Research Article
BibTex RIS Cite

An Investigation of Failure Criteria in Adhesive Joints

Year 2024, , 665 - 681, 31.08.2024
https://doi.org/10.53433/yyufbed.1394411

Abstract

With the increasing use of adhesives in industrial applications, failure analysis studies have begun to be carried out on adhesive joints. The analysis studies provided important information for engineers in the design of bonded structures and contributed to the shaping of the designs. Initial studies to predict the strength of adhesive joints were conducted using analytical approaches. Following this, with the widespread use of the Finite Element Method, strength predictions of the adhesive joints began to be made comprehensively, without geometry limitations. There are many failure criteria for adhesives in the literature. When choosing a failure criterion, it is important to know whether the adhesive used is ductile or brittle. Additionally, for the adhesive failure criterion to apply, the adhesive layer must be the weakest part of the total strength of the joint. In this study, failure loads were calculated using analytical and numerical methods for single-lap adhesive joints formed using brittle Araldite AV138 and ductile Araldite 2015 adhesives. The obtained analytical and numerical failure loads were compared with the results of experimental studies in the literature and the importance of adhesive plastic behavior in the selecting of adhesive failure criteria was revealed. It has been shown that the use of the Von Mises criterion in the brittle, high-strength AV138 adhesive, and the Global Yield criterion in the ductile Araldite 2015 adhesive is more appropriate than the other methods examined in this study.

References

  • Adams, R. D., & Peppiatt, N. A. (1974). Stress analysis of adhesive-bonded lap joints. Journal of Strain Analysis, 9(3), 185-196. https://doi.org/10.1243/03093247V093185
  • Adams, R. D., & Wake, W. C. (1984). The nature and magnitude of stresses in adhesive joints. In Structural Adhesive Joints in Engineering (pp. 14-114). Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5616-2_2
  • Adams, R. D., & Mallick, V. (1993). The effect of temperature on the strength of adhesively-bonded composite-aluminium joints. The Journal of Adhesion, 43(1-2), 17-33. https://doi.org/10.1080/00218469308026585
  • Adams, R. D., Atkins, R. W., Harris, J. A., & Kinloch, A. J. (1986). Stress analysis and failure properties of carbon-fibre-reinforced-plastic/steel double-lap joints. The Journal of Adhesion, 20(1), 29-53. https://doi.org/10.1080/00218468608073238
  • Bigwood, D. A., & Crocombe, A. D. (1989). Elastic analysis and engineering design formulae for bonded joints. International Journal of Adhesion and Adhesives, 9(4), 229-242. https://doi.org/10.1016/0143-7496(89)90066-3
  • Campilho, R. D., Banea, M. D., Pinto, A. M., da Silva, L. F., & De Jesus, A. M. P. (2011). Strength prediction of single-and double-lap joints by standard and extended finite element modelling. International Journal of Adhesion and Adhesives, 31(5), 363-372. https://doi.org/10.1016/j.ijadhadh.2010.09.008
  • Charalambides, M. N., Kinloch, A. J., & Matthews, F. L. (1996, September). Strength prediction of bonded joints. 83rd Meeting ofthe AGARD Structures and Materials Panels on Bolted/Bonded Joints in Polymeric Composites, Florence, Italy.
  • Crocombe, A. D., & Adams, R. D. (1982). An elasto-plastic investigation of the peel test. The Journal of Adhesion, 13(3-4), 241-267. https://doi.org/10.1080/00218468208073190
  • Crocombe, A. D. (1989). Global yielding as a failure criterion for bonded joints. International Journal of Adhesion and Adhesives, 9(3), 145-153. https://doi.org/10.1016/0143-7496(89)90110-3
  • Crocombe, A. D., Bigwood, D. A., & Richardson, G. (1990). Analysing structural adhesive joints for failure. International Journal of Adhesion and Adhesives, 10(3), 167-178. https://doi.org/10.1016/0143-7496(90)90100-C
  • Da Silva, L. F., Lima, R. F., Teixeira, R. M., & Puga, A. (2008). Closed-form solutions for adhesively bonded joints. Reports of the project Development of the software for the design of adhesive joints, University of Porto, Portugal.
  • Fiamegkou, E. (2015). Development of improved, multi-functional, nano-structured polymer based adhesives with applications in the bonding of composite components and the repair of engineering structures with composite patches. (PhD), University of Patras, Greece.
  • Goland, M., & Reissner, E. (1944). The stresses in cemented joints. Journal of Applied Mechanic, 11(1), A17-A27. https://doi.org/10.1115/1.4009336
  • Harris, J. A., & Adams, R. A. (1984). Strength prediction of bonded single lap joints by non-linear finite element methods. International Journal of Adhesion and Adhesives, 4(2), 65-78. https://doi.org/10.1016/0143-7496(84)90103-9
  • Hart-Smith, L. J. (1973). Adhesive-bonded double-lap joints. NASA CR-112235: National Aeronautics and Space Administration.
  • Ikegami, K., Takeshita, T., Matsuo, K., & Sugibayashi, T. (1990). Strength of adhesively bonded scarf joints between glass fibre-reinforced plastics and metals. International Journal of Adhesion and Adhesives, 10(3), 199-206. https://doi.org/10.1016/0143-7496(90)90104-6
  • Kırkayak, L. (2019). Yapıştırma bağlantılı kompozitlerde yapıştırma geometrisininin gerilme dağılımına etkisi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 25(1), 27-33. https://doi.org/10.5505/pajes.2018.54289
  • Lee, S. J., & Lee, D. G. (1992). Development of a failure model for the adhesively bonded tubular single lap joint. The Journal of Adhesion, 40(1), 1-14. https://doi.org/10.1080/00218469208030467
  • Marques, E. A. S., & da Silva, L. F. (2008). Joint strength optimization of adhesively bonded patches. The Journal of Adhesion, 84(11), 915-934. https://doi.org/10.1080/00218460802505275
  • Mortensen, F., & Thomsen, O. T. (2002). Analysis of adhesive bonded joints: a unified approach. Composites Science and Technology, 62(7-8), 1011-1031. https://doi.org/10.1016/S0266-3538(02)00030-1
  • Noorman, D. C. (2014). Cohesive zone modelling in adhesively bonded joints. (MSc), Delft University of Thecnology, Holland.
  • Odi, R. A., & Friend, C. M. (2004). An improved 2D model for bonded composite joints. International Journal of Adhesion and Adhesives, 24(5), 389-405. https://doi.org/10.1016/j.ijadhadh.2001.06.001
  • Özer, H., & Öz, Ö. (2017). The use of the exponential Drucker-Prager material model for defining the failure loads of the mono and bi-adhesive joints. International Journal of Adhesion and Adhesives, 76, 17-29. https://doi.org/10.1016/j.ijadhadh.2017.02.005
  • Pinto, A. M. G., Campilho, R. D. S. G., Mendes, I. R., & Baptista, A. P. M. (2014). Numerical and experimental analysis of balanced and unbalanced adhesive single-lap joints between aluminium adherends. The Journal of Adhesion, 90(1), 89-103. https://doi.org/10.1080/00218464.2013.773258
  • Raghava, R., Caddell, R. M., & Yeh, G. S. (1973). The macroscopic yield behaviour of polymers. Journal of Materials Science, 8, 225-232. https://doi.org/10.1007/BF00550671
  • Rodríguez, R. Q., de Paiva, W. P., Sollero, P., Rodrigues, M. R. B., & de Albuquerque, É. L. (2012). Failure criteria for adhesively bonded joints. International Journal of Adhesion and Adhesives, 37, 26-36. https://doi.org/10.1016/j.ijadhadh.2012.01.009
  • Saraç, İ. (2020). Çekme yükü uygulanmış boru yapıştırma bağlantılarında bindirme uç geometrisinin bağlantı dayanımına etkisinin araştırılması. Konya Journal of Engineering Sciences, 8(4), 733-744. https://doi.org/10.36306/konjes.708239
  • Saraç, İ. (2021a). Yapıştırma bağlantılarında kohezif bölge modeli uygulayarak ve uygulamadan modelleme yapılmasının gerilme dağılımına etkisinin araştırılması. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, 8(15), 457-468. https://doi.org/10.54365/adyumbd.990291
  • Saraç, İ. (2021b). Failure analysis of simple overlap bonding joints and numerical investigation of the adhered tip geometry effect on the joint strength. Materials Testing, 63(11), 1007-1011. https://doi.org/10.1515/mt-2021-0035
  • Turan, K., & Kaman, M. O. (2010). Tek tesirli yapıştırma bağlantılarında ilerlemeli hasar analizi. Pamukkale University Journal of Engineering Sciences, 16(3), 315-323.
  • Volkersen, O. (1938). Die Nietkraftverteilung in zugbeanspruchten Nietverbindungen mit konstanten Laschenquerschnitten. Luftfahrtfor Schung, 15, 41-47.
  • Waseem, M., & Kumar, K. (2014). Finite element modelling for delamination analysis of double cantilever beam specimen. International Journal of Mechanical Engineering, 1(5), 27-34. https://doi.org/10.14445/23488360/IJME-V1I5P105
  • Yue, T., & Wahab, M. A. (2014). Finite element analysis of stress singularity in partial slip and gross sliding regimes in fretting wear. Wear, 321, 53-63. https://doi.org/10.1016/j.wear.2014.09.008

Yapıştırma Bağlantılarında Hasar Kriterlerinin İncelenmesi

Year 2024, , 665 - 681, 31.08.2024
https://doi.org/10.53433/yyufbed.1394411

Abstract

Yapıştırıcıların endüstriyel uygulamalarda kullanımının artmasıyla birlikte, yapıştırma bağlantılarında hasar analiz çalışmaları yapılmaya başlanmıştır. Yapılan çalışmalar, yapıştırma bağlantılı yapıların tasarımında mühendisler için önemli bilgiler sunmuş ve tasarımların şekillenmesine katkı sağlamıştır. Yapıştırma bağlantılarının mukavemetini tahmin etmeye yönelik ilk çalışmalar analitik yaklaşımlar kullanılarak yapılmıştır. Bunu takiben, Sonlu Elemanlar Yönteminin yaygınlaşmasıyla birlikte, geometri sınırlaması olmaksızın, yapıştırma bağlantılarının dayanım tahminleri kapsamlı bir şekilde yapılmaya başlanmıştır. Yapıştırıcılar için literatürde çok sayıda hasar kriteri mevcuttur. Hasar kriteri seçiminde, kullanılan yapıştırıcının sünek veya gevrek yapıda olduğunun bilinmesi önemlidir. Ayrıca, yapıştırıcı hasar kriterinin uygulanabilmesi için, yapıştırıcı tabakasının, bağlantının toplam mukavemetinin en zayıf kısmı olması gerekir. Bu çalışmada, gevrek karakterli Araldite AV138 ve sünek yapıda olan Araldite 2015 yapıştırıcılar kullanılarak oluşturulan tek tesirli bindirme bağlantılarında analitik ve sayısal yöntemler kullanılarak hasar yükleri hesaplanmıştır. Elde edilen analitik ve sayısal hasar yükleri literatürdeki bir deneysel çalışma ile karşılaştırılarak, yapıştırıcı plastik davranışının, hasar kriteri seçiminde önemi gösterilmiştir. Çalışma sonucunda, gevrek karakterli yüksek dayanımlı AV138 yapıştırıcının kullanıldığı tek tesirli yapıştırma bağlantılarında Von Mises kriterinin, sünek yapıdaki Araldite 2015 yapıştırıcının kullanıldığı tek tesirli yapıştırma bağlantılarında ise Global Akma kriterinin kullanılmasının incelenen diğer yöntemlere göre daha uygun olduğu gösterilmiştir.

References

  • Adams, R. D., & Peppiatt, N. A. (1974). Stress analysis of adhesive-bonded lap joints. Journal of Strain Analysis, 9(3), 185-196. https://doi.org/10.1243/03093247V093185
  • Adams, R. D., & Wake, W. C. (1984). The nature and magnitude of stresses in adhesive joints. In Structural Adhesive Joints in Engineering (pp. 14-114). Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5616-2_2
  • Adams, R. D., & Mallick, V. (1993). The effect of temperature on the strength of adhesively-bonded composite-aluminium joints. The Journal of Adhesion, 43(1-2), 17-33. https://doi.org/10.1080/00218469308026585
  • Adams, R. D., Atkins, R. W., Harris, J. A., & Kinloch, A. J. (1986). Stress analysis and failure properties of carbon-fibre-reinforced-plastic/steel double-lap joints. The Journal of Adhesion, 20(1), 29-53. https://doi.org/10.1080/00218468608073238
  • Bigwood, D. A., & Crocombe, A. D. (1989). Elastic analysis and engineering design formulae for bonded joints. International Journal of Adhesion and Adhesives, 9(4), 229-242. https://doi.org/10.1016/0143-7496(89)90066-3
  • Campilho, R. D., Banea, M. D., Pinto, A. M., da Silva, L. F., & De Jesus, A. M. P. (2011). Strength prediction of single-and double-lap joints by standard and extended finite element modelling. International Journal of Adhesion and Adhesives, 31(5), 363-372. https://doi.org/10.1016/j.ijadhadh.2010.09.008
  • Charalambides, M. N., Kinloch, A. J., & Matthews, F. L. (1996, September). Strength prediction of bonded joints. 83rd Meeting ofthe AGARD Structures and Materials Panels on Bolted/Bonded Joints in Polymeric Composites, Florence, Italy.
  • Crocombe, A. D., & Adams, R. D. (1982). An elasto-plastic investigation of the peel test. The Journal of Adhesion, 13(3-4), 241-267. https://doi.org/10.1080/00218468208073190
  • Crocombe, A. D. (1989). Global yielding as a failure criterion for bonded joints. International Journal of Adhesion and Adhesives, 9(3), 145-153. https://doi.org/10.1016/0143-7496(89)90110-3
  • Crocombe, A. D., Bigwood, D. A., & Richardson, G. (1990). Analysing structural adhesive joints for failure. International Journal of Adhesion and Adhesives, 10(3), 167-178. https://doi.org/10.1016/0143-7496(90)90100-C
  • Da Silva, L. F., Lima, R. F., Teixeira, R. M., & Puga, A. (2008). Closed-form solutions for adhesively bonded joints. Reports of the project Development of the software for the design of adhesive joints, University of Porto, Portugal.
  • Fiamegkou, E. (2015). Development of improved, multi-functional, nano-structured polymer based adhesives with applications in the bonding of composite components and the repair of engineering structures with composite patches. (PhD), University of Patras, Greece.
  • Goland, M., & Reissner, E. (1944). The stresses in cemented joints. Journal of Applied Mechanic, 11(1), A17-A27. https://doi.org/10.1115/1.4009336
  • Harris, J. A., & Adams, R. A. (1984). Strength prediction of bonded single lap joints by non-linear finite element methods. International Journal of Adhesion and Adhesives, 4(2), 65-78. https://doi.org/10.1016/0143-7496(84)90103-9
  • Hart-Smith, L. J. (1973). Adhesive-bonded double-lap joints. NASA CR-112235: National Aeronautics and Space Administration.
  • Ikegami, K., Takeshita, T., Matsuo, K., & Sugibayashi, T. (1990). Strength of adhesively bonded scarf joints between glass fibre-reinforced plastics and metals. International Journal of Adhesion and Adhesives, 10(3), 199-206. https://doi.org/10.1016/0143-7496(90)90104-6
  • Kırkayak, L. (2019). Yapıştırma bağlantılı kompozitlerde yapıştırma geometrisininin gerilme dağılımına etkisi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 25(1), 27-33. https://doi.org/10.5505/pajes.2018.54289
  • Lee, S. J., & Lee, D. G. (1992). Development of a failure model for the adhesively bonded tubular single lap joint. The Journal of Adhesion, 40(1), 1-14. https://doi.org/10.1080/00218469208030467
  • Marques, E. A. S., & da Silva, L. F. (2008). Joint strength optimization of adhesively bonded patches. The Journal of Adhesion, 84(11), 915-934. https://doi.org/10.1080/00218460802505275
  • Mortensen, F., & Thomsen, O. T. (2002). Analysis of adhesive bonded joints: a unified approach. Composites Science and Technology, 62(7-8), 1011-1031. https://doi.org/10.1016/S0266-3538(02)00030-1
  • Noorman, D. C. (2014). Cohesive zone modelling in adhesively bonded joints. (MSc), Delft University of Thecnology, Holland.
  • Odi, R. A., & Friend, C. M. (2004). An improved 2D model for bonded composite joints. International Journal of Adhesion and Adhesives, 24(5), 389-405. https://doi.org/10.1016/j.ijadhadh.2001.06.001
  • Özer, H., & Öz, Ö. (2017). The use of the exponential Drucker-Prager material model for defining the failure loads of the mono and bi-adhesive joints. International Journal of Adhesion and Adhesives, 76, 17-29. https://doi.org/10.1016/j.ijadhadh.2017.02.005
  • Pinto, A. M. G., Campilho, R. D. S. G., Mendes, I. R., & Baptista, A. P. M. (2014). Numerical and experimental analysis of balanced and unbalanced adhesive single-lap joints between aluminium adherends. The Journal of Adhesion, 90(1), 89-103. https://doi.org/10.1080/00218464.2013.773258
  • Raghava, R., Caddell, R. M., & Yeh, G. S. (1973). The macroscopic yield behaviour of polymers. Journal of Materials Science, 8, 225-232. https://doi.org/10.1007/BF00550671
  • Rodríguez, R. Q., de Paiva, W. P., Sollero, P., Rodrigues, M. R. B., & de Albuquerque, É. L. (2012). Failure criteria for adhesively bonded joints. International Journal of Adhesion and Adhesives, 37, 26-36. https://doi.org/10.1016/j.ijadhadh.2012.01.009
  • Saraç, İ. (2020). Çekme yükü uygulanmış boru yapıştırma bağlantılarında bindirme uç geometrisinin bağlantı dayanımına etkisinin araştırılması. Konya Journal of Engineering Sciences, 8(4), 733-744. https://doi.org/10.36306/konjes.708239
  • Saraç, İ. (2021a). Yapıştırma bağlantılarında kohezif bölge modeli uygulayarak ve uygulamadan modelleme yapılmasının gerilme dağılımına etkisinin araştırılması. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, 8(15), 457-468. https://doi.org/10.54365/adyumbd.990291
  • Saraç, İ. (2021b). Failure analysis of simple overlap bonding joints and numerical investigation of the adhered tip geometry effect on the joint strength. Materials Testing, 63(11), 1007-1011. https://doi.org/10.1515/mt-2021-0035
  • Turan, K., & Kaman, M. O. (2010). Tek tesirli yapıştırma bağlantılarında ilerlemeli hasar analizi. Pamukkale University Journal of Engineering Sciences, 16(3), 315-323.
  • Volkersen, O. (1938). Die Nietkraftverteilung in zugbeanspruchten Nietverbindungen mit konstanten Laschenquerschnitten. Luftfahrtfor Schung, 15, 41-47.
  • Waseem, M., & Kumar, K. (2014). Finite element modelling for delamination analysis of double cantilever beam specimen. International Journal of Mechanical Engineering, 1(5), 27-34. https://doi.org/10.14445/23488360/IJME-V1I5P105
  • Yue, T., & Wahab, M. A. (2014). Finite element analysis of stress singularity in partial slip and gross sliding regimes in fretting wear. Wear, 321, 53-63. https://doi.org/10.1016/j.wear.2014.09.008
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Optimization Techniques in Mechanical Engineering, Numerical Methods in Mechanical Engineering, Machine Design and Machine Equipment
Journal Section Engineering and Architecture / Mühendislik ve Mimarlık
Authors

İsmail Saraç 0000-0001-8438-2744

Publication Date August 31, 2024
Submission Date November 22, 2023
Acceptance Date April 16, 2024
Published in Issue Year 2024

Cite

APA Saraç, İ. (2024). Yapıştırma Bağlantılarında Hasar Kriterlerinin İncelenmesi. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 29(2), 665-681. https://doi.org/10.53433/yyufbed.1394411