ZnO/ITO, Sn and Cu Doped ZnO/ITO Films as an Photoanode for Solar Cell: Production and Characterizations
Year 2024,
, 447 - 457, 31.08.2024
İlker Kara
,
Dheyaaldain Mohammed Hussein Alhasani
,
Ahmet Furkan Kayis
,
Özcan Yalçınkaya
,
Olcay Gençyılmaz
,
Abjar Ibrahim Rashid Hafedh
Abstract
Undoped ZnO and Sn- and Cu-doped ZnO thin films were fabricated on ITO substrates via the SILAR method for this study. The films were then subjected to structural, surface, optical, and electrical characterization. The undoped ZnO thin films displayed a spherical surface morphology, while the Sn-doped ZnO thin films exhibited a nano-flower surface morphology. On the other hand, the Cu-doped ZnO thin films demonstrated a relatively thicker and flat layer, as well as a fractured surface morphology that resulted in voids. The level of crystallization and transmittance values augmented upon doping. With Cu doping, n-p heterojunction structure was obtained from ZnO/ITO films. Hence, it is inferred that the generated Cu doped ZnO/ITO films can serve as alternative transparent conductive films (TCO) due to their low resistivity.
References
- Alwadai, N., Mitra, S., Hedhili, M. N., Alamoudi, H., Xin, B., Alaal, N., & Roqan, I. S. (2021). Enhanced-performance self-powered solar-blind UV-C photodetector based on n-ZnO quantum dots functionalized by p-CuO micro-pyramids. ACS Applied Materials & Interfaces, 13(28), 33335-33344. https://doi.org/10.1021/acsami.1c03424
- Alsultany, F. H., Hassan, Z., & Ahmed, N. M. (2016). Catalyst-free growth of ZnO nanowires on ITO seed layer/glass by thermal evaporation method: effects of ITO seed layer laser annealing temperature. Superlattices and Microstructures, 92, 68-79. https://doi.org/10.1016/j.spmi.2016.01.038
- Asghar, M., Mahmood, K., Faisal, M., & Hasan, M. A. (2013). Electrical characterization of Au/ZnO/Si Schottky contact. Journal of Physics: Conference Series, 439(1), 012030. https://doi.org/10.1088/1742-6596/439/1/012030
- Ashith, V. K., Rao, G. K., Moger, S. N., & Smitha, R. (2018). Effect of post-deposition annealing on the properties of ZnO films obtained by high temperature, micro-controller based SILAR deposition. Ceramics International, 44(9), 10669-10676. https://doi.org/10.1016/j.ceramint.2018.03.097
- Chaitra, U., Ali, A. M., Mahesha, M. G., Kompa, A., Kekuda, D., & Rao, K. M. (2021). Property evaluation of spin coated Al doped ZnO thin films and Au/AZO/FTO Schottky diodes. Superlattices and Microstructures, 155, 106903. https://doi.org/10.1016/j.spmi.2021.106903
- Cruz, M. A., Saldaña-Ramírez, A., Juárez-Ramírez, I., & Torres-Martínez, L. M. (2023). Development of SnO2–ZnO thin films as a photocatalyst for obtaining alternative fuels through photocatalytic reactions. Solid State Sciences, 137, 107112. https://doi.org/10.1016/j.solidstatesciences.2023.107112
- Devi, K. R., Selvan, G., Karunakaran, M., Raj, I. L. P., Ganesh, V., & AlFaify, S. (2020). Enhanced room temperature ammonia gas sensing properties of strontium doped ZnO thin films by cost-effective SILAR method. Materials Science in Semiconductor Processing, 119, 105117. https://doi.org/10.1016/j.mssp.2020.105117
- Dhamodharan, P., Manoharan, C., Dhanapandian, S., Bououdina, M., & Ramalingam, S. (2015). Preparation and characterization of spray deposited Sn-doped ZnO thin films onto ITO subtracts as photoanode in dye sensitized solar cell. Journal of Materials Science: Materials in Electronics, 26, 4830-4839. https://doi.org/10.1007/s10854-015-2990-7
- Gençyılmaz, O. (2018). The effect of different cobalt precursors on the Co doped ZnO films produced by ultrasonic spray pyrolysis. Journal of Nanoelectronics and Optoelectronics, 13(4), 509-520. https://doi.org/10.1166/jno.2018.2288. https://doi.org/10.1166/jno.2018.2288
- Gençyılmaz, O., Akyüz, İ., & Atay, F. (2024). Binary ZnS–ZnO films as an alternative buffer layer for solar cell applications. Applied Physics A, 130(4), 227. https://doi.org/10.1007/s00339-024-07382-1
- Kadem, B., Banimuslem, H. A., & Hassan, A. (2017). Modification of morphological and optical properties of ZnO thin film. Karbala International Journal of Modern Science, 3(2), 103-110. https://doi.org/10.1016/j.kijoms.2017.04.003
- Kaphle, A., & Hari, P. (2018). Enhancement in power conversion efficiency of silicon solar cells with cobalt doped ZnO nanoparticle thin film layers. Thin Solid Films, 657, 76-87. https://doi.org/10.1016/j.tsf.2018.05.014
- Klochko, N. P., Kopach, V. R., Tyukhov, I. I., Zhadan, D. O., Klepikova, K. S., Khrypunov, G. S., ... & Khrypunova, A. L. (2018). Metal oxide heterojunction (NiO/ZnO) prepared by low temperature solution growth for UV-photodetector and semi-transparent solar cell. Solar Energy, 164, 149-159. https://doi.org/10.1016/j.solener.2018.01.054
- Klochko, N. P., Klepikova, K. S., Kopach, V. R., Tyukhov, I. I., Starikov, V. V., Sofronov, D. S., ... & Khrypunova, A. L. (2019). Development of semi-transparent ZnO/FTO solar thermoelectric nanogenerator for energy efficient glazing. Solar Energy, 184, 230-239. https://doi.org/10.1016/j.solener.2019.04.002
- Kumar, A., Joseph, S., Tsechansky, L., Privat, K., Schreiter, I. J., Schüth, C., & Graber, E. R. (2018). Biochar aging in contaminated soil promotes Zn immobilization due to changes in biochar surface structural and chemical properties. Science of the Total Environment, 626, 953-961. https://doi.org/10.1016/j.scitotenv.2018.01.157
- Li, L., Gao, S., Zhang, Z., Tang, Y., Zhao, Y., Guo, J., & Yang, P. (2024). Optical control of Cu/ZnO composite film for solar battery. Chemical Physics Letters, 839, 141110. https://doi.org/10.1016/j.cplett.2024.141110
- Rajamanickam, S., Mohammad, S. M., Razak, I. A., Abed, S. M., & Muhammad, A. (2024). Enhanced performance of PFO-ZnO nanorods nanocomposite photodiodes grown on ZnO NRs/ZnO/ITO-coated glass. Optical Materials, 148, 114818. https://doi.org/10.1016/j.optmat.2023.114818
- Rashid, M. H., Sujoy, S. I., Rahman, M. S., & Haque, M. J. (2024). Aloe vera assisted green synthesis of Ag and Cu co-doped ZnO nanoparticles and a comprehensive analysis of their structural, morphological, optical, electrical and antibacterial properties. Heliyon, 10(3), e25438. https://doi.org/10.1016/j.heliyon.2024.e25438
- Saini, M., Singh, R., Mitra, A., & Som, T. (2020). Photoresponse of pulsed laser deposited ZnO: Cu thin films. Solar Energy, 207, 228-234. https://doi.org/10.1016/j.solener.2020.06.072
- Saravanan, K., Sen, S., Sharma, C., Amirthapandian, S., Ganesan, K., Gupta, M., ... & Shekar, N. C. (2023). Room temperature excitonic emission in highly aligned ZnO nanostructures prepared by glancing angle Xe+ ion irradiation. Journal of Luminescence, 263, 120059. https://doi.org/10.1016/j.jlumin.2023.120059
- Solaymani, S., Ţălu, Ş., Nezafat, N. B., Dejam, L., Shafiekhani, A., Ghaderi, A., & Zelati, A. (2021). Optical properties and surface dynamics analyses of homojunction and heterojunction Q/ITO/ZnO/NZO and Q/ITO/ZnO/NiO thin films. Results in Physics, 29, 104679. https://doi.org/10.1016/j.rinp.2021.104679
- Sze, S. M. (1981). Physics of semiconductor devices (2nd ed.). Newyork, USA:Wiley.
- Şahin, B., Aydin, R., Soylu, S., Türkmen, M., Kara, M., Akkaya, A., ... & Ayyıldız, E. (2022). The effect of thymus syriacus plant extract on the main physical and antibacterial activities of ZnO nanoparticles synthesized by SILAR method. Inorganic Chemistry Communications, 135, 109088. https://doi.org/10.1016/j.inoche.2021.109088
- Tang, Z., Fan, Z. Y., Fang, J. L., Zhang, L., Sun, Q. J., Zhang, D., ... & Jiang, X. (2024). Transparent artificial synapses based on Ag/Al-doped ZnO/ITO memristors for bioinspired neuromorphic computing. Materials Letters, 354, 135342. https://doi.org/10.1016/j.matlet.2023.135342
- Thobega, M., Maabong-Tau, K., Lefatshe, K., & Muiva, C. (2024). Study of structural, optical and electrical properties of Nickel doped ZnO (Ni–ZnO) nanorods grown by chemical bath deposition. Physica B: Condensed Matter, 673, 415500. https://doi.org/10.1016/j.physb.2023.415500
- Wang, C. F., Liu, N., & Hu, B. (2018). Improved white light emission from ZnS: Mn/ZnO/GaN core-shell nanorods array. Journal of Luminescence, 204, 424-427. https://doi.org/10.1016/j.jlumin.2018.08.048
- Wang, C. (2023). Fabrication and optical-electrical characteristics of ZnS/ZnO films by pulsed laser deposition. Thin Solid Films, 780, 139971. https://doi.org/10.1016/j.tsf.2023.139971
- Xiao, D., Wang, Y., Zhang, D., Liu, Y., Wang, H., Li, Y., ... & Sun, M. (2024). CuO/ZnO hollow nanocages derived from metal− organic frameworks for ultra-high and rapid response H2S gas sensor. Ceramics International, 50, 15767-15779. https://doi.org/10.1016/j.ceramint.2024.02.057
- Zhang, D., Liu, Y. H., & Zhu, L. (2022). Surface engineering of ZnO nanoparticles with diethylenetriamine for efficient red quantum-dot light-emitting diodes. Iscience, 25, 105111. https://doi.org/10.1016/j.isci.2022.105111
Güneş Pili için Fotoanot Olarak ZnO/ITO, Sn ve Cu Katkılı ZnO/ITO Filmleri: Üretim ve Karakterizasyonu
Year 2024,
, 447 - 457, 31.08.2024
İlker Kara
,
Dheyaaldain Mohammed Hussein Alhasani
,
Ahmet Furkan Kayis
,
Özcan Yalçınkaya
,
Olcay Gençyılmaz
,
Abjar Ibrahim Rashid Hafedh
Abstract
Bu çalışma için katkısız ZnO ve Sn- ve Cu katkılı ZnO ince filmler ITO alttaşlar üzerinde SILAR yöntemi ile üretilmiştir. Filmler daha sonra yapısal, yüzeysel, optik ve elektriksel karakterizasyona tabi tutulmuştur. Katkısız ZnO ince filmler küresel bir yüzey morfolojisi sergilerken, Sn katkılı ZnO ince filmler nano-çiçek yüzey morfolojisi sergilemiştir. Öte yandan, Cu katkılı ZnO ince filmler nispeten daha kalın ve düz bir tabakanın yanı sıra boşluklarla sonuçlanan kırık bir yüzey morfolojisi göstermiştir. Kristalleşme seviyesi ve geçirgenlik değerleri katkılamayla birlikte artmıştır. Cu katkısı ile ZnO/ITO filmlerinden n-p heteroeklem yapısı elde edildi. Bu nedenle, üretilen Cu katkılı ZnO/ITO ince filmlerin düşük dirençleri nedeniyle alternatif şeffaf iletken filmler (TCO) olarak hizmet edebileceği sonucuna varılmıştır.
References
- Alwadai, N., Mitra, S., Hedhili, M. N., Alamoudi, H., Xin, B., Alaal, N., & Roqan, I. S. (2021). Enhanced-performance self-powered solar-blind UV-C photodetector based on n-ZnO quantum dots functionalized by p-CuO micro-pyramids. ACS Applied Materials & Interfaces, 13(28), 33335-33344. https://doi.org/10.1021/acsami.1c03424
- Alsultany, F. H., Hassan, Z., & Ahmed, N. M. (2016). Catalyst-free growth of ZnO nanowires on ITO seed layer/glass by thermal evaporation method: effects of ITO seed layer laser annealing temperature. Superlattices and Microstructures, 92, 68-79. https://doi.org/10.1016/j.spmi.2016.01.038
- Asghar, M., Mahmood, K., Faisal, M., & Hasan, M. A. (2013). Electrical characterization of Au/ZnO/Si Schottky contact. Journal of Physics: Conference Series, 439(1), 012030. https://doi.org/10.1088/1742-6596/439/1/012030
- Ashith, V. K., Rao, G. K., Moger, S. N., & Smitha, R. (2018). Effect of post-deposition annealing on the properties of ZnO films obtained by high temperature, micro-controller based SILAR deposition. Ceramics International, 44(9), 10669-10676. https://doi.org/10.1016/j.ceramint.2018.03.097
- Chaitra, U., Ali, A. M., Mahesha, M. G., Kompa, A., Kekuda, D., & Rao, K. M. (2021). Property evaluation of spin coated Al doped ZnO thin films and Au/AZO/FTO Schottky diodes. Superlattices and Microstructures, 155, 106903. https://doi.org/10.1016/j.spmi.2021.106903
- Cruz, M. A., Saldaña-Ramírez, A., Juárez-Ramírez, I., & Torres-Martínez, L. M. (2023). Development of SnO2–ZnO thin films as a photocatalyst for obtaining alternative fuels through photocatalytic reactions. Solid State Sciences, 137, 107112. https://doi.org/10.1016/j.solidstatesciences.2023.107112
- Devi, K. R., Selvan, G., Karunakaran, M., Raj, I. L. P., Ganesh, V., & AlFaify, S. (2020). Enhanced room temperature ammonia gas sensing properties of strontium doped ZnO thin films by cost-effective SILAR method. Materials Science in Semiconductor Processing, 119, 105117. https://doi.org/10.1016/j.mssp.2020.105117
- Dhamodharan, P., Manoharan, C., Dhanapandian, S., Bououdina, M., & Ramalingam, S. (2015). Preparation and characterization of spray deposited Sn-doped ZnO thin films onto ITO subtracts as photoanode in dye sensitized solar cell. Journal of Materials Science: Materials in Electronics, 26, 4830-4839. https://doi.org/10.1007/s10854-015-2990-7
- Gençyılmaz, O. (2018). The effect of different cobalt precursors on the Co doped ZnO films produced by ultrasonic spray pyrolysis. Journal of Nanoelectronics and Optoelectronics, 13(4), 509-520. https://doi.org/10.1166/jno.2018.2288. https://doi.org/10.1166/jno.2018.2288
- Gençyılmaz, O., Akyüz, İ., & Atay, F. (2024). Binary ZnS–ZnO films as an alternative buffer layer for solar cell applications. Applied Physics A, 130(4), 227. https://doi.org/10.1007/s00339-024-07382-1
- Kadem, B., Banimuslem, H. A., & Hassan, A. (2017). Modification of morphological and optical properties of ZnO thin film. Karbala International Journal of Modern Science, 3(2), 103-110. https://doi.org/10.1016/j.kijoms.2017.04.003
- Kaphle, A., & Hari, P. (2018). Enhancement in power conversion efficiency of silicon solar cells with cobalt doped ZnO nanoparticle thin film layers. Thin Solid Films, 657, 76-87. https://doi.org/10.1016/j.tsf.2018.05.014
- Klochko, N. P., Kopach, V. R., Tyukhov, I. I., Zhadan, D. O., Klepikova, K. S., Khrypunov, G. S., ... & Khrypunova, A. L. (2018). Metal oxide heterojunction (NiO/ZnO) prepared by low temperature solution growth for UV-photodetector and semi-transparent solar cell. Solar Energy, 164, 149-159. https://doi.org/10.1016/j.solener.2018.01.054
- Klochko, N. P., Klepikova, K. S., Kopach, V. R., Tyukhov, I. I., Starikov, V. V., Sofronov, D. S., ... & Khrypunova, A. L. (2019). Development of semi-transparent ZnO/FTO solar thermoelectric nanogenerator for energy efficient glazing. Solar Energy, 184, 230-239. https://doi.org/10.1016/j.solener.2019.04.002
- Kumar, A., Joseph, S., Tsechansky, L., Privat, K., Schreiter, I. J., Schüth, C., & Graber, E. R. (2018). Biochar aging in contaminated soil promotes Zn immobilization due to changes in biochar surface structural and chemical properties. Science of the Total Environment, 626, 953-961. https://doi.org/10.1016/j.scitotenv.2018.01.157
- Li, L., Gao, S., Zhang, Z., Tang, Y., Zhao, Y., Guo, J., & Yang, P. (2024). Optical control of Cu/ZnO composite film for solar battery. Chemical Physics Letters, 839, 141110. https://doi.org/10.1016/j.cplett.2024.141110
- Rajamanickam, S., Mohammad, S. M., Razak, I. A., Abed, S. M., & Muhammad, A. (2024). Enhanced performance of PFO-ZnO nanorods nanocomposite photodiodes grown on ZnO NRs/ZnO/ITO-coated glass. Optical Materials, 148, 114818. https://doi.org/10.1016/j.optmat.2023.114818
- Rashid, M. H., Sujoy, S. I., Rahman, M. S., & Haque, M. J. (2024). Aloe vera assisted green synthesis of Ag and Cu co-doped ZnO nanoparticles and a comprehensive analysis of their structural, morphological, optical, electrical and antibacterial properties. Heliyon, 10(3), e25438. https://doi.org/10.1016/j.heliyon.2024.e25438
- Saini, M., Singh, R., Mitra, A., & Som, T. (2020). Photoresponse of pulsed laser deposited ZnO: Cu thin films. Solar Energy, 207, 228-234. https://doi.org/10.1016/j.solener.2020.06.072
- Saravanan, K., Sen, S., Sharma, C., Amirthapandian, S., Ganesan, K., Gupta, M., ... & Shekar, N. C. (2023). Room temperature excitonic emission in highly aligned ZnO nanostructures prepared by glancing angle Xe+ ion irradiation. Journal of Luminescence, 263, 120059. https://doi.org/10.1016/j.jlumin.2023.120059
- Solaymani, S., Ţălu, Ş., Nezafat, N. B., Dejam, L., Shafiekhani, A., Ghaderi, A., & Zelati, A. (2021). Optical properties and surface dynamics analyses of homojunction and heterojunction Q/ITO/ZnO/NZO and Q/ITO/ZnO/NiO thin films. Results in Physics, 29, 104679. https://doi.org/10.1016/j.rinp.2021.104679
- Sze, S. M. (1981). Physics of semiconductor devices (2nd ed.). Newyork, USA:Wiley.
- Şahin, B., Aydin, R., Soylu, S., Türkmen, M., Kara, M., Akkaya, A., ... & Ayyıldız, E. (2022). The effect of thymus syriacus plant extract on the main physical and antibacterial activities of ZnO nanoparticles synthesized by SILAR method. Inorganic Chemistry Communications, 135, 109088. https://doi.org/10.1016/j.inoche.2021.109088
- Tang, Z., Fan, Z. Y., Fang, J. L., Zhang, L., Sun, Q. J., Zhang, D., ... & Jiang, X. (2024). Transparent artificial synapses based on Ag/Al-doped ZnO/ITO memristors for bioinspired neuromorphic computing. Materials Letters, 354, 135342. https://doi.org/10.1016/j.matlet.2023.135342
- Thobega, M., Maabong-Tau, K., Lefatshe, K., & Muiva, C. (2024). Study of structural, optical and electrical properties of Nickel doped ZnO (Ni–ZnO) nanorods grown by chemical bath deposition. Physica B: Condensed Matter, 673, 415500. https://doi.org/10.1016/j.physb.2023.415500
- Wang, C. F., Liu, N., & Hu, B. (2018). Improved white light emission from ZnS: Mn/ZnO/GaN core-shell nanorods array. Journal of Luminescence, 204, 424-427. https://doi.org/10.1016/j.jlumin.2018.08.048
- Wang, C. (2023). Fabrication and optical-electrical characteristics of ZnS/ZnO films by pulsed laser deposition. Thin Solid Films, 780, 139971. https://doi.org/10.1016/j.tsf.2023.139971
- Xiao, D., Wang, Y., Zhang, D., Liu, Y., Wang, H., Li, Y., ... & Sun, M. (2024). CuO/ZnO hollow nanocages derived from metal− organic frameworks for ultra-high and rapid response H2S gas sensor. Ceramics International, 50, 15767-15779. https://doi.org/10.1016/j.ceramint.2024.02.057
- Zhang, D., Liu, Y. H., & Zhu, L. (2022). Surface engineering of ZnO nanoparticles with diethylenetriamine for efficient red quantum-dot light-emitting diodes. Iscience, 25, 105111. https://doi.org/10.1016/j.isci.2022.105111