform Infrared (FT-IR) spectroscopy: A rapid and non-destructive method to determine both protein and lipid contents simultaneously. Polymer Testing, 43, 83-93. https://doi.org/10.1016/j.polymertesting.2015.02.011
  • Rouison, D., Sain, M., & Couturier, M. (2006). Resin transfer molding of hemp fiber composites: optimization of the process and mechanical properties of the materials. Compos Sci Technol; 66(7e8):895-906. https://doi.org/10.1016/j.compscitech.2005.07.040
  • Sair, S., Oushabi, A., Kammouni, A., Tanane, O., Abboud, Y., & El Bouari, A. (2018). Mechanical and thermal conductivity properties of hemp fiber reinforced polyurethane composites. Case Studies in Construction Materials, 8, 203-212. https://doi.org/10.1016/j.cscm.2018.02.001
  • Satapathy, S., Nag, A., & Nando, G. B. (2010). Thermoplastic elastomers from waste polyethylene and reclaim rubber blends and their composites with fly ash. Process Safety and Environmental. Protection, 88, 131-141. https://doi.org/10.1016/j.psep.2009.12.001
  • Scrucca, F., Ingrao, C., Maalouf, C., Moussa, T., Polidori, G., Messineo, A., Arcidiacono C., & Asdrubali, F. (2020). Energy and carbon footprint assessment of production of hemp hurds for application in buildings. Environmental Impact Assessment Review, 84, 106417. https://doi.org/10.1016/j.eiar.2020.106417
  • Smith, B. (1998). Infrared spectral interpretation. CRC Press. https://doi.org/10.1201/9780203750841
  • Stark, N. M., Yelle, D. J., & Agarwal, U. P. (2016). Techniques for characterizing lignin. In: Faruk, O., Sain, M. (Eds.), Lignin in Polymer Composites (pp. 49-66). Elsevier, Vancouver, Canada.
  • Tahir, P. M., Ahmed, A. B., Azry, S. O. A. S., & Ahmed, Z. (2011). Retting process of some bast plant fibres and its effect on fibre quality: a review. BioResources, 6, 5260-5281.
  • Tucci, F., Larrea-Wachtendorff, D., Ferrari, G., & Carlone, P. (2022). Pulling force analysis in injection pultrusion of glass/epoxy composites. Materials and Manufacturing Processes, 37(15), 1715-1726. https://doi.org/10.1080/10426914.2022.2049296
  • Van Vuure, A. W., Baets, J., Wouters, K., & Hendrickx, K. (2015). Compressive properties of natural fibre composites. Materials Letters, 149, 138-140. https://doi.org/10.1016/j.matlet.2015.01.158
  • Wang, H., Hazell, P. J., Shankar, K., Morozov, E. V., & Escobedo, J. P. (2017) Impact behaviour of Dyneema fabric-reinforced composites with different resin matrices. Polymer Testing, 61, 17-26. https://doi.org/10.1016/j.polymertesting.2017.04.026
  • Wayal, A. S., & Wagle, M. D. (2013). Use of waste plastic and waste rubber in aggregate and bitumen for road materials. International Journal of Emerging Technology and Advanced Engineering, 3(7), 301-306.
  • Yao, C., Zhao, S., Wang, Y., Wang, B., Wei, M., & Hu, M. (2013). Microbial desulfurization of waste latex rubber with Alicyclobacillus sp. Polymer Degradation and Stability, 98, 1724-1730. https://doi.org/10.1016/j.polymdegradstab.2013.06.002
  • Zedler, Ł., Kowalkowska-Zedler, D., Colom, X., Canavate, J., Saeb, M.R., & Formela, K. (2020). Reactive sintering of ground tire rubber (GTR) modified by a trans- polyoctenamer rubber and curing additives. Polymers, 12(12), 3018. https://doi.org/10.3390/polym12123018
  • Zhang, S. L., Xin, Z. X., Zhang, Z. X., & Kim, J. K. (2009). Characterization of the properties of thermoplastic elastomers containing waste rubber tire powder. Waste Management, 29, 1480-1485. https://doi.org/10.1016/j.wasman.2008.10.004
  • Zhang, J., Gao, J., Chen, Y., Hao, X., & Jin, X. (2017). Characterization, preparation, and reaction mechanism of hemp stem based activated carbon. Results in physics, 7, 1628-1633. https://doi.org/10.1016/J.RINP.2017.04.02838

Atık Lastiklerin Geri Dönüşümü İçin Kenevir Katkılı Yeşil Kompozit Üretiminin Araştırılması

Year 2024, , 690 - 707, 31.08.2024
https://doi.org/10.53433/yyufbed.1386928

Abstract

Günümüzde artan çevre sorunları, endüstride sıklıkla kullanılan petrol türevli malzemelerin yerine, organik temelli biyo-bozunur malzemelerin tercih edilmesine neden olmuştur. Bu nedenle mukavemeti düşük olan polimerlerin mekanik dayanımını artırmak için kenevir, keten, jüt gibi doğal liflerle katkılandırılmış kompozitler hazırlanmaktadır. Çalışma kapsamında, ana maddesi kauçuk olan ömrünü tamamlamış atık lastiklerin (ÖTL) geri dönüşümü için kenevir katkılı kompozit (zemin kaplama) malzeme üretimi ve kullanımı incelenmiştir. Bu amaçla, granül hale getirilmiş kauçuk lastikler ile %10 ve % 20 oranlarda olacak şekilde 90-125-250 μm kenevir kıtığı birleştirici malzeme binder ile karıştırılarak kenevir katkılı kompozit ürünler hazırlanmıştır. Son ürün olarak kenevir içerikli yeşil ürün elde edilmesi, sağlığa ve çevreye zararlı olmayan, doğa dostu, karbon salınımının azaltılmasını destekleyen kenevir katkılı zemin kaplama malzemesi olarak kullanım potansiyelinin araştırılması amacıyla yapılan analizler sonucunda 90 μm partikül boyutu olan % 10 ve % 20 kenevir katkılı kompozit numuneler ham kauçuk ile benzer ve üstün özellikler göstermiştir. Üretilen kompozit malzeme ile çevre dostu, karbon salınımını azaltan bir zemin kaplama malzemesi elde edilmesinin yanı sıra üreticinin bağlayıcı ajan olarak kullandığı binder oranı düşürülerek maliyet açısından da kazanç sağlanmıştır.

Supporting Institution

Ondokuz Mayıs Üniversitesi

Thanks

OMÜ Bap birimine teşekkür ederiz

References

  • Adhikari, B., De, D., & Maiti, S. (2000). Reclamation and recycling of waste rubber. Progress in Polymer Science, 25, 909-948. https://doi.org/10.1016/S0079-6700(00)00020-4
  • Ahmad Saidi, M. A., Ahmad, M., Arjmandi, A. Hassan, R., & Rahmat, A. (2018). The effect of titanate coupling agent on water absorption and mechanical properties of rice husk filled poly (vinyl Chloride) composites. Woodhead Publishing, 197-210. https://doi.org/10.1016/B978-0-08-102160-6.00010-X
  • Amaducci, S., & Gusovius, H. J. (2010). Hemp–cultivation, extraction and processing. In: Müsig, J. (Ed.), Industrial Applications of Natural Fibres (pp. 109-134). John Wiley & Sons, Ltd, Chichester, UK,
  • Amaducci, S., Scordia, D., Liu, F. H., Zhang, Q., Guo, H., Testa, G., & Cosentino, S. L. (2015). Key cultivation techniques for hemp in Europe and China. Industrial Crops and Products, 68, 2-16. https://doi.org/10.1016/j.indcrop.2014.06.041
  • Antakya Belediyesi. (2014). Ömrünü tamamlamış lastiklerin toplanması. Erişim tarihi: 23.02.2024 https://www.antakya.bel.tr/NotFound.aspx?aspxerrorpath=/icerik/102/145/omrunutamamlamis-lastiklerin-toplanmasi.aspx
  • Arikan, V., & Sayman, O. (2015). Comparative study on repeated impact response of E glass fiber reinforced polypropylene & epoxy matrix composites. Composites Part B: Engineering, 83,1-6. https://doi.org/10.1016/j.compositesb.2015.08.051
  • Babu, K. S., & Ratnam, C. (2021). Mechanical and thermophysical behavior of hemp fiber reinforced gypsum composites. Materials Today: Proceedings, 44, 2245-2249. https://doi.org/10.1016/j.matpr.2020.12.363
  • Caminero, M. A., García-Moreno, I., & Rodríguez, G. P. (2018). Experimental study of the influence of thickness and ply-stacking sequence on the compression after impact strength of carbon fibre reinforced epoxy laminates. Polymer Testing, 66, 360-370. https://doi.org/10.1016/j.polymertesting.2018.02.009
  • Candau, N., Oguz, O., Le´ on Albiter, N., Forster, G., & Maspoch, M. L. (2021). Poly (lactic acid)/ground tire rubber blends using peroxide vulcanization. Polymers (Basel), 13, 1496, https://doi.org/10.3390/polym13091496
  • Casas, X. A., & Pons, J. R. I. (2005). Environmental analysis of the energy use of hemp-analysis of the comparative life cycle: diesel oil vs. Hemp-diesel. International Journal of Agricultural Resources Governance Ecology, 4(2),133–9. https://doi.org/10.1504/IJARGE.2005.007195
  • Cazan, C., Cosnita, M., & Isac, L. (2019). The influence of temperature on the performance of rubber- PET-HDPE waste -based composites with different inorganic fillers. Journal of Clean. Production, 208, 1030-1040. https://doi.org/10.1016/j.jclepro.2018.10.045
  • Chawla, K. K. (2012). Composite materials: Science and engineering. Springer Science & Business Media. https://doi.org/10.1007/978-0-387-74365-3
  • Chen, R. S., Salleh, M., Ab Ghani, M., Ahmad, S., & Gan, S. (2015). Biocomposites based on rice husk flour and recycled polymer blend: effects of interfacial modification and high fibre loading. BioResources, 10(4), 6872-6885. https://doi.org/10.15376/biores.10.4.6872-6885
  • Choi, G. G., Oh, S. J., & Kim, J. S. (2017). Clean pyrolysis oil from a continuous two-stage pyrolysis of scrap tires using in-situ and ex-situ desulfurization. Energy, 141, 2234-2241. https://doi.org/10.1016/j.energy.2017.12.015
  • Dabhi, A. S. (2016). Biodegradable natural fiber composites: fabrication and characterization of hemp fiber with PLA powder composites. (MSc.) Thesis, The University of Texas at Austin, Austin, U.S.A.
  • Datta, J., & Włoch, M. (2015). Morphology and properties of recycled polyethylene/ground tyre rubber/thermoplastic poly (esterurethane) blends. Macromolecular Research, 23, 1117-1125. https://doi.org/10.1007/s13233-015-3155-5
  • Datta, J., Parcheta, P., & Surówka, J. (2016). Softwood-lignin/natural rubber composites containing novel plasticizing agent: preparation and characterization. Industrial Crops and Products, 95, 675-685. https://doi.org/10.1016/j.indcrop.2016.11.036
  • Deeraj, B. D. S., Joseph, K., Jayan, J. S., & Saritha, A. (2021). Dynamic mechanical performance of natural fiber reinforced composites: a brief review. Applied Science and Engineering Progress, 14(4), 614-623. https://doi.org/10.14416/j.asep.2021.06.003
  • De Sousa, F. D. B. (2016). Vulcanization of natural rubber: past, present and future perspectives. (pp. 47–88.) In: Hamilton, J. L. (Ed.), Natural rubber: Properties, behavior and applications. Nova Science Publishers: New York.
  • Dhakal, H. N., Zhang, Z. Y., & Richardson, M. O. W. (2007). Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites. Composites Science and Technology. 67(7-8), 1674-1683. https://doi.org/10.1016/j.compscitech.2006.06.019
  • Dittrich, B., Wartig, K. A., Mülhaupt, R., & Schartel, B. (2014). Flame-retardancy properties of intumescent ammonium poly (phosphate) and mineral filler magnesium hydroxide in combination with graphene. Polymers, 6, 2875-2895. https://doi.org/10.3390/polym6112875
  • Dobrotă, D., & Dobrotă, G. (2018). An innovative method in the regeneration of waste rubber and the sustainable development. Journal of Clean. Production, 172, 3591–3599. https://doi.org/10.1016/j.jclepro.2017.03.022
  • Donfouet, H. P. P., Barczak, A., Detang-Dessendre, C., & Maigne, E. (2017). Crop production and crop diversity in France: a spatial analysis. Ecological Economics; 134, 29–39. https://doi.org/10.1016/j.ecolecon.2016.11.016
  • Dubkov, K. A., Semikolenov, S. V., Ivanov, D. P., Babushkin, D. E., Panov, G. I., & Parmon, V. N. (2012). Reclamation of waste tyre rubber with nitrous oxide. Polymer Degradation and Stability, 97, 1123-1130. https://doi.org/10.1016/j.polymdegradstab.2012.04.006
  • El-Shekeil, Y. A., AL-Oqla, F. M. Refaey, H. A., Bendoukha, S., & Barhoumi, N. (2024). Investigating the mechanical performance and characteristics of nitrile butadiene rubber date palm fiber reinforced composites for sustainable bio-based materials. Journal of Materials Research and Technology, 29, 101-108. https://doi.org/10.1016/j.jmrt.2024.01.092
  • Fazli, A., & Rodrigue, D. (2020). Waste rubber recycling: A review on the evolution and properties of thermoplastic elastomers. Materials, 13, 782. https://doi.org/10.3390/ma13030782
  • Fernea, R., Manea, D.L., Tamas-Gavrea, D.R., & Rosca, I.C. (2019). Hemp-clay building materials-an investigation on acoustic, thermaland mechanical properties. Procedia Manufacturing, 32, 216-223. https://doi.org/10.1016/j.promfg.2019.02.205
  • Finnan, J., & Styles D. (2013). Hemp: a more sustainable annual energy crop for climate and energy policy. Energy Policy, 58, 152–62. https://doi.org/10.1016/j.enpol.2013.02.046
  • Fuqua, M. A., Huo, S., & Ulven, C. A. (2012). Natural fiber reinforced composites. Polymer Reviews, 52, 259-320. https://doi.org/10.1080/15583724.2012.705409
  • Gopinath, G., Zheng, J. Q., & R. C. (2012). Effect of matrix on ballistic performance of soft body armor. Composite Structures, 94, 2690-2696. https://doi.org/10.1016/j.compstruct.2012.03.038
  • Gupta, V. K., Ganjali, M. R., Nayak, A., Bhushan, B., & Agarwal, S. (2012). Enhanced heavy metals removal and recovery by mesoporous adsorbent prepared from waste rubber tire. Chemical Engineering Journal, 197, 330-342. https://doi.org/10.1016/j.cej.2012.04.104
  • Haghighatnia, T., Abbasian, A., & Morshedian, J. (2017). Hemp fiber reinforced thermoplastic polyurethane composite: An investigation in mechanical properties. Industrial Crops and Products, 108, 853-863. https://doi.org/10.1016/j.indcrop.2017.07.020
  • Halász, I.Z., Kocsis, D., Simon, D. A., Kohari, A., & Barany, T. (2020). Development of polypropylene-based thermoplastic elastomers with crumb rubber by dynamic vulcanization: a potential route for rubber recycling. Periodica Polytechnica Chemical Engineering, 64, 248-254. https://doi.org/10.3311/PPch.13962
  • Jawaid, M., Abdul Khalil, H.P.S., Khanam, P.N., & Bakar, A. A. (2011). Hybrid composites made from oil palm empty fruit bunches/jute fibres: water absorption, thickness swelling and density behaviours. Journal Polymers Environment, 19, 106-109. https://doi.org/10.1007/s10924-010-0203-2
  • Jawaid, M., & Abdul Khalil, H. P. S. (2011). Cellulosic/synthetic fibre reinforced polymer hybrid composites: a review. Carbohydrate Polymers, 86(1), 1-18. https://doi.org/10.1016/j.carbpol.2011.04.043
  • Kabir, M. M., Wang, H., Lau, K. T., & Cardona, F. (2012). Chemical treatments on plant-based natural fibre reinforced polymer composites: an overview. Composites Part B: Engineering, 43(7), 2883- 2892. https://doi.org/10.1016/j.compositesb.2012.04.053
  • Kakroodi, A. D., Kazemi, Y., & Rodrigue, D. (2013). Mechanical, rheological, morphological and water absorption properties of maleated polyethylene/hemp composites: Effect of ground tire rubber addition. Composites Part B: Engineering, 51, 337-344. https://doi.org/10.1016/j.compositesb.2013.03.032
  • Karger-Kocsis, J., Meszaros, L., & Barany, T. (2013). Ground tyre rubber (GTR) in thermoplastics, thermosets, and rubbers. Journal of Material Science, 48, 1-38. https://doi.org/10.1007/s10853-012-6564-2
  • Katz, S., Grossman, E., Gouzman, I., Murat, M., Wiesel, E. & Wagner, HD. (2008). Response of composite materials to hypervelocity impact. International Journal Impact Engineering, 35, 1606-1611. https://doi.org/10.1016/j.ijimpeng.2008.07.032
  • Kumar, G. S., Rathan, A., Bandhu, D., Reddy, B. M., Rao, H. R., Swami, S., Saxena, K.K., Eldin, S.M., & Prashanth, N. N. A. (2023). Mechanical and thermal characterization of coir/hemp/polyester hybrid composite for lightweight applications. Journal of Materials Research and Technology, 26, 8242-8253. https://doi.org/10.1016/j.jmrt.2023.09.144
  • Lee, B. L., Walsh, T. F., Won, S. T., Patts, H. M., Song, J. W., & Mayer, A. H. (2001). Penetration failure mechanisms of armor-grade fiber composites under impact. Journal of Composite Material, 35, 1605-1633. https://doi.org/10.1106/YRBH-JGT9-U6PT-L555
  • Lee, J. M., Mohd Ishak, Z. A., Mat Taib, R., Law, T. T., & Ahmad Thirmizir, M. Z. (2013). Mechanical, thermal and water absorption propertiesof kenaf-fiber-based polypropylene and poly (butylene succinate) composites. Journal of Polymers and Environment, 21, 293-302. https://doi.org/10.1007/s10924-012-0516-4
  • Li, S., Tian, H., Wu, H., Ning, N., Tian, M., & Zhang, L. (2020). Coupling effect of molecular weight and crosslinking kinetics on the formation of rubber nanoparticles and their agglomerates in EPDM/PP TPVs during dynamic vulcanization. Soft Matter, 16, 2185-2198. https://doi.org/10.1039/c9sm02059d
  • Li, Y., Zhao, S., & Wang, Y. (2011). Microbial desulfurization of ground tire rubber by thiobacillus ferrooxidans. Polymer Degradation and Stability, 96, 1662-1668. https://doi.org/10.1016/j.polymdegradstab.2011.06.011
  • Liu, S., Ge, L., Gao, S., Zhuang, L., Zhu, Z., & Wang, H. (2017). Activated carbon derived from biowaste hemp hurd and retted hemp hurd for CO2 adsorption. Composites Communications, 5, 27–30. https://doi.org/10.1016/j.coco.2017.06.002
  • Liu, H.L., Wang, X.P. & Jia, D.M. (2020). Recycling of waste rubber powder by mechanochemical modification. Journal of Cleaner Production, 245, https://doi.org/10.1016/j.jclepro.2019.118716
  • Lu, N., & Oza, S. (2013a). A comparative study of the mechanical properties of hemp fiber with virgin and recycled high density polyethylene matrix. Composites Part B: Engineering, 45, 1651-1656. https://doi.org/10.1016/j.compositesb.2012.09.076
  • Lu, N., & Oza, S. (2013b). Thermal stability and thermo-mechanical properties of hemp-high density polyethylene composites: effect of two different chemical modifications. Composites Part B: Engineering, 44, 484-490. https://doi.org/10.1016/j.compositesb.2012.03.024
  • Mahesh, V., Joladarashi, S., & Kulkarni, S. (2019). Investigation on effect of using rubber as core material in sandwich composite plate subjected to low velocity normal and oblique impact loading. Sci Iran Trans Mech Eng, 6, 897-907. https://doi.org/10.24200/sci.2018.5538.1331
  • Mangili, I., Oliveri, M., Anzano, M., Collina, E., Demetrio, P., & Lasagni, Marina. (2014). Full factorial experimental design to study the devulcanization of ground tire rubber in supercritical carbon dioxide. The Journal of Supercritical Fluids. 92. https://doi.org/10.1016/j.supflu.2014.06.001
  • Mangili, I., Lasagni, M., Anzano, M., Collina, E., Tatangelo, V., Franzetti, A., Caracino, P., & Isayev, A. I. (2015). Mechanical and rheological properties of natural rubber compounds containing devulcanized ground tire rubber from several methods. Polymer Degradation and Stability, 121, 369-377. https://doi.org/10.1016/j.polymdegradstab.2015.10.004
  • Manuel, H. J. (2001). Standards for rubber granulates and powders. KGK-Kautschuk und Gummi Kunststoffe, 54, 101-105.
  • Marrot, L., Meile, K., Zouari, M., DeVallance, D., Sandak, A., & Herrera R. (2022). Characterization of the compounds released in the gaseous waste stream during the slow pyrolysis of hemp (Cannabis sativa L.). Molecules, 27(9), 2794. https://doi.org/10.3390/molecules27092794
  • Martín del Campo, A., Robledo-Ortíz, J.R., Arellano, M., Jasso-Gastinel, C. F., Silva-Jara, J. M., L´opez-Naranjo, E. J., & Perez Fonseca, A. A. (2020). Glycidyl methacrylate as compatibilizer of poly (lactic acid)/nanoclay/agave fiber hybrid biocomposites: effect on the physical and mechanical properties. Revista Mexicana de Ingenieria Quimica, 19, 455-469. https://doi.org/10.24275/rmiq/Mat627
  • Mohammed, L., Ansari, M. N., Pua, G., Jawaid, M., & Islam, M. S. (2015). A review on natural fiber reinforced polymer composite and its applications. International Journal of Polymer Science. 2015, 243947. https://doi.org/10.1155/2015/243947
  • Moni Ribeiro Filho, S. L., Oliveira, P. R., Panzera, T. H., & Scarpa, F. (2019). Impact of hybrid composites based on rubber tyres particles and sugarcane bagasse fibres. Composites Part B: Engineering, 159, 157-164. https://doi.org/10.1016/j.compositesb.2018.09.054
  • Müssig, J. (2010). Industrial Applications of Natural Fibres. John Wiley & Sons, Ltd: Chichester, UK.
  • Müssig, J., Amaducci, S., Bourmaud, A., Beaugrand, J., & Shah, D.U. (2020). Transdisciplinary top-down review of hemp fibre composites: from an advanced product design to crop variety selection. Composites Part C: Open Access, 2, 100010. https://doi.org/10.1016/j.jcomc.2020.100010
  • Müssig, J., & Christian, S. (2010). Industrial Applications of Natural Fibres: Structure, Properties and Technical Applications. John Wiley & Sons.
  • Mwaikambo, L. Y., Tucker, N., & Clark, A. J. (2007). Mechanical properties of hemp-fibre-reinforced euphorbia composites. Macromolecular Materials Engineering, 292, 993-1000. https://doi.org/10.1002/mame.200700092
  • Myhre, M., & MacKillop, D. A. (2002). Rubber recycling. Rubber Chemistry and Technology, 75(3), 429-474. https://doi.org/10.5254/1.3547678
  • Nuzaimah, M., Sapuan, S. M., Nadlene, R., & Jawaid, M. (2018). Recycling of waste rubber as fillers: A review. IOP Conf. Ser. Materials Science Engineering, 368, 012016. https://doi.org/10.1088/1757-899X/368/1/012016
  • Okçuer, T. H. (2021). Endüstriyel kenevirden kompozit malzeme geliştirilmesi. (Yüksek Lisans Tezi), Aksaray Üniversitesi, Fen Bilimleri Enstitüsü, Aksaray, Türkiye.
  • Parvez, A. M., Lewis, J. D., & Afzal, M. T. (2021). Potential of industrial hemp (Cannabis sativa L.) for bioenergy production in Canada: status, challenges and outlook. Renewable and Sustainable Energy Reviews, 141, 110784. https://doi.org/10.1016/j.rser.2021.110784
  • Pittau, F., Krause, F., Lumia, G., & Habert, G. (2018). Fast-growing bio-based materials as an opportunity for storing carbon in exterior walls. Building and Environment, 129, 117-129. https://doi.org/10.1016/j.buildenv.2017.12.006
  • Pittau, F., Lumia, G., Heeren, N., Iannaccone, G., & Habert, G. (2019). Retrofit as a carbon sink: the carbon storage potentials of the EU housing stock. Journal of Clean Production, 214, 365-76. https://doi.org/10.1016/j.jclepro.2018.12.304
  • Ramarad, S., Khalid, M., Ratnam, C.T., Chuah, A.L., & Rashmi, W. (2015). Waste tire rubber in polymer blends: a review on the evolution, properties and future. Progress Materials Science, 72, 100-140. https://doi.org/10.1016/j.pmatsci.2015.02.004.
  • Ramlee, N. A., Jawaid, M., Zainudin, E. S., & Yamani, S. A. K. (2019). Tensile, physical, and morphological properties of oil palm empty fruit bunch/sugarcane bagasse fibre reinforced phenolic hybrid composites. Journal of Materials Research and Technology, 8(4), 3466-3474. https://doi.org/10.1016/j.jmrt.2019.06.016
  • Ranalli, P., & Venturi, G. (2004). Hemp as a raw material for industrial applications. Euphytica, 140, 1-6. https://doi.org/10.1007/s10681-004-4749-8
  • Rolere, S., Liengprayoon, S., Vaysse, L., Sainte-Beuve, J., & Bonfils, F. (2015). Investigating natural rubber composition with Fourier Transform Infrared (FT-IR) spectroscopy: A rapid and non-destructive method to determine both protein and lipid contents simultaneously. Polymer Testing, 43, 83-93. https://doi.org/10.1016/j.polymertesting.2015.02.011
  • Rouison, D., Sain, M., & Couturier, M. (2006). Resin transfer molding of hemp fiber composites: optimization of the process and mechanical properties of the materials. Compos Sci Technol; 66(7e8):895-906. https://doi.org/10.1016/j.compscitech.2005.07.040
  • Sair, S., Oushabi, A., Kammouni, A., Tanane, O., Abboud, Y., & El Bouari, A. (2018). Mechanical and thermal conductivity properties of hemp fiber reinforced polyurethane composites. Case Studies in Construction Materials, 8, 203-212. https://doi.org/10.1016/j.cscm.2018.02.001
  • Satapathy, S., Nag, A., & Nando, G. B. (2010). Thermoplastic elastomers from waste polyethylene and reclaim rubber blends and their composites with fly ash. Process Safety and Environmental. Protection, 88, 131-141. https://doi.org/10.1016/j.psep.2009.12.001
  • Scrucca, F., Ingrao, C., Maalouf, C., Moussa, T., Polidori, G., Messineo, A., Arcidiacono C., & Asdrubali, F. (2020). Energy and carbon footprint assessment of production of hemp hurds for application in buildings. Environmental Impact Assessment Review, 84, 106417. https://doi.org/10.1016/j.eiar.2020.106417
  • Smith, B. (1998). Infrared spectral interpretation. CRC Press. https://doi.org/10.1201/9780203750841
  • Stark, N. M., Yelle, D. J., & Agarwal, U. P. (2016). Techniques for characterizing lignin. In: Faruk, O., Sain, M. (Eds.), Lignin in Polymer Composites (pp. 49-66). Elsevier, Vancouver, Canada.
  • Tahir, P. M., Ahmed, A. B., Azry, S. O. A. S., & Ahmed, Z. (2011). Retting process of some bast plant fibres and its effect on fibre quality: a review. BioResources, 6, 5260-5281.
  • Tucci, F., Larrea-Wachtendorff, D., Ferrari, G., & Carlone, P. (2022). Pulling force analysis in injection pultrusion of glass/epoxy composites. Materials and Manufacturing Processes, 37(15), 1715-1726. https://doi.org/10.1080/10426914.2022.2049296
  • Van Vuure, A. W., Baets, J., Wouters, K., & Hendrickx, K. (2015). Compressive properties of natural fibre composites. Materials Letters, 149, 138-140. https://doi.org/10.1016/j.matlet.2015.01.158
  • Wang, H., Hazell, P. J., Shankar, K., Morozov, E. V., & Escobedo, J. P. (2017) Impact behaviour of Dyneema fabric-reinforced composites with different resin matrices. Polymer Testing, 61, 17-26. https://doi.org/10.1016/j.polymertesting.2017.04.026
  • Wayal, A. S., & Wagle, M. D. (2013). Use of waste plastic and waste rubber in aggregate and bitumen for road materials. International Journal of Emerging Technology and Advanced Engineering, 3(7), 301-306.
  • Yao, C., Zhao, S., Wang, Y., Wang, B., Wei, M., & Hu, M. (2013). Microbial desulfurization of waste latex rubber with Alicyclobacillus sp. Polymer Degradation and Stability, 98, 1724-1730. https://doi.org/10.1016/j.polymdegradstab.2013.06.002
  • Zedler, Ł., Kowalkowska-Zedler, D., Colom, X., Canavate, J., Saeb, M.R., & Formela, K. (2020). Reactive sintering of ground tire rubber (GTR) modified by a trans- polyoctenamer rubber and curing additives. Polymers, 12(12), 3018. https://doi.org/10.3390/polym12123018
  • Zhang, S. L., Xin, Z. X., Zhang, Z. X., & Kim, J. K. (2009). Characterization of the properties of thermoplastic elastomers containing waste rubber tire powder. Waste Management, 29, 1480-1485. https://doi.org/10.1016/j.wasman.2008.10.004
  • Zhang, J., Gao, J., Chen, Y., Hao, X., & Jin, X. (2017). Characterization, preparation, and reaction mechanism of hemp stem based activated carbon. Results in physics, 7, 1628-1633. https://doi.org/10.1016/J.RINP.2017.04.02838
There are 85 citations in total.

Details

Primary Language Turkish
Subjects Waste Management, Reduction, Reuse and Recycling
Journal Section Engineering and Architecture / Mühendislik ve Mimarlık
Authors

Arife Şimşek 0000-0002-7177-1764

Gökhan Demir 0000-0002-3734-1496

Publication Date August 31, 2024
Submission Date November 6, 2023
Acceptance Date May 1, 2024
Published in Issue Year 2024

Cite

APA Şimşek, A., & Demir, G. (2024). Atık Lastiklerin Geri Dönüşümü İçin Kenevir Katkılı Yeşil Kompozit Üretiminin Araştırılması. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 29(2), 690-707. https://doi.org/10.53433/yyufbed.1386928