Research Article
BibTex RIS Cite

New Potential Sugar-Ferrocenyl Imine Catalysts Synthesis and Their Characterizations via Spectroscopic Methods

Year 2024, , 483 - 493, 31.08.2024
https://doi.org/10.53433/yyufbed.1471479

Abstract

Sugars are natural stereoisomers and can be defined as polyhydroxycarbonyl compounds. The derivatization of them gives us new purifiable sugar diastereomers. Enantioselective reactions are aimed to occur on a single surface of the molecule, that is, "re-face" or "si-face". The size (steric effect) and enantiopurity of sugar can enable us to achieve this goal. For this purpose, the sugar-derived chiral Schiff bases were synthesized and characterized by spectroscopic methods (1H NMR, 13C NMR, and IR). In the synthetic part, amino sugars were obtained in three steps. These are, tosylating the free hydroxyl, converting it into azide derivatives, and reduction to amino sugars, respectively. In the last step of the synthetic section, ferrocene-2-carboxaldehyde and amino sugars were converted into novel ferrocene-sugar-imine derivatives by condensation reaction.

References

  • Aitken, R. A., & Kilenyi, S. N. (2012). Asymmetric synthesis. Springer Netherlands.
  • Chung, Y.-M., & Rhee, H.-K. (2003). Silica-supported dendritic chiral auxiliaries for enantioselective addition of diethylzinc to benzaldehyde. Comptes Rendus Chimie, 6(7), 695-705. https://doi.org/10.1016/S1631-0748(03)00125-5
  • Cozzi, P. G. (2004). Metal–Salen Schiff base complexes in catalysis: practical aspects. Chemical Socity Reviews, 33, 410-421. https://doi.org/10.1039/B307853C
  • Jary, J., Kefurtova, Z., & Kovar, J. (1969). Amino sugars. XX. Synthesis of 3-amino- and 6-amino-deoxyhexoses of the gluco and allo configuration. Collection of Czechoslovak Chemical Communications, 34, 1452-1458. https://doi.org/10.1135/cccc19691452
  • Keith, J. M., Larrow, J. F., & Jacobsen, E. N. (2001). Practical considerations in kinetic resolution reactions. Advanced Synthesis & Catalysis, 343, 5-26. https://doi.org/10.1002/1615-4169(20010129)343:1%3C5::AID-ADSC5%3E3.0.CO;2-I
  • Kim, J. H., & Scalli, A. R. (2011). Thalidomide: The tragedy of birth defects and the effective treatment of disease. Toxicological Sciences, 122(1), 1-6. https://doi.org/10.1093/toxsci/kfr088
  • Kuroki, Y., & Iseki, K. (1999). A chiral triaminosulfonium salt: design and application to catalytic asymmetric synthesis. Tetrahedron Letters, 40(47), 8231-8234. https://doi.org/10.1016/S0040-4039(99)01724-4
  • McDevitt, J. P., & Lansbury, P. T. (1996). Glycosamino acids: New building blocks for combinatorial synthesis. Journal of American Chemical Society, 118(16), 3818-3828. https://doi.org/10.1021/ja9525622
  • Morrison, J. D. (1985). Asymmetric synthesis. Academic Press: New York.
  • Nayak, U. G., & Whistler, R. L. (1969). Nucleophilic displacement in 1,2:5,6-di-O-isopropylidene-3-O-(p-tolysulfonyl)-D-glucofuranose. Journal of Organic Chemistry, 34(12), 3819-3822. https://doi.org/10.1021/jo01264a017
  • Noyori, R. (1994). Asymmetric catalysis in organic synthesis. John Wiley: New York.
  • Ojima, I. (2000). Catalytic asymmetric synthesis. Wiley-VCH: New York.
  • Onar, K. (2014). Yeni kiral imin katalizörlerleri ile benzaldehite asimetrik dietilçinko katılması. (Yüksek Lisans Tezi), Kırıkkale Üniversitesi, Fen Bilimleri Enstitüsü, Kırıkkale, Türkiye.
  • Richardson, A. C. (1972). Amino sugars via reduction of azides: Derivatives of 3-Amino-3-deoxy-d-glueose and 2-Amino-2-deoxy-d-altrose. General Carbohydrate Method, 36, 218-223. doi.org/10.1016/B978-0-12-746206-6.50043-6
  • Sharma, G. V. M., & Gopinath, T. (2003). Radical cyclisation approach for the synthesis of (+)dihydrocanadensolide, (+)dihydrosporothriolide and their C-3 epimers from d-xylose. Tetrahedron, 59(34), 6521-6530. https://doi.org/10.1016/S0040-4020(03)01068-8
  • Wang, R., Chen, H., Yan, W., Zheng, M., Zhang, T., & Zhang, Y. (2020). Ferrocene-containing hybrids as potential anticancer agents: Current developments, mechanisms of action and structure-activity relationships. European Journal of Medicinal Chemistry, 190, 112109. https://doi.org/10.1016/j.ejmech.2020.112109
  • Wojaczynska, E., Steppeler, F., Iwan, D., Scherrmann, M.-C., & Marra, A. (2021). Synthesis and applications of carbohydrate-based organocatalysts. Molecules, 26(23), 7291. https://doi.org/10.3390/molecules26237291
  • Xiang, S.-H., & Tan, B. (2020). Advances in asymmetric organocatalysis over the last 10 years. Nature Communications, 11, 3786. https://doi.org/10.1038/s41467-020-17580-z

Yeni Potansiyel Şeker-Ferrosenil İmin Katalizörler Sentezi ve Spektroskopik Yöntemlerle Karakterizasyonu

Year 2024, , 483 - 493, 31.08.2024
https://doi.org/10.53433/yyufbed.1471479

Abstract

Şekerler doğal stereoizomerlerdir ve polihidroksikarbonil bileşikleri olarak tanımlanabilirler. Yeni türevlerine geçiş, bize yeni saflaştırılabilen şeker türevi diastereomerler vermektedir. Enantiyoselektif tepkimelerin molekülün tek yüzeyinden, yani “re-face” ya da “si-face” yönünden olması hedeflenir. Şekerin büyüklüğü (sterik engeli) ve kiral yapısı, asimetrik tepkimelerde enantiyoseçiciliği sağlayabilir. Bu amaç doğrultusunda şeker türevi kiral Schiff bazları sentezlenmiştir ve spektroskopik yöntemler (1H NMR, 13C NMR ve IR) ile karakterize edilmiştir. Sentetik bölümde ilk olarak amino şekerler üç basamakta elde edilmiştir. Bunlar sırası ile serbest hidroksili tosilleme, azür türevine çevirme ve amino şeker sentezleridir. Sentetik bölümün son basamağında ferrosen-2-karboksaldehit ile sentezlenen amino şekerler kondenzasyon tepkimesi ile literatürde bilinmeyen ferrosen-şeker türevi kiral imin türevlerine çevrilmiştir.

Thanks

Bu çalışma TÜBİTAK 114Z688 no’lu proje ile desteklenmiştir. TÜBİTAK’a verdiği destekten dolayı teşekkür ederiz.

References

  • Aitken, R. A., & Kilenyi, S. N. (2012). Asymmetric synthesis. Springer Netherlands.
  • Chung, Y.-M., & Rhee, H.-K. (2003). Silica-supported dendritic chiral auxiliaries for enantioselective addition of diethylzinc to benzaldehyde. Comptes Rendus Chimie, 6(7), 695-705. https://doi.org/10.1016/S1631-0748(03)00125-5
  • Cozzi, P. G. (2004). Metal–Salen Schiff base complexes in catalysis: practical aspects. Chemical Socity Reviews, 33, 410-421. https://doi.org/10.1039/B307853C
  • Jary, J., Kefurtova, Z., & Kovar, J. (1969). Amino sugars. XX. Synthesis of 3-amino- and 6-amino-deoxyhexoses of the gluco and allo configuration. Collection of Czechoslovak Chemical Communications, 34, 1452-1458. https://doi.org/10.1135/cccc19691452
  • Keith, J. M., Larrow, J. F., & Jacobsen, E. N. (2001). Practical considerations in kinetic resolution reactions. Advanced Synthesis & Catalysis, 343, 5-26. https://doi.org/10.1002/1615-4169(20010129)343:1%3C5::AID-ADSC5%3E3.0.CO;2-I
  • Kim, J. H., & Scalli, A. R. (2011). Thalidomide: The tragedy of birth defects and the effective treatment of disease. Toxicological Sciences, 122(1), 1-6. https://doi.org/10.1093/toxsci/kfr088
  • Kuroki, Y., & Iseki, K. (1999). A chiral triaminosulfonium salt: design and application to catalytic asymmetric synthesis. Tetrahedron Letters, 40(47), 8231-8234. https://doi.org/10.1016/S0040-4039(99)01724-4
  • McDevitt, J. P., & Lansbury, P. T. (1996). Glycosamino acids: New building blocks for combinatorial synthesis. Journal of American Chemical Society, 118(16), 3818-3828. https://doi.org/10.1021/ja9525622
  • Morrison, J. D. (1985). Asymmetric synthesis. Academic Press: New York.
  • Nayak, U. G., & Whistler, R. L. (1969). Nucleophilic displacement in 1,2:5,6-di-O-isopropylidene-3-O-(p-tolysulfonyl)-D-glucofuranose. Journal of Organic Chemistry, 34(12), 3819-3822. https://doi.org/10.1021/jo01264a017
  • Noyori, R. (1994). Asymmetric catalysis in organic synthesis. John Wiley: New York.
  • Ojima, I. (2000). Catalytic asymmetric synthesis. Wiley-VCH: New York.
  • Onar, K. (2014). Yeni kiral imin katalizörlerleri ile benzaldehite asimetrik dietilçinko katılması. (Yüksek Lisans Tezi), Kırıkkale Üniversitesi, Fen Bilimleri Enstitüsü, Kırıkkale, Türkiye.
  • Richardson, A. C. (1972). Amino sugars via reduction of azides: Derivatives of 3-Amino-3-deoxy-d-glueose and 2-Amino-2-deoxy-d-altrose. General Carbohydrate Method, 36, 218-223. doi.org/10.1016/B978-0-12-746206-6.50043-6
  • Sharma, G. V. M., & Gopinath, T. (2003). Radical cyclisation approach for the synthesis of (+)dihydrocanadensolide, (+)dihydrosporothriolide and their C-3 epimers from d-xylose. Tetrahedron, 59(34), 6521-6530. https://doi.org/10.1016/S0040-4020(03)01068-8
  • Wang, R., Chen, H., Yan, W., Zheng, M., Zhang, T., & Zhang, Y. (2020). Ferrocene-containing hybrids as potential anticancer agents: Current developments, mechanisms of action and structure-activity relationships. European Journal of Medicinal Chemistry, 190, 112109. https://doi.org/10.1016/j.ejmech.2020.112109
  • Wojaczynska, E., Steppeler, F., Iwan, D., Scherrmann, M.-C., & Marra, A. (2021). Synthesis and applications of carbohydrate-based organocatalysts. Molecules, 26(23), 7291. https://doi.org/10.3390/molecules26237291
  • Xiang, S.-H., & Tan, B. (2020). Advances in asymmetric organocatalysis over the last 10 years. Nature Communications, 11, 3786. https://doi.org/10.1038/s41467-020-17580-z
There are 18 citations in total.

Details

Primary Language Turkish
Subjects Organic Chemical Synthesis
Journal Section Natural Sciences and Mathematics / Fen Bilimleri ve Matematik
Authors

Cansu Özkara 0009-0000-3410-5714

Özer Işılar 0000-0001-7547-2537

Adnan Bulut 0000-0001-9322-0325

Publication Date August 31, 2024
Submission Date April 20, 2024
Acceptance Date August 8, 2024
Published in Issue Year 2024

Cite

APA Özkara, C., Işılar, Ö., & Bulut, A. (2024). Yeni Potansiyel Şeker-Ferrosenil İmin Katalizörler Sentezi ve Spektroskopik Yöntemlerle Karakterizasyonu. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 29(2), 483-493. https://doi.org/10.53433/yyufbed.1471479