Research Article
BibTex RIS Cite

Current Earthquake Potential of Hakkari and its Surroundings, Southeast Anatolia, Türkiye: Region-Time-Magnitude Analyses

Year 2024, , 648 - 664, 31.08.2024
https://doi.org/10.53433/yyufbed.1433478

Abstract

Hakkari, Türkiye, is one of the most active provinces of the Southeast Anatolian Region in terms of seismicity and tectonism. During the instrumental and historical period, these fault systems in the Hakkari region have produced many destructive/damaging earthquakes. The earthquakes that occurred in December 2023 (Mw=4.7) and February 2024 (Mw=4.3) in recent years are important indicators of current seismicity in this region. According to the results obtained from the analyses, the average b-value in the study region is 0.88±0.09 and the lowest b-values are observed around the Yüksekova-Şemdinli Fault Zone. In addition, positive Coulomb stress changes have been observed in and around Hakkari in NW-SE and NE-SW directions. On the other hand, the return period of an earthquake with a magnitude of Mw=5.0 for the selected region is ~16 years. Also, the occurrence probabilities of an earthquake with a magnitude of Mw=5.0 in 10, 16 and 20 years is calculated as ~45%, 62% and ~69%, respectively. In conclusion, the current seismic hazard potential of Hakkari province and its surroundings has been revealed with the combination of seismotectonic parameters calculated in this study.

References

  • Abdelfattah, A. K., Jallouli, C., Qaysi, S., & Al‑Qadasi, B. (2020). Crustal stress in the Northern Red Sea Region as inferred from seismic b‑values, seismic moment release, focal mechanisms, gravity, magnetic, and heat flow data. Surveys in Geophysics, 41, 963-986. https://doi.org/10.1007/s10712-020-09602-8
  • AFAD. (2024). Afet ve Acil Durum Yönetim Başkanlığı, deprem kataloğu. Erişim tarihi: 31.01.2024. https://deprem.afad.gov.tr/home-page
  • Ahadov, B., & Jin, S. (2019). Effects of Coulomb stress change on Mw>6 earthquakes in the Caucasus region. Physics of the Earth and Planetary Interiors, 29(106326), 1–12. https://doi.org/10.1016/j.pepi.2019.106326
  • Akkaya, İ., Şengül, M. A., Özvan, A., & Tapan, M. (2013). Yüksekova (Hakkari) bölgesinin depremselliği ve sismik tehlike analizleri. İstanbul Yerbilimleri Dergisi, 26(1), 37-51.
  • Akkaya, İ. (2015). The application of HVSR microtremor survey method in Yüksekova (Hakkari) gion, Eastern Turkey. Journal of African Earth Sciences, 109, 87-95. https://doi.org/10.1016/j.jafrearsci.2015.05.018
  • Alkan, H., Büyüksaraç, A., Bektaş, Ö., & Işık, E. (2021). Coulomb stress change before and after 24.01.2020 Sivrice (Elazığ) Earthquake (Mw = 6.8) on the East Anatolian Fault Zone. Arabian Journal of Geosciences, 14, 2648. https://doi.org/10.1007/s12517-021-09080-1
  • Alkan, H. (2022). Crustal structure in and around the East Anatolian volcanic belt by using receiver functions stacking. Journal of African Earth Sciences, 191, 104532, 1-11. https://doi.org/10.1016/j.jafrearsci.2022.104532
  • Alkan, H., & Bayrak, E. (2022). Coulomb stress changes and magnitude-frequency distribution for Lake Van region. Bulletin of the Mineral Research and Exploration, 168(168), 141-156. https://doi.org/10.19111/bulletinofmre.990666
  • Alkan, H., Öztürk, S., & Akkaya, İ. (2023). Seismic hazard implications in and around the Yedisu seismic gap (Eastern Türkiye) based on Coulomb stress changes, b-values, and S-wave velocity. Pure and Applied Geophysics, 180, 3227-3248. https://doi.org/10.1007/s00024-023-03342-7
  • Anadolu, N. C., & Kalyoncuoğlu, Ü. Y. (2010). Güneydoğu Anadolu bölgesinin depremselliği ve deprem tehlike analizi. Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü Dergisi, 14(1), 84-94.
  • Bozkurt, E. (2001). Neotectonics of Türkiye-a synthesis. Geodinamica Acta, 14(1-3), 3-30. https://doi.org/10.1080/09853111.2001.11432432
  • Coban, K. H., & Sayıl, N. (2019). Evaluation of earthquake recurrences with different distribution models in western Anatolia. Journal of Seismology, 23, 1405-1422. https://doi.org/10.1007/s10950-019-09876-5
  • Delph, J. R., Biryol, C. B., Beck, S. L., Zandt, G., & Ward, K. M. (2015). Shear wave velocity structure of the Anatolian Plate: anomalously slow crust in southwestern Turkey. Geophysical Journal International, 202(1), 261-276. https://doi.org/10.1093/gji/ggv141
  • Emre, Ö., Duman, T. Y., Özalp, S., Şaroğlu, F., Olgun, Ş., Elmacı, H., & Çan, T. (2018). Active fault database of Turkey. Bulletin of Earthquake Engineering, 16(8), 3229-3275. https://doi.org/10.1007/s10518-016-0041-2
  • Frohlich, C., & Davis, S. (1993). Teleseismic b-values: Or, much ado about 1.0. Journal of Geophysical Research: Solid Earth, 98(B1), 631-644. https://doi.org/10.1029/92JB01891
  • GCMT. (2024). Global Centroid-Moment-Tensor. Erişim tarihi: 31.01.2024. https://www.globalcmt.org/
  • Gutenberg, B., & Richter, C. F. (1944). Frequency of earthquakes in California. Bulletin of the Seismological Society of America, 34, 185-188. https://doi.org/10.1785/BSSA0340040185
  • Hirata, T. (1989). Correlation between the b-value and the fractal dimension of earthquakes. Journal of Geophysical Research: Solid Earth, 94, 7507-7514. https://doi.org/10.1029/JB094iB06p07507
  • Irmak, T. S., Doğan, B., & Karakaş, A. (2012). Source mechanism of the 23 October 2011, Van (Turkey) earthquake (Mw=7.1) and aftershocks with its tectonic implications. Earth, Planets and Space, 64, 991-1003. https://doi.org/10.5047/eps.2012.05.002
  • Joseph, J. D. R., Rao, B., Anoop, M.B. (2011). A study on clustered and de-clustered world-wide earthquake data using G-R recurrence law. International Journal of Earth Science and Engineering, 4, 178-182.
  • Katsumata, K., & Kasahara, M. (1999). Precursory seismic quiescence before the 1994 Kurile earthquake (Mw=8.3) revealed by three independent seismic catalogs. Pure and Applied Geophysics, 155, 443-470. https://doi.org/10.1007/s000240050274
  • Katsumata, K. (2011). A long-term seismic quiescence started 23 years before the 2011 off the Pacific coast of Tohoku Earthquake (M=9.0). Earth Planets Space, 63, 709-712. https://doi.org/10.5047/eps.2011.06.033
  • King, G. C., Stein, R. S., & Lin, J. (1994). Static stress changes and the triggering of earthquakes. Bulletin of the Seismological Society of America, 84(3), 935-953.
  • KOERI. (2024). Boğaziçi Üniversitesi, Kandilli Rasathanesi ve Deprem Araştırma Enstitüsü. Erişim tarihi: 31.01.2024. http://www.koeri.boun.edu.tr/sismo/2/tr/
  • Liao, B. Y., Huang, H. C., & Xie, S. (2022). The source characteristics of the Mw6.4, 2016 Meinong Taiwan earthquake from teleseismic data using the hybrid homomorphic deconvolution method. Applied Sciences, 12(494), 1-13. https://doi.org/10.3390/app12010494
  • Mogi, K. (1962). Magnitude-frequency relation for elastic shocks accompanying fractures of various materials and some related problems in earthquakes. Bulletin of the Earthquake Research Institute, Tokyo University, 40, 831-853.
  • Nanjo, K. Z. (2020). Were changes in stress state responsible for the 2019 Ridgecrest, California, earthquakes? Nature Communication, 11 (3082), 1–10. https://doi.org/10.1038/s41467-020-16867-5
  • Niassarifard, M., Shabanian, E., Azad, S.S., & Madanipour, S. (2021). New tectonic configuration in NW Iran: Intracontinental dextral shear between NW Iran and SE Anatolia. Tectonophysics, 811, 228886. https://doi.org/10.1016/j.tecto.2021.228886
  • Öztürk, S. (2015). Depremselliğin fractal boyutu ve beklenen güçlü depremlerin orta vadede bölgesel olarak tahmini üzerine bir modelleme: Doğu Anadolu Bölgesi, Türkiye. Gümüşhane Üniversitesi, Fen Bilimleri Dergisi, 5(1), 1-23.
  • Öztürk, S. (2018). Earthquake hazard potential in the eastern Anatolian region of Turkey: seismotectonic b and Dc-values and precursory quiescence Z-value. Frontiers of Earth Science, 12(1), 215–236. https://doi.org/10.1007/s11707-017-0642-3
  • Öztürk, S. (2020). A study on the variations of recent seismicity in and around the Central Anatolian region of Turkey. Physics of the Earth and Planetary Interiors, 301 (106453), 1–11. https://doi.org/10.1016/j.pepi.2020.106453
  • Öztürk, S., & Alkan, H. (2023a). Multiple parameter analysis for assessing and forecasting earthquake hazards in the Lake Van region, Turkey. BALTICA, 36(2), 133-154. https://doi.org/10.5200/baltica.2023.2.4
  • Öztürk, S., & Alkan, H. (2023b, Mayıs). Current earthquake hazard in and around the southeastern part of Türkiye: Evaluation of the multiple parameters. 10th International Mardin Artuklu Scientific Researches Conference, Mardin, Türkiye, 95-105.
  • Reasenberg, P. (1985). Second-order moment of Central California seismicity, 1969-1982. Journal of Geophysical Research: Solid Earth, 90(B7), 5479-5495. https://doi.org/10.1029/JB090iB07p05479
  • Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, … & Karam, G. (2006). GPS constraints on continental deformation in the Africa‐Arabia‐Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research: Solid Earth, 111, B05411, 1-26. https://doi.org/10.1029/2005JB004051
  • Scholz, C. H. (1968). The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes. Bulletin of the Seismological Society of America, 58, 399-415. https://doi.org/10.1785/BSSA0580010399
  • Scholz, C. H. (2015). On the stress dependence of the earthquake b value. Geophysical Research Letters, 42, 1399-1402. https://doi.org/10.1002/2014GL062863
  • Schorlemmer, D., Wiemer, S., & Wyss, M. (2005). Variations in earthquake-size distribution across different stress regimes. Nature, 437. https://doi.org/10.1038/nature04094
  • Sinaga, G. H. D., Silaban, W., & Simanullang, A.F. (2022). Analysis of Coulomb stress of Sumatera earthquake against pyroclastic flow of mount Sinabung as data Prone Volcano disaster. World Journal of Advanced Research and Reviews, 13(1), 793-803. https://doi.org/10.30574/wjarr.2022.13.1.0086
  • Stein, R. S., King, G. C. P., & Lin, J. (1994). Stress Triggering of the 1994 M = 6.7 Northridge, California, earthquake by its predecessors. Science, 265(5177), 1432-1435. https://doi.org/10.1126/science.265.5177.1432
  • Şengör, A. M. C., & Yılmaz, Y. (1981). Tethyan evolution of Türkiye: a plate Tectonic approach. Tectonophysics, 75,181-241. https://doi.org/10.1016/0040-1951(81)90275-4
  • Tabban, A., & Gencoğlu, S. (1975). Earthquake and its parameters. Bulletin of the Earthquake Research Institute of Turkey, 11, 7-83.
  • Taghipour, K., Khatib, M. M., Heyhat, M., Shabanian, E., & Vaezihir, A. (2018). Evidence for distributed active strike-slip faulting in NW Iran: The Maragheh and Salmas fault zones. Tectonophysics, 742, 15-33. https://doi.org/10.1016/j.tecto.2018.05.022
  • Tan, O. (2021). A homogeneous earthquake catalogue for Turkey. Natural Hazards and Earth System Sciences, 21(7), 2059-2073. https://doi.org/10.5194/nhess-21-2059-2021
  • Toda, S., Stein, R. S., & Lin, J. (2011). Widespread seismicity excitation throughout central Japan following the 2011 M=9.0 Tohoku earthquake and its interpretation by Coulomb stress transfer. Geophysical Research Letters, 38(7), L00G03, 1-5. https://doi.org/10.1029/2011GL047834
  • Türkoğlu, E., Unsworth, M., Bulut, F., & Çağlar, İ. (2015). Crustal structure of the North Anatolian and East Anatolian Fault Systems from magnetotelluric data. Physics of the Earth and Planetary Interiors, 241, 1-14. https://doi.org/10.1016/j.pepi.2015.01.003
  • USGS. (2024). United States Geological Survey. Erişim tarihi: 31.01.2024. https://www.usgs.gov/
  • Utsu, T. (1971). Aftershock and earthquake statistic (III): Analyses of the distribution of earthquakes in magnitude, time and space with special consideration to clustering characteristics of earthquake occurrence (1). Journal of Faculty of Science Hokkaido University Series VII (Geophysics), 3(5), 379-441. http://hdl.handle.net/2115/8688
  • Wessel, P., Luis, J. F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H. F., & Tian, D. (2019). The Generic Mapping Tools version 6. Geochemistry, Geophysics, Geosystems, 20, 5556-5564. https://doi.org/10.1029/2019GC008515
  • Wiemer, S., & Wyss, M. (1994). Seismic quiescence before the Landers (M=7.5) and Big Bear (6.5) 1992 earthquakes. Bulletin of the Seismological Society of America, 84(3), 900-916.
  • Wiemer, S., & Wyss, M. (2000). Minimum magnitude of completeness in earthquake catalogs: Examples from Alaska, the Western United States, and Japan. Bulletin Seismological Society of America, 90(4), 859-869. https://doi.org/10.1785/0119990114
  • Wiemer, S. (2001). A software package to analyze seismicity: ZMAP. Seismological Research Letters, 72(2), 373-382. https://doi.org/10.1785/gssrl.72.3.373
  • Wu, Y. M., & Chiao, Y. L. (2006). Seismic quiescence before the 1999 Chi-Chi, Taiwan, Mw7.6 earthquake. Bulletin of the Seismological Society of America, 96 (1), 321-327. https://doi.org/10.1785/0120050069
  • Wyss, M., & Habermann, R. E. (1988). Precursory seismic quiescence. Pure and Applied Geophysics, 126(2-4), 319-332. https://doi.org/10.1007/BF00879001
  • Wyss, M., & Martirosyan, A. H. (1998). Seismic quiescence before the M7, 1988, Spitak earthquake, Armenia. Geophysical Journal International, 134(2), 329-340. https://doi.org/10.1046/j.1365-246x.1998.00543.x
  • Yadav, R. B. S., Gahalaut, V. K., Chopra, S., Bin, S. (2012). Tectonic implications and seismicity triggering during the 2008 Baluchistan, Pakistan earthquake sequence. Journal of Asian Earth Sciences, 45, 167-178. https://doi.org/10.1016/j.jseaes.2011.10.003
  • Yaghmaei-Sabegh, S., & Ostadi-Asl, G. (2021). Estimating of the b-value based on the characteristic earthquake model. Journal of Earthquake and Tsunami, 15(03), 2150015. https://doi.org/10.1142/S1793431121500159

Hakkari ve Civarının (Güneydoğu Anadolu, Türkiye) Güncel Deprem Potansiyeli: Bölge-Zaman-Magnitüd Analizleri

Year 2024, , 648 - 664, 31.08.2024
https://doi.org/10.53433/yyufbed.1433478

Abstract

Hakkari (Türkiye), depremsellik ve tektonizma olarak Güneydoğu Anadolu Bölgesinin en aktif illerinden bir tanesidir. Aletsel ve tarihsel dönemde, Hakkari ili ve civarında bulunan bu fay ve fay zonları birçok yıkıcı/hasar verici deprem üretmiştir. Son yıllarda Aralık 2023 (Mw=4.7) ve Şubat 2024’de (Mw=4.3) meydana gelen depremler, bu bölgedeki güncel depremselliğin önemli göstergelerindendir. Analizlerden elde edilen bulgulara göre, bölgede ortalama b-değeri 0.880.09 olup en düşük b-değerleri Yüksekova-Şemdinli Fay Zonu civarında gözlenmiştir. Buna ek olarak, pozitif Coulomb gerilme değişimleri Hakkari ili ve civarında KB-GD ve KD-GB yönlü olarak ortaya çıkmıştır. Diğer taraftan, seçilen bölge için Mw=5.0 büyüklüğündeki bir depremin tekrarlama zamanı ~16 yıldır. Ayrıca, Mw=5.0 büyüklüğündeki bir depremin 10, 16 ve 20 yılda oluşma olasılıkları ise sırasıyla ~%45, ~%62 ve ~%69 olarak hesaplanmıştır. Sonuç olarak, bu çalışmada hesaplanan sismotektonik parametrelerin birlikte değerlendirilmesi ile Hakkari ili ve civarının güncel sismik tehlike potansiyeli ortaya çıkarılmıştır.

References

  • Abdelfattah, A. K., Jallouli, C., Qaysi, S., & Al‑Qadasi, B. (2020). Crustal stress in the Northern Red Sea Region as inferred from seismic b‑values, seismic moment release, focal mechanisms, gravity, magnetic, and heat flow data. Surveys in Geophysics, 41, 963-986. https://doi.org/10.1007/s10712-020-09602-8
  • AFAD. (2024). Afet ve Acil Durum Yönetim Başkanlığı, deprem kataloğu. Erişim tarihi: 31.01.2024. https://deprem.afad.gov.tr/home-page
  • Ahadov, B., & Jin, S. (2019). Effects of Coulomb stress change on Mw>6 earthquakes in the Caucasus region. Physics of the Earth and Planetary Interiors, 29(106326), 1–12. https://doi.org/10.1016/j.pepi.2019.106326
  • Akkaya, İ., Şengül, M. A., Özvan, A., & Tapan, M. (2013). Yüksekova (Hakkari) bölgesinin depremselliği ve sismik tehlike analizleri. İstanbul Yerbilimleri Dergisi, 26(1), 37-51.
  • Akkaya, İ. (2015). The application of HVSR microtremor survey method in Yüksekova (Hakkari) gion, Eastern Turkey. Journal of African Earth Sciences, 109, 87-95. https://doi.org/10.1016/j.jafrearsci.2015.05.018
  • Alkan, H., Büyüksaraç, A., Bektaş, Ö., & Işık, E. (2021). Coulomb stress change before and after 24.01.2020 Sivrice (Elazığ) Earthquake (Mw = 6.8) on the East Anatolian Fault Zone. Arabian Journal of Geosciences, 14, 2648. https://doi.org/10.1007/s12517-021-09080-1
  • Alkan, H. (2022). Crustal structure in and around the East Anatolian volcanic belt by using receiver functions stacking. Journal of African Earth Sciences, 191, 104532, 1-11. https://doi.org/10.1016/j.jafrearsci.2022.104532
  • Alkan, H., & Bayrak, E. (2022). Coulomb stress changes and magnitude-frequency distribution for Lake Van region. Bulletin of the Mineral Research and Exploration, 168(168), 141-156. https://doi.org/10.19111/bulletinofmre.990666
  • Alkan, H., Öztürk, S., & Akkaya, İ. (2023). Seismic hazard implications in and around the Yedisu seismic gap (Eastern Türkiye) based on Coulomb stress changes, b-values, and S-wave velocity. Pure and Applied Geophysics, 180, 3227-3248. https://doi.org/10.1007/s00024-023-03342-7
  • Anadolu, N. C., & Kalyoncuoğlu, Ü. Y. (2010). Güneydoğu Anadolu bölgesinin depremselliği ve deprem tehlike analizi. Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü Dergisi, 14(1), 84-94.
  • Bozkurt, E. (2001). Neotectonics of Türkiye-a synthesis. Geodinamica Acta, 14(1-3), 3-30. https://doi.org/10.1080/09853111.2001.11432432
  • Coban, K. H., & Sayıl, N. (2019). Evaluation of earthquake recurrences with different distribution models in western Anatolia. Journal of Seismology, 23, 1405-1422. https://doi.org/10.1007/s10950-019-09876-5
  • Delph, J. R., Biryol, C. B., Beck, S. L., Zandt, G., & Ward, K. M. (2015). Shear wave velocity structure of the Anatolian Plate: anomalously slow crust in southwestern Turkey. Geophysical Journal International, 202(1), 261-276. https://doi.org/10.1093/gji/ggv141
  • Emre, Ö., Duman, T. Y., Özalp, S., Şaroğlu, F., Olgun, Ş., Elmacı, H., & Çan, T. (2018). Active fault database of Turkey. Bulletin of Earthquake Engineering, 16(8), 3229-3275. https://doi.org/10.1007/s10518-016-0041-2
  • Frohlich, C., & Davis, S. (1993). Teleseismic b-values: Or, much ado about 1.0. Journal of Geophysical Research: Solid Earth, 98(B1), 631-644. https://doi.org/10.1029/92JB01891
  • GCMT. (2024). Global Centroid-Moment-Tensor. Erişim tarihi: 31.01.2024. https://www.globalcmt.org/
  • Gutenberg, B., & Richter, C. F. (1944). Frequency of earthquakes in California. Bulletin of the Seismological Society of America, 34, 185-188. https://doi.org/10.1785/BSSA0340040185
  • Hirata, T. (1989). Correlation between the b-value and the fractal dimension of earthquakes. Journal of Geophysical Research: Solid Earth, 94, 7507-7514. https://doi.org/10.1029/JB094iB06p07507
  • Irmak, T. S., Doğan, B., & Karakaş, A. (2012). Source mechanism of the 23 October 2011, Van (Turkey) earthquake (Mw=7.1) and aftershocks with its tectonic implications. Earth, Planets and Space, 64, 991-1003. https://doi.org/10.5047/eps.2012.05.002
  • Joseph, J. D. R., Rao, B., Anoop, M.B. (2011). A study on clustered and de-clustered world-wide earthquake data using G-R recurrence law. International Journal of Earth Science and Engineering, 4, 178-182.
  • Katsumata, K., & Kasahara, M. (1999). Precursory seismic quiescence before the 1994 Kurile earthquake (Mw=8.3) revealed by three independent seismic catalogs. Pure and Applied Geophysics, 155, 443-470. https://doi.org/10.1007/s000240050274
  • Katsumata, K. (2011). A long-term seismic quiescence started 23 years before the 2011 off the Pacific coast of Tohoku Earthquake (M=9.0). Earth Planets Space, 63, 709-712. https://doi.org/10.5047/eps.2011.06.033
  • King, G. C., Stein, R. S., & Lin, J. (1994). Static stress changes and the triggering of earthquakes. Bulletin of the Seismological Society of America, 84(3), 935-953.
  • KOERI. (2024). Boğaziçi Üniversitesi, Kandilli Rasathanesi ve Deprem Araştırma Enstitüsü. Erişim tarihi: 31.01.2024. http://www.koeri.boun.edu.tr/sismo/2/tr/
  • Liao, B. Y., Huang, H. C., & Xie, S. (2022). The source characteristics of the Mw6.4, 2016 Meinong Taiwan earthquake from teleseismic data using the hybrid homomorphic deconvolution method. Applied Sciences, 12(494), 1-13. https://doi.org/10.3390/app12010494
  • Mogi, K. (1962). Magnitude-frequency relation for elastic shocks accompanying fractures of various materials and some related problems in earthquakes. Bulletin of the Earthquake Research Institute, Tokyo University, 40, 831-853.
  • Nanjo, K. Z. (2020). Were changes in stress state responsible for the 2019 Ridgecrest, California, earthquakes? Nature Communication, 11 (3082), 1–10. https://doi.org/10.1038/s41467-020-16867-5
  • Niassarifard, M., Shabanian, E., Azad, S.S., & Madanipour, S. (2021). New tectonic configuration in NW Iran: Intracontinental dextral shear between NW Iran and SE Anatolia. Tectonophysics, 811, 228886. https://doi.org/10.1016/j.tecto.2021.228886
  • Öztürk, S. (2015). Depremselliğin fractal boyutu ve beklenen güçlü depremlerin orta vadede bölgesel olarak tahmini üzerine bir modelleme: Doğu Anadolu Bölgesi, Türkiye. Gümüşhane Üniversitesi, Fen Bilimleri Dergisi, 5(1), 1-23.
  • Öztürk, S. (2018). Earthquake hazard potential in the eastern Anatolian region of Turkey: seismotectonic b and Dc-values and precursory quiescence Z-value. Frontiers of Earth Science, 12(1), 215–236. https://doi.org/10.1007/s11707-017-0642-3
  • Öztürk, S. (2020). A study on the variations of recent seismicity in and around the Central Anatolian region of Turkey. Physics of the Earth and Planetary Interiors, 301 (106453), 1–11. https://doi.org/10.1016/j.pepi.2020.106453
  • Öztürk, S., & Alkan, H. (2023a). Multiple parameter analysis for assessing and forecasting earthquake hazards in the Lake Van region, Turkey. BALTICA, 36(2), 133-154. https://doi.org/10.5200/baltica.2023.2.4
  • Öztürk, S., & Alkan, H. (2023b, Mayıs). Current earthquake hazard in and around the southeastern part of Türkiye: Evaluation of the multiple parameters. 10th International Mardin Artuklu Scientific Researches Conference, Mardin, Türkiye, 95-105.
  • Reasenberg, P. (1985). Second-order moment of Central California seismicity, 1969-1982. Journal of Geophysical Research: Solid Earth, 90(B7), 5479-5495. https://doi.org/10.1029/JB090iB07p05479
  • Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, … & Karam, G. (2006). GPS constraints on continental deformation in the Africa‐Arabia‐Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research: Solid Earth, 111, B05411, 1-26. https://doi.org/10.1029/2005JB004051
  • Scholz, C. H. (1968). The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes. Bulletin of the Seismological Society of America, 58, 399-415. https://doi.org/10.1785/BSSA0580010399
  • Scholz, C. H. (2015). On the stress dependence of the earthquake b value. Geophysical Research Letters, 42, 1399-1402. https://doi.org/10.1002/2014GL062863
  • Schorlemmer, D., Wiemer, S., & Wyss, M. (2005). Variations in earthquake-size distribution across different stress regimes. Nature, 437. https://doi.org/10.1038/nature04094
  • Sinaga, G. H. D., Silaban, W., & Simanullang, A.F. (2022). Analysis of Coulomb stress of Sumatera earthquake against pyroclastic flow of mount Sinabung as data Prone Volcano disaster. World Journal of Advanced Research and Reviews, 13(1), 793-803. https://doi.org/10.30574/wjarr.2022.13.1.0086
  • Stein, R. S., King, G. C. P., & Lin, J. (1994). Stress Triggering of the 1994 M = 6.7 Northridge, California, earthquake by its predecessors. Science, 265(5177), 1432-1435. https://doi.org/10.1126/science.265.5177.1432
  • Şengör, A. M. C., & Yılmaz, Y. (1981). Tethyan evolution of Türkiye: a plate Tectonic approach. Tectonophysics, 75,181-241. https://doi.org/10.1016/0040-1951(81)90275-4
  • Tabban, A., & Gencoğlu, S. (1975). Earthquake and its parameters. Bulletin of the Earthquake Research Institute of Turkey, 11, 7-83.
  • Taghipour, K., Khatib, M. M., Heyhat, M., Shabanian, E., & Vaezihir, A. (2018). Evidence for distributed active strike-slip faulting in NW Iran: The Maragheh and Salmas fault zones. Tectonophysics, 742, 15-33. https://doi.org/10.1016/j.tecto.2018.05.022
  • Tan, O. (2021). A homogeneous earthquake catalogue for Turkey. Natural Hazards and Earth System Sciences, 21(7), 2059-2073. https://doi.org/10.5194/nhess-21-2059-2021
  • Toda, S., Stein, R. S., & Lin, J. (2011). Widespread seismicity excitation throughout central Japan following the 2011 M=9.0 Tohoku earthquake and its interpretation by Coulomb stress transfer. Geophysical Research Letters, 38(7), L00G03, 1-5. https://doi.org/10.1029/2011GL047834
  • Türkoğlu, E., Unsworth, M., Bulut, F., & Çağlar, İ. (2015). Crustal structure of the North Anatolian and East Anatolian Fault Systems from magnetotelluric data. Physics of the Earth and Planetary Interiors, 241, 1-14. https://doi.org/10.1016/j.pepi.2015.01.003
  • USGS. (2024). United States Geological Survey. Erişim tarihi: 31.01.2024. https://www.usgs.gov/
  • Utsu, T. (1971). Aftershock and earthquake statistic (III): Analyses of the distribution of earthquakes in magnitude, time and space with special consideration to clustering characteristics of earthquake occurrence (1). Journal of Faculty of Science Hokkaido University Series VII (Geophysics), 3(5), 379-441. http://hdl.handle.net/2115/8688
  • Wessel, P., Luis, J. F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H. F., & Tian, D. (2019). The Generic Mapping Tools version 6. Geochemistry, Geophysics, Geosystems, 20, 5556-5564. https://doi.org/10.1029/2019GC008515
  • Wiemer, S., & Wyss, M. (1994). Seismic quiescence before the Landers (M=7.5) and Big Bear (6.5) 1992 earthquakes. Bulletin of the Seismological Society of America, 84(3), 900-916.
  • Wiemer, S., & Wyss, M. (2000). Minimum magnitude of completeness in earthquake catalogs: Examples from Alaska, the Western United States, and Japan. Bulletin Seismological Society of America, 90(4), 859-869. https://doi.org/10.1785/0119990114
  • Wiemer, S. (2001). A software package to analyze seismicity: ZMAP. Seismological Research Letters, 72(2), 373-382. https://doi.org/10.1785/gssrl.72.3.373
  • Wu, Y. M., & Chiao, Y. L. (2006). Seismic quiescence before the 1999 Chi-Chi, Taiwan, Mw7.6 earthquake. Bulletin of the Seismological Society of America, 96 (1), 321-327. https://doi.org/10.1785/0120050069
  • Wyss, M., & Habermann, R. E. (1988). Precursory seismic quiescence. Pure and Applied Geophysics, 126(2-4), 319-332. https://doi.org/10.1007/BF00879001
  • Wyss, M., & Martirosyan, A. H. (1998). Seismic quiescence before the M7, 1988, Spitak earthquake, Armenia. Geophysical Journal International, 134(2), 329-340. https://doi.org/10.1046/j.1365-246x.1998.00543.x
  • Yadav, R. B. S., Gahalaut, V. K., Chopra, S., Bin, S. (2012). Tectonic implications and seismicity triggering during the 2008 Baluchistan, Pakistan earthquake sequence. Journal of Asian Earth Sciences, 45, 167-178. https://doi.org/10.1016/j.jseaes.2011.10.003
  • Yaghmaei-Sabegh, S., & Ostadi-Asl, G. (2021). Estimating of the b-value based on the characteristic earthquake model. Journal of Earthquake and Tsunami, 15(03), 2150015. https://doi.org/10.1142/S1793431121500159
There are 57 citations in total.

Details

Primary Language Turkish
Subjects Seismology
Journal Section Engineering and Architecture / Mühendislik ve Mimarlık
Authors

Serkan Öztürk 0000-0003-1322-5164

Hamdi Alkan 0000-0003-3912-7503

Publication Date August 31, 2024
Submission Date February 7, 2024
Acceptance Date May 25, 2024
Published in Issue Year 2024

Cite

APA Öztürk, S., & Alkan, H. (2024). Hakkari ve Civarının (Güneydoğu Anadolu, Türkiye) Güncel Deprem Potansiyeli: Bölge-Zaman-Magnitüd Analizleri. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 29(2), 648-664. https://doi.org/10.53433/yyufbed.1433478