Research Article
BibTex RIS Cite

Absisik Asit ve Arbusküler Mikorizal Fungus Uygulamalarının Fasulyede Kömür Çürüklüğü Hastalığı [(Macrophomina phaseolina) (Tassi) Goid.] ve Bitki Gelişimine Etkisi

Year 2024, , 745 - 760, 31.08.2024
https://doi.org/10.53433/yyufbed.1452862

Abstract

Bu çalışmada, fasulyede önemli bir patojen olan kömür çürüklüğü hastalığı etmenine karşı (Macrophomina phaseolina (Tassi) (Goidanich) (Mp) Arbusküler mikorizal fungus (AMF) ve absisik asit (ABA) uygulamasının etkileri incelenmiştir. İlk aşamada in vitro koşullarda ABA’nın 0, 1, 5, 10, 20 μM dozlarının Mp’ya karşı etkisine bakılmış ve 5 μM ABA dozunun Mp’nın koloni gelişimini yüksek oranda kısıtladığı görülmüştür. İkinci aşamada, iklim odası koşullarında yetiştirilen Gina fasulye çeşidine ait fidelerde AMF ve farklı ABA dozlarının bitki gelişimi ve kömür çürüklüğü hastalığına etkileri incelenmiştir. Bazı fide gelişim parametrelerinde (yaprak sayısı, toplam yaprak alanı, yaş ağırlık, kuru ağırlık) tüm ABA dozları kontrole göre azalmaya neden olurken, bazı parametrelerde ise (toplam yaprak alanı, yaş ve kuru ağırlık) 5 µM ABA’nın diğerlerine göre daha etkili olduğu bulunmuştur. Tek başına ABA dozlarının hastalık şiddeti üzerindeki etkisinde, 5 μM ABA dışındaki diğer dozların hastalık şiddetini arttırdığı belirlenmiştir. Genel olarak ABA dozlarının AMF ile birlikte uygulanmasının %33 oranında hastalık şiddetinde azalmaya neden olduğu saptanmıştır. Elde edilen sonuçlar, uygun ABA dozu ve AMF’nin kombine uygulanmasının hastalık yönetiminde etkili olabileceğini göstermiştir.

Project Number

FDK-2018-6589

References

  • Abdeelal, K. A. A. (2015). Effect of salicylic acid and abscisic acid on morpho-physiological and anatomical characters of faba bean plants (Vicia faba) under drought stres. Journal of Plant Production, 6(11), 1771-1788. http://dx.doi.org/10.21608/jpp.2015.52096
  • Adie, B. A., Pérez-Pérez, J., Pérez-Pérez, M. M., Godoy, M., Sánchez-Serrano, J. J., Schmelz, E. A., & Solano, R. (2007). ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. Plant Cell, 19(5), 1665-1681. https://doi.org/10.1105/tpc.106.048041
  • Agarwal, P., Patel, K., Das, A. K., Ghosh, A., & Agarwal, P. K. (2016). Insights into the role of seaweed Kappaphycu salvarezii towards phytohormone signalling and regulating defence responsive genes in Lycopersicon esculentum. Journal of Applied Phycology, 28, 2529-2537. https://doi.org/10.1007/s10811-015-0784-1
  • Akköprü, A., & Demir, S. (2005). Biological control of Fusarium wilt in tomato caused by Fusarium oxysporum f.sp. lycopersici by AMF Glomus intraradices and some rhizobacteria. Journal of Phytopathology, 153, 544-550. https://doi.org/10.1111/j.1439-0434.2005.01018.x
  • Anderson, J. P., Badruzsaufari, E., Schenk, P. M., Manners, J. M., Desmond, O. J., Ehlert, C., … & Kazan, K. (2004). Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. The Plant Cell, 16, 3460–3479. https://doi.org/10.1105/tpc.104.025833
  • Audenaert, K., De Meyer, G. B., & Höfte, M. M. (2002). Abscisic acid determines basal susceptibility of tomato to Botrytis cinerea and suppresses salicylic acid-dependent signaling mechanisms. Plant Physiology, 128(2), 491-501. https://doi.org/10.1104/pp.010605
  • Aysan, E., & Demir, S. (2009). Using Arbuscular Mycorrhizal Fungi (AMF) and Rhizobium leguminosarum biovar phaseoli against Sclerotinia sclerotiorum (Lib.) de Bary in the common bean (Phaseolus vulgaris L.). Plant Pathology Journal, 8(2), 74-78. https://doi.org/10.3923/ppj.2009.74.78
  • Bari, R., & Jones, J. D. (2009). Role of plant hormones in plant defence responses. Plant Molecular Biology, 69(4), 473-488. https://doi.org/10.1007/s11103-008-9435-0
  • Barua, H., Saha, S. R., Ivy, N. A., Rasul, G., & Islam, A. A. (2022). Genetic divergence of guava (Psidium guajava L.) genotypes in Bangladesh: Guava Genotypes in Bangladesh. SAARC Journal of Agriculture, 20(1), 15-28. http://dx.doi.org/10.3329/sja.v20i1.60618
  • Başak, H. (2011). Absisik asit (ABA) uygulamalarının domates (Lycopersicon esculentum mill.) fidelerinde bazı fizyolojik ve morfolojik özellikler ile kök gelişim değerlerine etkisi. (Doktora tezi), Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, Türkiye.
  • Blair, M. W., Diaz, L. M., Buendia, H. F., & Duque, M. C. (2009). Genetic diversity, seed size associations and population structure of a core collection of common beans (Phaseolus vulgaris L.). Theoretical and Applied Genetics, 119, 955-972. https://doi.org/10.1007/s00122-009-1064-8
  • Chen, K., Li, G. J., Bressan, R. A., Song, C. P., Zhu, J. K., & Zhao, Y. (2020). Abscisic acid dynamics, signaling, and functions in plants. Journal of Integrative Plant Biology, 62(1), 25-54. https://doi.org/10.1111/jipb.12899
  • CIAT. (1983). Bean program annual report. CIAT, Cali, Colombia. 288 pp.
  • Çavuşoğlu, K., Kılıç, S., & Kabar, K. (2009). Effects of plant growth regulators on the root, stem and leaf anatomies of radish seedlings grown in abscisic acid medium. Advances in Food Sciences, 31(1), 34-40.
  • de Torres-Zabala, M., Truman, W., Bennett, M. H., Lafforgue, G., Mansfield, J. W., & Rodriguez Egea, P., … & Grant, M. (2007). Pseudomonas syringae pv. tomato arabidopsis abscisic acid signalling pathway to cause disease. Embo Journal, 26, 1434–43. https://doi.org/10.1038/sj.emboj.7601575
  • Dehne, H. W. (1982). Interaction between vesicular arbuscular mycorrhizal fungi and plant pathogens. Phytopathology, 72, 1115-1119.
  • Demir, S. (1998). Bazı kültür bitkilerinde vesiküler-arbusküler mikoriza (VAM) oluşumu ve bunun bitki gelişimi ve dayanıklılıktaki rolü üzerinde araştırmalar. (Doktora Tezi), Ege Üniversitesi Fen Bilimleri Enstitüsü, İzmir, Türkiye.
  • Demir, S., & Onoğur, E. (1999). Bitkilerde vesiküler arbüsküler mikoriza oluşumunun bitki besleme ve bitki korumadaki önemi. Anadolu Journal of Agriculture, 9(2), 12-31.
  • Dhingra, O. D., Sinclair, J. B. (1978). Biology and pathology of Macrophomina phaseolina. Universidade Federal De Vicosa, Minas Gerais.
  • Erdinç, Ç., Demirer Durak E., Ekincialp A., Şensoy, S., & Demir, S. (2017). Variations in response of determinate common bean (Phaseolus vulgaris L.) genotypes to arbuscular mycorrhizal fungi (AMF) inoculation. Turkish Journal of Agriculture and Forestry, 41, 1-9. http://dx.doi.org/10.3906/tar-1609-68
  • FAOSTAT, 2022. Faostat–food and agriculture organization of the United Nations. Erişim Tarihi: 28.02.2023. http://www.fao.org/faostat/en/#home
  • Finkelstein, R. (2013). Abscisic acid synthesis and response. The Arabidopsis book/American Society of Plant Biologists, 11. http://dx.doi.org/10.1199/tab.0166
  • Gerdemann, J. W., & Nicholson, T. H. (1963). Spores of mycorrhizal Endogone species extracted from the soil by wet sieving and decanting. Transactions of the British Mycological Society, 46(2), 235-244. https://doi.org/10.1016/S0007-1536(63)80079-0
  • Giovanetti, M., & Mosse, B. (1980). An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots. New Phytologist, 84, 489-500.
  • Gupta, G. K., Sharma, S. K., & Ramteke, R. (2012). Biology, epidemiology and management of the pathogenic fungus Macrophomina phaseolina (Tassi) Goid. with special reference to charcoal rot of soybean (Glycine max (L.) Merrill). Journal of Phytopathology, 160(4), 167-180. https://doi.org/10.1111/j.1439-0434.2012.01884.x
  • Hefel, A. J. (2010). Molecular interactions between the pathogenic fungus Macrophomina phaseolina and its plant host Medicago truncatula. (Master Thesis), Graduate School of Wichita State University.
  • Hindumathi, A., Reddy, B. N., Sabitha Rani, A., & Narsimha Reddy, A. (2017). Associative effect of arbuscular mycorrhizal fungi and rhizobium on plant growth and biological control of charcoal rot in green gram [Vigna radiata L. (Wilczek)] (Bhukya B., and Tangutur, A.D.). Apple Academyc Press.
  • Iqbal, U., Mukhtar, T., & Iqbal, S.M. (2014). In vitro and in vivo evaluation of antifungal activities of some antagonistic plants against charcoal rot causing fungus Macrophomina phaseolina. Pakistan Journal of Agricultural Science, 51(3), 689-694.
  • Jalali, B. L., Chhabra, M. L., & Singh, R. P. (1990). Interaction between vesicular-arbuscular mycorrhizal endophyte and Macrophomina phaseolina in mung bean. Indian Phytopathology, 43(4), 527-530.
  • Jiang M., & Zhang, J. (2001). Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant and Cell Physiology, 42(11), 1265-1273. https://doi.org/10.1093/pcp/pce162
  • Karaman, R. (2023). Fasulye genotiplerinde çok değişkenli istatistiksel yöntemler ile tohum fiziksel özelliklerinin karakterizasyonu. Ege Üniversitesi Ziraat Fakültesi Dergisi, 60(3), 451-464. https://doi.org/10.20289/zfdergi.1258084
  • Kawano, T. (2003). Roles of the reactive oxygen species-generating peroxidase reactions in plant defense and growth induction. Plant Cell Reports, 21, 829-837. https://doi.org/10.1007/s00299-003-0591-z
  • Khan, S. N. (2007). Macrophomina phaseolina as causal agent for charcoal rot of sunflower. Mycopathologia, 5(2), 111-118.
  • Khedia, J., Danghariya, M., Nakum, A.K., Agarwal, P., Panda, A., Parida, A.K., … & Agarwal, P.K. (2020). Sargassum seaweed extract enhances Macrophomina phaseolina resistance in tomato by regulating phytohormones and antioxidative activity. Journal of Applied Physiology, 32, 4373–4384. https://doi.org/10.1007/s10811-020-02263-5
  • Koide, R. T. (2006). Nutrient supply, nutrient demand and plant response to mycorhizal infection. New Phytol, 117(3), 365-386. https://doi.org/10.1111/j.1469-8137.1991.tb00001.x
  • Linderman, R. G. (1994). Role of VAM fungi in biocontrol. Mycorrhizae and plant health, 1-17.
  • Ma, J., Hill, C. B., & Hartman, G.L. (2010). Production of Macrophomina phaseolina Conidia by multiple soybean isolates in culture. Plant Disease, 94(9), 1088-1092. https://doi.org/10.1094/pdis-94-9-1088
  • Maksimov, I.V. (2009). Abscisic acid in the plants–pathogen interaction. Russian Journal of Plant Physiology, 56(6), 824-835. http://dx.doi.org/10.1134/S102144370906003X
  • Marquez, N., Giachero, M. L., Gallou, A., Debat, H. J., Cranenbrouck, S., Di Rienzo, J. A., ... & Declerck, S. (2018). Transcriptional changes in mycorrhizal and nonmycorrhizal soybean plants upon infection with the fungal pathogen Macrophomina phaseolina. Molecular Plant-Microbe Interactions, 31(8), 842-855. https://doi.org/10.1094/MPMI-11-17-0282-R
  • Marquez, N., Giachero, M.L., Declerck, S., & Ducasse, D.A. (2021). Macrophomina phaseolina: General characteristics of pathogenicity and methods of control. Frontiers in Plant Science, 12, 634397. https://doi.org/10.3389/fpls.2021.634397
  • Martínez-Medina, A., Roldán, A., Albacete, A., & Pascual, J.A. (2011). The interaction with arbuscular mycorrhizal fungi or Trichoderma harzianum alters the shoot hormonal profile in melon plants. Phytochemistry,72, 223-229. https://doi.org/10.1016/j.phytochem.2010.11.008
  • Melotto, M., Underwood, W., Koczan, J., Nomura, K., & He, S.Y. (2006). Plant stomata function innate immunity against bacterial invasion. Cell, 126, 969–80. https://doi.org/10.1016/j.cell.2006.06.054
  • Mengistu, A., Smith, J. R., Ray, C. D., & Bellaloui, N. (2011). Seasonal progress of charcoal rot and its impact on soybean productivity. Plant Disease, 95(9), 1159-1166. https://doi.org/10.1094/pdis-02-11-0100
  • Mengistu, A., Ray, J. D., Smith, J. R., Arelli, P. R., Bellaloui, N., Chen, P., ... & Boykin, D. (2018). Effect of charcoal rot on selected putative drought tolerant soybean genotypes and yield. Crop Protection, 105, 90-101. https://doi.org/10.1016/j.cropro.2017.11.012
  • Metsalu, T., & Vilo, J. (2015). ClustVis: A web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Research, 43, 566-570. https://doi.org/10.1093/nar/gkv468
  • Mihail, J. D. (1992). Macrophomina. Methods for Research on Soilborne Phytopathogenic Fungi, 134-136.
  • Mohr, P. G., & Cahill, D. M. (2003). Abscisic acid influences the susceptibility of Arabidopsis thaliana to Pseudomonas syringae pv. tomato and Peronospora parasitica. Functional Plant Biology, 30(4), 461-469. https://doi.org/10.1071/fp02231
  • Ndiaye, M., Termorshuizen, A.J., Van Bruggen, A. H. C. (2007). Combine deffects of solarization and organic amendment on charcol rot caused by Macrophomina phaseolina in the Sahel. Phytoparasitica, 35(4), 392-400. http://dx.doi.org/10.1007/BF02980703
  • Oyewole, B.O., Olawuyi, O.J., Odebode, A.C., & Abiala, M.A. (2017). Influence of arbuscular mycorrhizal fungi (AMF) on drought tolerance and charcoal rot disease of cowpea. Biotechnology Reports, 14, 8-15. https://doi.org/10.1016/j.btre.2017.02.004
  • Partridge, D. (2003). Macrophomina phaseolina. Erişim Tarihi: 16.09.2017. http://www.cals.ncsu.edu/course/pp728/Macrophomina/macrophominia_ phaseolina.
  • Pastor-Corrales, M.A., & Abawi, G.S. (1988). Reactions of selected bean accessions to infection by Macrophomina phaseolina. Plant Disease, 72, 39-41.
  • Phillips, J.M., & Hayman, D.S. (1970). Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55,158- 161. https://doi.org/10.1016/S0007-1536(70)80110-3
  • Qi, P. F., Balcerzak, M., Rocheleau, H., Leung, W., Wei, Y. M., Zheng, Y. L., & Ouellet, T. (2016). Jasmonic acid and abscisic acid play important roles in host–pathogen interaction between Fusarium graminearum and wheat during the early stages of fusarium head blight. Physiological and Molecular Plant Pathology, 93, 39-48. http://dx.doi.org/10.1016/j.pmpp.2015.12.004
  • Singh, R. J., Chung, G. H., & Nelson, R. L. (2007). Landmark research in Legumes. Genome, 50, 525-537. https://doi.org/10.1139/g07-037
  • Soliman, K.M., & Badeaa, R.I., (2002). Effect of oil extract from some medicinal plants on different mycotoxigenic fungi. Food and Chemical Toxicology, 40(11), 1669-1675. https://doi.org/10.1016/s0278-6915(02)00120-5
  • Spagnoletti, F., Carmona, M. E. Tobar Gómez, N. E. T., Chiocchio, V. S., & Lavado. R. S. (2017). Arbuscular mycorrhiza reduces the negative effects of M. phaseolina on soybean plants in arsenic-contaminated soils. Applied Soil Ecology, 121, 41-47. http://dx.doi.org/10.1016/j.apsoil.2017.09.019
  • Spagnoletti, F. N., Cornero, M., Chiocchio, V., Lavado, R. S., & Roberts, I. N. (2020). Arbuscular mycorrhiza protects soybean plants against Macrophomina phaseolina even under nitrogen fertilization. European Journal of Plant Pathology, 156, 839-849. https://doi.org/10.1007/s10658-020-01934-w
  • Stec, N., Banasiak, J., & Jasinski, M. (2016). Abscisic acid an overlooked player in plant-microbe symbioses formation?. Acta Biochemica Polonica, 63, 53-58. https://doi.org/10.18388/abp.2015_1210
  • Ton, J., Flors, V., & Mauch-Mani, B. (2009). The multifaceted role of ABA in disease resistance. Trends in Plant Science, 14(6), 310-317. https://doi.org/10.1016/j.tplants.2009.03.006
  • Turhan, P., & Demir, S. (2013). Çilekte siyah kök çürüklüğü (Rhizoctonia solani Kühn.) hastalığına karşı bazı biyolojik mücadele elemanlarının etkileri. Türkiye Biyolojik Mücadele Dergisi, 4(2), 125-140.
  • Ullah, F., Ullah, H,. Ishfaq, M., Khan, R., Gul, S.L., Gulfraz, A., … & Zhifang, L. (2023). Genotypic variation of tomato to AMF inoculation in improving growth, nutrient uptake, yield, and photosynthetic activity. Symbiosis, 9(12), 1-14. http://dx.doi.org/10.1007/s13199-023-00961-5
  • Wiese, J., Kranz, T., & Schubert, S. (2004). Induction of pathogen resistance in barley by abiotic stress. Plant Biology (Stuttg), 6, 529–536. https://doi.org/10.1055/s-2004-821176
  • Wu, M., Yan, Y., Wang, Y., Mao, Q., Fu, Y., Peng, X., … & Ahammed, G.J. (2021). Arbuscular mycorrhizal fungi for vegetable (VT) enhance resistance to Rhizoctonia solani in watermelon by alleviating oxidative stress. Biological Control, 152. http://dx.doi.org/10.1016/j.biocontrol.2020.104433
  • Yang, L., Yu, C. L., Shi, F., Wei, Y. Q., Wang, C. C., Hu, H. T., & Cheng, C. G. (2007). Effects of abscisic acid on growth and dehydration tolerance of Cynanchum komarovii seedlings. Plant Growth Regulation, 51, 177–184. https://doi.org/10.1007/s10725-006-9160-0
  • Zambolim L., & Schenck, N. C. (1983). Reduction of the effects of pathogenic, root-infecting fungi on soybean by the mycorrhizal fungus, Glomus mossea. Phytopathology, 73, 1402- 1405. http://dx.doi.org/10.1094/Phyto-73-1402
  • Zhang, X. H., Liu, Y. H., Liu, B. W., Liu, Q., Wen, S. Y., Ao, B., … & Xu, Y. F. (2019). Arbuscular mycorrhiza fungus improved growth, antioxidant defense and endogenous hormones in tall fescue under low-light stress. South African Journal of Botany, 127, 43-50. https://doi.org/10.1016/j.sajb.2019.08.032
  • Zhang, X., Tahir, M. M., Li, S., Tang, T., Mao, J., Li, K., … & Zhang, D. (2021). Effect of exogenous abscisic acid (ABA) on the morphology, phytohormones, and related gene expression of developing lateral roots in ‘Qingzhen 1’ apple plants. Plant Cell, Tissueand Organ Culture (PCTOC), 148, 23–34. https://doi.org/10.1007/s11240-021-02157-5

Abscisic Effect of Abscisic Acid and Arbuscular Mycorrhizal Fungi Applications on Coal Rot Disease [(Macrophomina phaseolina) (Tassi) Goid.] and Plant Growth in Bean

Year 2024, , 745 - 760, 31.08.2024
https://doi.org/10.53433/yyufbed.1452862

Abstract

In this study, the effects of arbuscular mycorrhizal fungi (AMF) and abscisic acid (ABA) treatment against charcoal rot disease, an important pathogen of bean (Macrophomina phaseolina (Tassi) (Goidanich) (Mp) were investigated. In the first stage, the effects of 0, 1, 5, 10, 20 μM doses of ABA against Mp were investigated under in vitro conditions and it was observed that 5 μM ABA dose highly restricted the colony growth of Mp. In the second stage, the effects of AMF and different ABA doses on plant growth and charcoal rot disease in seedlings of Gina bean cultivar grown under climate chamber conditions were investigated. While all ABA doses caused a decrease in some seedling growth parameters (number of leaves, total leaf area, wet weight, dry weight) compared to the control, in some parameters (total leaf area, wet and dry weight) 5 µM ABA was found to be more effective than the others. In the effect of ABA doses alone on disease severity, it was determined that all doses except 5 μM ABA increased the disease severity. In general, it was determined that the application of ABA doses together with AMF caused a 33% decrease in disease severity. The results obtained showed that the combined application of appropriate ABA dose and AMF may be effective in disease management.

Project Number

FDK-2018-6589

References

  • Abdeelal, K. A. A. (2015). Effect of salicylic acid and abscisic acid on morpho-physiological and anatomical characters of faba bean plants (Vicia faba) under drought stres. Journal of Plant Production, 6(11), 1771-1788. http://dx.doi.org/10.21608/jpp.2015.52096
  • Adie, B. A., Pérez-Pérez, J., Pérez-Pérez, M. M., Godoy, M., Sánchez-Serrano, J. J., Schmelz, E. A., & Solano, R. (2007). ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. Plant Cell, 19(5), 1665-1681. https://doi.org/10.1105/tpc.106.048041
  • Agarwal, P., Patel, K., Das, A. K., Ghosh, A., & Agarwal, P. K. (2016). Insights into the role of seaweed Kappaphycu salvarezii towards phytohormone signalling and regulating defence responsive genes in Lycopersicon esculentum. Journal of Applied Phycology, 28, 2529-2537. https://doi.org/10.1007/s10811-015-0784-1
  • Akköprü, A., & Demir, S. (2005). Biological control of Fusarium wilt in tomato caused by Fusarium oxysporum f.sp. lycopersici by AMF Glomus intraradices and some rhizobacteria. Journal of Phytopathology, 153, 544-550. https://doi.org/10.1111/j.1439-0434.2005.01018.x
  • Anderson, J. P., Badruzsaufari, E., Schenk, P. M., Manners, J. M., Desmond, O. J., Ehlert, C., … & Kazan, K. (2004). Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. The Plant Cell, 16, 3460–3479. https://doi.org/10.1105/tpc.104.025833
  • Audenaert, K., De Meyer, G. B., & Höfte, M. M. (2002). Abscisic acid determines basal susceptibility of tomato to Botrytis cinerea and suppresses salicylic acid-dependent signaling mechanisms. Plant Physiology, 128(2), 491-501. https://doi.org/10.1104/pp.010605
  • Aysan, E., & Demir, S. (2009). Using Arbuscular Mycorrhizal Fungi (AMF) and Rhizobium leguminosarum biovar phaseoli against Sclerotinia sclerotiorum (Lib.) de Bary in the common bean (Phaseolus vulgaris L.). Plant Pathology Journal, 8(2), 74-78. https://doi.org/10.3923/ppj.2009.74.78
  • Bari, R., & Jones, J. D. (2009). Role of plant hormones in plant defence responses. Plant Molecular Biology, 69(4), 473-488. https://doi.org/10.1007/s11103-008-9435-0
  • Barua, H., Saha, S. R., Ivy, N. A., Rasul, G., & Islam, A. A. (2022). Genetic divergence of guava (Psidium guajava L.) genotypes in Bangladesh: Guava Genotypes in Bangladesh. SAARC Journal of Agriculture, 20(1), 15-28. http://dx.doi.org/10.3329/sja.v20i1.60618
  • Başak, H. (2011). Absisik asit (ABA) uygulamalarının domates (Lycopersicon esculentum mill.) fidelerinde bazı fizyolojik ve morfolojik özellikler ile kök gelişim değerlerine etkisi. (Doktora tezi), Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, Türkiye.
  • Blair, M. W., Diaz, L. M., Buendia, H. F., & Duque, M. C. (2009). Genetic diversity, seed size associations and population structure of a core collection of common beans (Phaseolus vulgaris L.). Theoretical and Applied Genetics, 119, 955-972. https://doi.org/10.1007/s00122-009-1064-8
  • Chen, K., Li, G. J., Bressan, R. A., Song, C. P., Zhu, J. K., & Zhao, Y. (2020). Abscisic acid dynamics, signaling, and functions in plants. Journal of Integrative Plant Biology, 62(1), 25-54. https://doi.org/10.1111/jipb.12899
  • CIAT. (1983). Bean program annual report. CIAT, Cali, Colombia. 288 pp.
  • Çavuşoğlu, K., Kılıç, S., & Kabar, K. (2009). Effects of plant growth regulators on the root, stem and leaf anatomies of radish seedlings grown in abscisic acid medium. Advances in Food Sciences, 31(1), 34-40.
  • de Torres-Zabala, M., Truman, W., Bennett, M. H., Lafforgue, G., Mansfield, J. W., & Rodriguez Egea, P., … & Grant, M. (2007). Pseudomonas syringae pv. tomato arabidopsis abscisic acid signalling pathway to cause disease. Embo Journal, 26, 1434–43. https://doi.org/10.1038/sj.emboj.7601575
  • Dehne, H. W. (1982). Interaction between vesicular arbuscular mycorrhizal fungi and plant pathogens. Phytopathology, 72, 1115-1119.
  • Demir, S. (1998). Bazı kültür bitkilerinde vesiküler-arbusküler mikoriza (VAM) oluşumu ve bunun bitki gelişimi ve dayanıklılıktaki rolü üzerinde araştırmalar. (Doktora Tezi), Ege Üniversitesi Fen Bilimleri Enstitüsü, İzmir, Türkiye.
  • Demir, S., & Onoğur, E. (1999). Bitkilerde vesiküler arbüsküler mikoriza oluşumunun bitki besleme ve bitki korumadaki önemi. Anadolu Journal of Agriculture, 9(2), 12-31.
  • Dhingra, O. D., Sinclair, J. B. (1978). Biology and pathology of Macrophomina phaseolina. Universidade Federal De Vicosa, Minas Gerais.
  • Erdinç, Ç., Demirer Durak E., Ekincialp A., Şensoy, S., & Demir, S. (2017). Variations in response of determinate common bean (Phaseolus vulgaris L.) genotypes to arbuscular mycorrhizal fungi (AMF) inoculation. Turkish Journal of Agriculture and Forestry, 41, 1-9. http://dx.doi.org/10.3906/tar-1609-68
  • FAOSTAT, 2022. Faostat–food and agriculture organization of the United Nations. Erişim Tarihi: 28.02.2023. http://www.fao.org/faostat/en/#home
  • Finkelstein, R. (2013). Abscisic acid synthesis and response. The Arabidopsis book/American Society of Plant Biologists, 11. http://dx.doi.org/10.1199/tab.0166
  • Gerdemann, J. W., & Nicholson, T. H. (1963). Spores of mycorrhizal Endogone species extracted from the soil by wet sieving and decanting. Transactions of the British Mycological Society, 46(2), 235-244. https://doi.org/10.1016/S0007-1536(63)80079-0
  • Giovanetti, M., & Mosse, B. (1980). An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots. New Phytologist, 84, 489-500.
  • Gupta, G. K., Sharma, S. K., & Ramteke, R. (2012). Biology, epidemiology and management of the pathogenic fungus Macrophomina phaseolina (Tassi) Goid. with special reference to charcoal rot of soybean (Glycine max (L.) Merrill). Journal of Phytopathology, 160(4), 167-180. https://doi.org/10.1111/j.1439-0434.2012.01884.x
  • Hefel, A. J. (2010). Molecular interactions between the pathogenic fungus Macrophomina phaseolina and its plant host Medicago truncatula. (Master Thesis), Graduate School of Wichita State University.
  • Hindumathi, A., Reddy, B. N., Sabitha Rani, A., & Narsimha Reddy, A. (2017). Associative effect of arbuscular mycorrhizal fungi and rhizobium on plant growth and biological control of charcoal rot in green gram [Vigna radiata L. (Wilczek)] (Bhukya B., and Tangutur, A.D.). Apple Academyc Press.
  • Iqbal, U., Mukhtar, T., & Iqbal, S.M. (2014). In vitro and in vivo evaluation of antifungal activities of some antagonistic plants against charcoal rot causing fungus Macrophomina phaseolina. Pakistan Journal of Agricultural Science, 51(3), 689-694.
  • Jalali, B. L., Chhabra, M. L., & Singh, R. P. (1990). Interaction between vesicular-arbuscular mycorrhizal endophyte and Macrophomina phaseolina in mung bean. Indian Phytopathology, 43(4), 527-530.
  • Jiang M., & Zhang, J. (2001). Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant and Cell Physiology, 42(11), 1265-1273. https://doi.org/10.1093/pcp/pce162
  • Karaman, R. (2023). Fasulye genotiplerinde çok değişkenli istatistiksel yöntemler ile tohum fiziksel özelliklerinin karakterizasyonu. Ege Üniversitesi Ziraat Fakültesi Dergisi, 60(3), 451-464. https://doi.org/10.20289/zfdergi.1258084
  • Kawano, T. (2003). Roles of the reactive oxygen species-generating peroxidase reactions in plant defense and growth induction. Plant Cell Reports, 21, 829-837. https://doi.org/10.1007/s00299-003-0591-z
  • Khan, S. N. (2007). Macrophomina phaseolina as causal agent for charcoal rot of sunflower. Mycopathologia, 5(2), 111-118.
  • Khedia, J., Danghariya, M., Nakum, A.K., Agarwal, P., Panda, A., Parida, A.K., … & Agarwal, P.K. (2020). Sargassum seaweed extract enhances Macrophomina phaseolina resistance in tomato by regulating phytohormones and antioxidative activity. Journal of Applied Physiology, 32, 4373–4384. https://doi.org/10.1007/s10811-020-02263-5
  • Koide, R. T. (2006). Nutrient supply, nutrient demand and plant response to mycorhizal infection. New Phytol, 117(3), 365-386. https://doi.org/10.1111/j.1469-8137.1991.tb00001.x
  • Linderman, R. G. (1994). Role of VAM fungi in biocontrol. Mycorrhizae and plant health, 1-17.
  • Ma, J., Hill, C. B., & Hartman, G.L. (2010). Production of Macrophomina phaseolina Conidia by multiple soybean isolates in culture. Plant Disease, 94(9), 1088-1092. https://doi.org/10.1094/pdis-94-9-1088
  • Maksimov, I.V. (2009). Abscisic acid in the plants–pathogen interaction. Russian Journal of Plant Physiology, 56(6), 824-835. http://dx.doi.org/10.1134/S102144370906003X
  • Marquez, N., Giachero, M. L., Gallou, A., Debat, H. J., Cranenbrouck, S., Di Rienzo, J. A., ... & Declerck, S. (2018). Transcriptional changes in mycorrhizal and nonmycorrhizal soybean plants upon infection with the fungal pathogen Macrophomina phaseolina. Molecular Plant-Microbe Interactions, 31(8), 842-855. https://doi.org/10.1094/MPMI-11-17-0282-R
  • Marquez, N., Giachero, M.L., Declerck, S., & Ducasse, D.A. (2021). Macrophomina phaseolina: General characteristics of pathogenicity and methods of control. Frontiers in Plant Science, 12, 634397. https://doi.org/10.3389/fpls.2021.634397
  • Martínez-Medina, A., Roldán, A., Albacete, A., & Pascual, J.A. (2011). The interaction with arbuscular mycorrhizal fungi or Trichoderma harzianum alters the shoot hormonal profile in melon plants. Phytochemistry,72, 223-229. https://doi.org/10.1016/j.phytochem.2010.11.008
  • Melotto, M., Underwood, W., Koczan, J., Nomura, K., & He, S.Y. (2006). Plant stomata function innate immunity against bacterial invasion. Cell, 126, 969–80. https://doi.org/10.1016/j.cell.2006.06.054
  • Mengistu, A., Smith, J. R., Ray, C. D., & Bellaloui, N. (2011). Seasonal progress of charcoal rot and its impact on soybean productivity. Plant Disease, 95(9), 1159-1166. https://doi.org/10.1094/pdis-02-11-0100
  • Mengistu, A., Ray, J. D., Smith, J. R., Arelli, P. R., Bellaloui, N., Chen, P., ... & Boykin, D. (2018). Effect of charcoal rot on selected putative drought tolerant soybean genotypes and yield. Crop Protection, 105, 90-101. https://doi.org/10.1016/j.cropro.2017.11.012
  • Metsalu, T., & Vilo, J. (2015). ClustVis: A web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Research, 43, 566-570. https://doi.org/10.1093/nar/gkv468
  • Mihail, J. D. (1992). Macrophomina. Methods for Research on Soilborne Phytopathogenic Fungi, 134-136.
  • Mohr, P. G., & Cahill, D. M. (2003). Abscisic acid influences the susceptibility of Arabidopsis thaliana to Pseudomonas syringae pv. tomato and Peronospora parasitica. Functional Plant Biology, 30(4), 461-469. https://doi.org/10.1071/fp02231
  • Ndiaye, M., Termorshuizen, A.J., Van Bruggen, A. H. C. (2007). Combine deffects of solarization and organic amendment on charcol rot caused by Macrophomina phaseolina in the Sahel. Phytoparasitica, 35(4), 392-400. http://dx.doi.org/10.1007/BF02980703
  • Oyewole, B.O., Olawuyi, O.J., Odebode, A.C., & Abiala, M.A. (2017). Influence of arbuscular mycorrhizal fungi (AMF) on drought tolerance and charcoal rot disease of cowpea. Biotechnology Reports, 14, 8-15. https://doi.org/10.1016/j.btre.2017.02.004
  • Partridge, D. (2003). Macrophomina phaseolina. Erişim Tarihi: 16.09.2017. http://www.cals.ncsu.edu/course/pp728/Macrophomina/macrophominia_ phaseolina.
  • Pastor-Corrales, M.A., & Abawi, G.S. (1988). Reactions of selected bean accessions to infection by Macrophomina phaseolina. Plant Disease, 72, 39-41.
  • Phillips, J.M., & Hayman, D.S. (1970). Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55,158- 161. https://doi.org/10.1016/S0007-1536(70)80110-3
  • Qi, P. F., Balcerzak, M., Rocheleau, H., Leung, W., Wei, Y. M., Zheng, Y. L., & Ouellet, T. (2016). Jasmonic acid and abscisic acid play important roles in host–pathogen interaction between Fusarium graminearum and wheat during the early stages of fusarium head blight. Physiological and Molecular Plant Pathology, 93, 39-48. http://dx.doi.org/10.1016/j.pmpp.2015.12.004
  • Singh, R. J., Chung, G. H., & Nelson, R. L. (2007). Landmark research in Legumes. Genome, 50, 525-537. https://doi.org/10.1139/g07-037
  • Soliman, K.M., & Badeaa, R.I., (2002). Effect of oil extract from some medicinal plants on different mycotoxigenic fungi. Food and Chemical Toxicology, 40(11), 1669-1675. https://doi.org/10.1016/s0278-6915(02)00120-5
  • Spagnoletti, F., Carmona, M. E. Tobar Gómez, N. E. T., Chiocchio, V. S., & Lavado. R. S. (2017). Arbuscular mycorrhiza reduces the negative effects of M. phaseolina on soybean plants in arsenic-contaminated soils. Applied Soil Ecology, 121, 41-47. http://dx.doi.org/10.1016/j.apsoil.2017.09.019
  • Spagnoletti, F. N., Cornero, M., Chiocchio, V., Lavado, R. S., & Roberts, I. N. (2020). Arbuscular mycorrhiza protects soybean plants against Macrophomina phaseolina even under nitrogen fertilization. European Journal of Plant Pathology, 156, 839-849. https://doi.org/10.1007/s10658-020-01934-w
  • Stec, N., Banasiak, J., & Jasinski, M. (2016). Abscisic acid an overlooked player in plant-microbe symbioses formation?. Acta Biochemica Polonica, 63, 53-58. https://doi.org/10.18388/abp.2015_1210
  • Ton, J., Flors, V., & Mauch-Mani, B. (2009). The multifaceted role of ABA in disease resistance. Trends in Plant Science, 14(6), 310-317. https://doi.org/10.1016/j.tplants.2009.03.006
  • Turhan, P., & Demir, S. (2013). Çilekte siyah kök çürüklüğü (Rhizoctonia solani Kühn.) hastalığına karşı bazı biyolojik mücadele elemanlarının etkileri. Türkiye Biyolojik Mücadele Dergisi, 4(2), 125-140.
  • Ullah, F., Ullah, H,. Ishfaq, M., Khan, R., Gul, S.L., Gulfraz, A., … & Zhifang, L. (2023). Genotypic variation of tomato to AMF inoculation in improving growth, nutrient uptake, yield, and photosynthetic activity. Symbiosis, 9(12), 1-14. http://dx.doi.org/10.1007/s13199-023-00961-5
  • Wiese, J., Kranz, T., & Schubert, S. (2004). Induction of pathogen resistance in barley by abiotic stress. Plant Biology (Stuttg), 6, 529–536. https://doi.org/10.1055/s-2004-821176
  • Wu, M., Yan, Y., Wang, Y., Mao, Q., Fu, Y., Peng, X., … & Ahammed, G.J. (2021). Arbuscular mycorrhizal fungi for vegetable (VT) enhance resistance to Rhizoctonia solani in watermelon by alleviating oxidative stress. Biological Control, 152. http://dx.doi.org/10.1016/j.biocontrol.2020.104433
  • Yang, L., Yu, C. L., Shi, F., Wei, Y. Q., Wang, C. C., Hu, H. T., & Cheng, C. G. (2007). Effects of abscisic acid on growth and dehydration tolerance of Cynanchum komarovii seedlings. Plant Growth Regulation, 51, 177–184. https://doi.org/10.1007/s10725-006-9160-0
  • Zambolim L., & Schenck, N. C. (1983). Reduction of the effects of pathogenic, root-infecting fungi on soybean by the mycorrhizal fungus, Glomus mossea. Phytopathology, 73, 1402- 1405. http://dx.doi.org/10.1094/Phyto-73-1402
  • Zhang, X. H., Liu, Y. H., Liu, B. W., Liu, Q., Wen, S. Y., Ao, B., … & Xu, Y. F. (2019). Arbuscular mycorrhiza fungus improved growth, antioxidant defense and endogenous hormones in tall fescue under low-light stress. South African Journal of Botany, 127, 43-50. https://doi.org/10.1016/j.sajb.2019.08.032
  • Zhang, X., Tahir, M. M., Li, S., Tang, T., Mao, J., Li, K., … & Zhang, D. (2021). Effect of exogenous abscisic acid (ABA) on the morphology, phytohormones, and related gene expression of developing lateral roots in ‘Qingzhen 1’ apple plants. Plant Cell, Tissueand Organ Culture (PCTOC), 148, 23–34. https://doi.org/10.1007/s11240-021-02157-5
There are 67 citations in total.

Details

Primary Language Turkish
Subjects Phytopathology
Journal Section Agriculture / Zirai Bilimler
Authors

Ali Vural 0009-0006-9053-9529

Semra Demir 0000-0002-0177-7677

Çeknas Erdinç 0000-0003-1208-032X

Project Number FDK-2018-6589
Publication Date August 31, 2024
Submission Date March 19, 2024
Acceptance Date May 16, 2024
Published in Issue Year 2024

Cite

APA Vural, A., Demir, S., & Erdinç, Ç. (2024). Absisik Asit ve Arbusküler Mikorizal Fungus Uygulamalarının Fasulyede Kömür Çürüklüğü Hastalığı [(Macrophomina phaseolina) (Tassi) Goid.] ve Bitki Gelişimine Etkisi. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 29(2), 745-760. https://doi.org/10.53433/yyufbed.1452862