Research Article
BibTex RIS Cite

Gamma Radiation Shielding Efficiency of High Entropy Alloys: A Comparative Study

Year 2024, , 458 - 467, 31.08.2024
https://doi.org/10.53433/yyufbed.1497606

Abstract

High entropy alloys (HEAs) represent a novel class of materials characterized by their unique composition of four or more principal elements in near-equiatomic ratios, offering exceptional properties for various applications. This study investigates the gamma radiation shielding parameters of selected HEAs, namely FeCoNiCrMn, TaNbHfZrTi, NbMoTaW, AlMoNbV, and NbTaTiV. Mass attenuation coefficients (MAC) were calculated by using EpiXS program over a photon energy range of 0.015-15 MeV and these results were verified using with the WinXCOM software. The results show that the MAC values are highest at low photon energies due to the photoelectric effect, with notable peaks corresponding to the K-shell absorption edges of specific elements. At photon energy of 0.015 MeV, the MAC values for the FeCoNiCrMn, TaNbHfZrTi, NbMoTaW, AlMoNbV, and NbTaTiV alloys are 57.6, 90.4, 98.9, 27.8, and 81.5 cm²/g, respectively. Among these alloys, NbMoTaW exhibits the highest MAC value, whereas AlMoNbV displays the lowest. The half-value layer (HVL) and mean free path (MFP) values were also found thinner for NbMoTaW at all of the photon energies. Additionally, the effective atomic number (Zeff) and exposure buildup factors (EBF) were analyzed. The results demonstrate that NbMoTaW and TaNbHfZrTi, offer superior radiation shielding capabilities compared to conventional shielding materials, with higher usability in environments subjected to gamma radiation. These findings underscore the promise of HEAs in advanced shielding applications, showcasing their ability to enhance safety and performance in sectors with high demands.

References

  • Abouhaswa, A. S., & Kavaz, E. (2020). Bi2O3 effect on physical, optical, structural and radiation safety characteristics of B2O3-Na2O-ZnO-CaO glass system. Journal of Non-Crystalline Solids, 535, 119993. https://doi.org/10.1016/j.jnoncrysol.2020.119993
  • Buluc, G., Chelariu, R., Popescu, G., Sârghi, M., & Carcea, I. (2017). Study on wear resistance FeNiCrMnAl high entropy alloy - Mechanical properties. Key Engineering Materials, 750, 34-38. https://doi.org/10.4028/www.scientific.net/KEM.750.34
  • Ekinci, N., Kavaz, E., Aygün, B., & Perişanoğlu, U. (2019). Gamma ray shielding capabilities of rhenium-based superalloys. Radiation Effects and Defects in Solids, 174(5-6), 435-451. https://doi.org/10.1080/10420150.2019.1596110
  • Ferreirós, P. A., von Tiedemann, S. O., Parkes, N., Gurah, D., King, D. J. M., Norman, P., … & Knowles, A. J. (2023). VNbCrMo refractory high-entropy alloy for nuclear applications. International Journal of Refractory Metals and Hard Materials, 113, 106200. https://doi.org/10.1016/j.ijrmhm.2023.106200
  • Filho, F. da C. G., da Luz, F. S., da Silva Figueiredo, A. B.-H., Monteiro, S. N., & dos Santos, D. S. (2020). Promising ballistic behavior of CoCrFeMnNi high entropy alloy. Materials Science Forum, 1012, 377-382. https://doi.org/10.4028/www.scientific.net/MSF.1012.377
  • Gerward, L., Guilbert, N., Jensen, K. B., & Levring, H. (2004). WinXCom—a program for calculating X-ray attenuation coefficients. Radiation Physics and Chemistry, 71(3-4), 653-654. https://doi.org/10.1016/j.radphyschem.2004.04.040
  • Harima, Y. (1993). An historical review and current status of buildup factor calculations and applications. Radiation Physics and Chemistry, 41(4-5), 631-672. https://doi.org/10.1016/0969-806X(93)90317-N
  • Hila, F. C., Asuncion-Astronomo, A., Dingle, C. A. M., Jecong, J. F. M., Javier-Hila, A. M. V., Gili, M. B. Z., … & Amorsolo, A. V. (2021). EpiXS: A windows-based program for photon attenuation, dosimetry and shielding based on EPICS2017 (ENDF/B-VIII) and EPDL97 (ENDF/B-VI.8). Radiation Physics and Chemistry, 182, 109331. https://doi.org/10.1016/j.radphyschem.2020.109331
  • Issa, S. A. M., Ahmad, M., Tekin, H. O., Saddeek, Y. B., & Sayyed, M. I. (2019). Effect of Bi₂O₃ content on mechanical and nuclear radiation shielding properties of Bi₂O₃-MoO₃-B₂O₃-SiO₂-Na₂O-Fe₂O₃ glass system. Results in Physics, 13, 102165. https://doi.org/10.1016/j.rinp.2019.102165
  • Issa, S. A. M., Rashad, M., Zakaly, H. M. H., Tekin, H. O., & Abouhaswa, A. S. (2020). Nb2O5-Li2O-Bi2O3-B2O3 novel glassy system: evaluation of optical, mechanical, and gamma shielding parameters. Journal of Materials Science: Materials in Electronics, 31(24), 22039-22056. https://doi.org/10.1007/s10854-020-04707-7
  • Jia, N., Li, Y., Huang, H., Chen, S., Li, D., Dou, Y., … & Jin, K. (2021). Helium bubble formation in refractory single-phase concentrated solid solution alloys under MeV He ion irradiation. Journal of Nuclear Materials, 550, 152937. https://doi.org/10.1016/j.jnucmat.2021.152937
  • Kavaz, E. (2019). An experimental study on gamma ray shielding features of lithium borate glasses doped with dolomite, hematite and goethite minerals. Radiation Physics and Chemistry, 160, 112-123. https://doi.org/10.1016/j.radphyschem.2019.03.032
  • Kavaz, E., Armoosh, S. R., Perişanoğlu, U., Ahmadi, N., & Oltulu, M. (2020). Gamma ray shielding effectiveness of the Portland cement pastes doped with brass-copper: An experimental study. Radiation Physics and Chemistry, 166, 108526. https://doi.org/10.1016/j.radphyschem.2019.108526
  • Kavaz, E., Gul, A. O., Basgoz, O., Guler, O., ALMisned, G., Bahceci, E., … & Tekin, H. O. (2022). Boron nitride nanosheet-reinforced WNiCoFeCr high-entropy alloys: the role of B4C on the structural, physical, mechanical, and radiological shielding properties. Applied Physics A, 128(8), 694. https://doi.org/10.1007/s00339-022-05813-5
  • Lu, Y., Huang, H., Gao, X., Ren, C., Gao, J., Zhang, H., … & Li, T. (2019). A promising new class of irradiation tolerant materials: Ti2ZrHfV0.5Mo0.2 high-entropy alloy. Journal of Materials Science & Technology, 35(3), 369-373. https://doi.org/10.1016/j.jmst.2018.09.034
  • Lu, Z. P., Wang, H., Chen, M. W., Baker, I., Yeh, J. W., Liu, C. T., & Nieh, T. G. (2015). An assessment on the future development of high-entropy alloys: Summary from a recent workshop. Intermetallics, 66, 67-76. https://doi.org/10.1016/j.intermet.2015.06.021
  • Müller, F., Gorr, B., Christ, H.-J., Müller, J., Butz, B., Chen, H., … & Heilmaier, M. (2019). On the oxidation mechanism of refractory high entropy alloys. Corrosion Science, 159, 108161. https://doi.org/10.1016/j.corsci.2019.108161
  • Perişanoğlu, U., Kavaz, E., Tekin, H. O., Armoosh, S. R., Ekinci, N., & Oltulu, M. (2020). Comparison of gamma and neutron shielding competences of Fe–Cu- and brass-added Portland cement pastes: an experimental and Monte Carlo study. Applied Physics A: Materials Science and Processing, 126, 470. https://doi.org/10.1007/s00339-020-03648-6
  • Rammah, Y. S., Mahmoud, K. A., Kavaz, E., Kumar, A., & El-Agawany, F. I. (2020). The role of PbO/Bi2O3 insertion on the shielding characteristics of novel borate glasses. Ceramics International, 46(15), 23357-23368. https://doi.org/10.1016/j.ceramint.2020.04.018
  • Ren, H., Chen, R. R., Gao, X. F., Liu, T., Qin, G., Wu, S. P., & Guo, J. J. (2022). Insights on mechanical properties of dual-phase high entropy alloys via Y introduction. Journal of Alloys and Compounds, 929, 167374. https://doi.org/10.1016/j.jallcom.2022.167374
  • Shang, Y., Brechtl, J., Pistidda, C., & Liaw, P. K. (2021). Mechanical behavior of high-entropy alloys: A review. In J. Brechtl, & P. K. Liaw (Eds.), High-Entropy Materials: Theory, Experiments, and Applications (pp. 435-522). Springer.
  • Socorro-Perdomo, P., Florido-Suarez, N., Voiculescu, I., & Mirza-Rosca, J. (2021). Biocompatibility of new high-entropy alloys with non-cytotoxic elements. Microscopy and Microanalysis, 27(S1), 1772-1774. https://doi.org/10.1017/S1431927621006486
  • Tunes, M. A., Vo, H. T., Baldwin, J. K. S., Saleh, T. A., Fensin, S. J., & El-Atwani, O. (2023). Perspectives on novel refractory amorphous high-entropy alloys in extreme environments. Applied Materials Today, 32, 101796. https://doi.org/10.1016/j.apmt.2023.101796
  • Yaykaşlı, H., Eskalen, H., Kavun, Y., Göğebakan, M., & Kaya, A. H. (2023a). Microstructure and thermal and radiation shielding properties of CoCrFeNiAg high entropy alloy. Journal of Materials Engineering and Performance, . https://doi.org/10.1007/s11665-023-08598-7
  • Yaykaşlı, H., Eskalen, H., Kavun, Y., Göğebakan, M., Kaya, A. H., & Yorulmaz, N. (2023b). CoCrFeNiSi high entropy alloy: Synthesis, structural and radiation shielding properties. Progress in Nuclear Energy, 165, 104930. https://doi.org/10.1016/j.pnucene.2023.104930
  • Yıldız Yorgun, N. (2019). Gamma-ray shielding parameters of Li2B4O7 glasses: Undoped and doped with magnetite, siderite and Zinc-Borate minerals cases. Radiochimica Acta, 107(8), 755-765. https://doi.org/10.1515/ract-2019-0014
  • Zhang, Z., Han, E.-H., & Xiang, C. (2021). Irradiation behaviors of two novel single-phase bcc-structure high-entropy alloys for accident-tolerant fuel cladding. Journal of Materials Science & Technology, 84, 230-238. https://doi.org/10.1016/j.jmst.2020.12.058

Yüksek Entropili Alaşımların Gama Radyasyonundan Koruma Etkinliği: Karşılaştırmalı Bir Çalışma

Year 2024, , 458 - 467, 31.08.2024
https://doi.org/10.53433/yyufbed.1497606

Abstract

Yüksek entropili alaşımlar (HEA'lar), yaklaşık eşit oranlarda dört veya daha fazla temel elementin benzersiz bileşimiyle karakterize edilen ve çeşitli uygulamalar için olağanüstü özellikler sunan yeni bir malzeme sınıfını temsil eder. Bu çalışma, FeCoNiCrMn, TaNbHfZrTi, NbMoTaW, AlMoNbV ve NbTaTiV gibi seçili HEA'ların gama zırhlama parametrelerini araştırmaktadır. EpiXS programı kullanılarak 0.015-15 MeV enerji aralığında kütle azaltma katsayıları (MAC) hesaplanmış ve bu sonuçlar WinXCOM yazılımı ile doğrulanmıştır. Bulgular, MAC değerlerinin, fotoelektrik etki nedeniyle düşük foton enerjilerinde en yüksek olduğunu ve belirli elementlerin K-soğurma kıyılarına karşılık gelen belirgin pikler gösterdiğini ortaya koymaktadır. 0,015 MeV foton enerjisinde, FeCoNiCrMn, TaNbHfZrTi, NbMoTaW, AlMoNbV ve NbTaTiV alaşımları için MAC değerleri sırasıyla 57.6, 90.4, 98.9, 27.8 ve 81.5 cm²/g'dır. Bu alaşımlar arasında NbMoTaW en yüksek MAC değerini sergilerken, AlMoNbV en düşük değeri göstermektedir. Yarı kalınlık (HVL) ve ortalama serbest yol (MFP) değerleri de tüm foton enerjilerinde NbMoTaW için daha ince bulunmuştur. Ayrıca, etkin atom numarası (Zeff) ve maruz kalma birikim faktörleri (EBF) de analiz edilmiştir. Sonuçlar, NbMoTaW ve TaNbHfZrTi'nin, geleneksel koruma malzemelerine kıyasla üstün radyasyon koruma yetenekleri sunduğunu ve gama radyasyonuna maruz kalan ortamlarda daha yüksek kullanılabilirlik sağladığını göstermektedir. Bu bulgular, HEA'ların gelişmiş zırhlama uygulamalarında vaat ettiklerinin altını çizerek, yüksek taleplerin olduğu sektörlerde güvenlik ve performansı artırma yeteneklerini ortaya koymaktadır.

References

  • Abouhaswa, A. S., & Kavaz, E. (2020). Bi2O3 effect on physical, optical, structural and radiation safety characteristics of B2O3-Na2O-ZnO-CaO glass system. Journal of Non-Crystalline Solids, 535, 119993. https://doi.org/10.1016/j.jnoncrysol.2020.119993
  • Buluc, G., Chelariu, R., Popescu, G., Sârghi, M., & Carcea, I. (2017). Study on wear resistance FeNiCrMnAl high entropy alloy - Mechanical properties. Key Engineering Materials, 750, 34-38. https://doi.org/10.4028/www.scientific.net/KEM.750.34
  • Ekinci, N., Kavaz, E., Aygün, B., & Perişanoğlu, U. (2019). Gamma ray shielding capabilities of rhenium-based superalloys. Radiation Effects and Defects in Solids, 174(5-6), 435-451. https://doi.org/10.1080/10420150.2019.1596110
  • Ferreirós, P. A., von Tiedemann, S. O., Parkes, N., Gurah, D., King, D. J. M., Norman, P., … & Knowles, A. J. (2023). VNbCrMo refractory high-entropy alloy for nuclear applications. International Journal of Refractory Metals and Hard Materials, 113, 106200. https://doi.org/10.1016/j.ijrmhm.2023.106200
  • Filho, F. da C. G., da Luz, F. S., da Silva Figueiredo, A. B.-H., Monteiro, S. N., & dos Santos, D. S. (2020). Promising ballistic behavior of CoCrFeMnNi high entropy alloy. Materials Science Forum, 1012, 377-382. https://doi.org/10.4028/www.scientific.net/MSF.1012.377
  • Gerward, L., Guilbert, N., Jensen, K. B., & Levring, H. (2004). WinXCom—a program for calculating X-ray attenuation coefficients. Radiation Physics and Chemistry, 71(3-4), 653-654. https://doi.org/10.1016/j.radphyschem.2004.04.040
  • Harima, Y. (1993). An historical review and current status of buildup factor calculations and applications. Radiation Physics and Chemistry, 41(4-5), 631-672. https://doi.org/10.1016/0969-806X(93)90317-N
  • Hila, F. C., Asuncion-Astronomo, A., Dingle, C. A. M., Jecong, J. F. M., Javier-Hila, A. M. V., Gili, M. B. Z., … & Amorsolo, A. V. (2021). EpiXS: A windows-based program for photon attenuation, dosimetry and shielding based on EPICS2017 (ENDF/B-VIII) and EPDL97 (ENDF/B-VI.8). Radiation Physics and Chemistry, 182, 109331. https://doi.org/10.1016/j.radphyschem.2020.109331
  • Issa, S. A. M., Ahmad, M., Tekin, H. O., Saddeek, Y. B., & Sayyed, M. I. (2019). Effect of Bi₂O₃ content on mechanical and nuclear radiation shielding properties of Bi₂O₃-MoO₃-B₂O₃-SiO₂-Na₂O-Fe₂O₃ glass system. Results in Physics, 13, 102165. https://doi.org/10.1016/j.rinp.2019.102165
  • Issa, S. A. M., Rashad, M., Zakaly, H. M. H., Tekin, H. O., & Abouhaswa, A. S. (2020). Nb2O5-Li2O-Bi2O3-B2O3 novel glassy system: evaluation of optical, mechanical, and gamma shielding parameters. Journal of Materials Science: Materials in Electronics, 31(24), 22039-22056. https://doi.org/10.1007/s10854-020-04707-7
  • Jia, N., Li, Y., Huang, H., Chen, S., Li, D., Dou, Y., … & Jin, K. (2021). Helium bubble formation in refractory single-phase concentrated solid solution alloys under MeV He ion irradiation. Journal of Nuclear Materials, 550, 152937. https://doi.org/10.1016/j.jnucmat.2021.152937
  • Kavaz, E. (2019). An experimental study on gamma ray shielding features of lithium borate glasses doped with dolomite, hematite and goethite minerals. Radiation Physics and Chemistry, 160, 112-123. https://doi.org/10.1016/j.radphyschem.2019.03.032
  • Kavaz, E., Armoosh, S. R., Perişanoğlu, U., Ahmadi, N., & Oltulu, M. (2020). Gamma ray shielding effectiveness of the Portland cement pastes doped with brass-copper: An experimental study. Radiation Physics and Chemistry, 166, 108526. https://doi.org/10.1016/j.radphyschem.2019.108526
  • Kavaz, E., Gul, A. O., Basgoz, O., Guler, O., ALMisned, G., Bahceci, E., … & Tekin, H. O. (2022). Boron nitride nanosheet-reinforced WNiCoFeCr high-entropy alloys: the role of B4C on the structural, physical, mechanical, and radiological shielding properties. Applied Physics A, 128(8), 694. https://doi.org/10.1007/s00339-022-05813-5
  • Lu, Y., Huang, H., Gao, X., Ren, C., Gao, J., Zhang, H., … & Li, T. (2019). A promising new class of irradiation tolerant materials: Ti2ZrHfV0.5Mo0.2 high-entropy alloy. Journal of Materials Science & Technology, 35(3), 369-373. https://doi.org/10.1016/j.jmst.2018.09.034
  • Lu, Z. P., Wang, H., Chen, M. W., Baker, I., Yeh, J. W., Liu, C. T., & Nieh, T. G. (2015). An assessment on the future development of high-entropy alloys: Summary from a recent workshop. Intermetallics, 66, 67-76. https://doi.org/10.1016/j.intermet.2015.06.021
  • Müller, F., Gorr, B., Christ, H.-J., Müller, J., Butz, B., Chen, H., … & Heilmaier, M. (2019). On the oxidation mechanism of refractory high entropy alloys. Corrosion Science, 159, 108161. https://doi.org/10.1016/j.corsci.2019.108161
  • Perişanoğlu, U., Kavaz, E., Tekin, H. O., Armoosh, S. R., Ekinci, N., & Oltulu, M. (2020). Comparison of gamma and neutron shielding competences of Fe–Cu- and brass-added Portland cement pastes: an experimental and Monte Carlo study. Applied Physics A: Materials Science and Processing, 126, 470. https://doi.org/10.1007/s00339-020-03648-6
  • Rammah, Y. S., Mahmoud, K. A., Kavaz, E., Kumar, A., & El-Agawany, F. I. (2020). The role of PbO/Bi2O3 insertion on the shielding characteristics of novel borate glasses. Ceramics International, 46(15), 23357-23368. https://doi.org/10.1016/j.ceramint.2020.04.018
  • Ren, H., Chen, R. R., Gao, X. F., Liu, T., Qin, G., Wu, S. P., & Guo, J. J. (2022). Insights on mechanical properties of dual-phase high entropy alloys via Y introduction. Journal of Alloys and Compounds, 929, 167374. https://doi.org/10.1016/j.jallcom.2022.167374
  • Shang, Y., Brechtl, J., Pistidda, C., & Liaw, P. K. (2021). Mechanical behavior of high-entropy alloys: A review. In J. Brechtl, & P. K. Liaw (Eds.), High-Entropy Materials: Theory, Experiments, and Applications (pp. 435-522). Springer.
  • Socorro-Perdomo, P., Florido-Suarez, N., Voiculescu, I., & Mirza-Rosca, J. (2021). Biocompatibility of new high-entropy alloys with non-cytotoxic elements. Microscopy and Microanalysis, 27(S1), 1772-1774. https://doi.org/10.1017/S1431927621006486
  • Tunes, M. A., Vo, H. T., Baldwin, J. K. S., Saleh, T. A., Fensin, S. J., & El-Atwani, O. (2023). Perspectives on novel refractory amorphous high-entropy alloys in extreme environments. Applied Materials Today, 32, 101796. https://doi.org/10.1016/j.apmt.2023.101796
  • Yaykaşlı, H., Eskalen, H., Kavun, Y., Göğebakan, M., & Kaya, A. H. (2023a). Microstructure and thermal and radiation shielding properties of CoCrFeNiAg high entropy alloy. Journal of Materials Engineering and Performance, . https://doi.org/10.1007/s11665-023-08598-7
  • Yaykaşlı, H., Eskalen, H., Kavun, Y., Göğebakan, M., Kaya, A. H., & Yorulmaz, N. (2023b). CoCrFeNiSi high entropy alloy: Synthesis, structural and radiation shielding properties. Progress in Nuclear Energy, 165, 104930. https://doi.org/10.1016/j.pnucene.2023.104930
  • Yıldız Yorgun, N. (2019). Gamma-ray shielding parameters of Li2B4O7 glasses: Undoped and doped with magnetite, siderite and Zinc-Borate minerals cases. Radiochimica Acta, 107(8), 755-765. https://doi.org/10.1515/ract-2019-0014
  • Zhang, Z., Han, E.-H., & Xiang, C. (2021). Irradiation behaviors of two novel single-phase bcc-structure high-entropy alloys for accident-tolerant fuel cladding. Journal of Materials Science & Technology, 84, 230-238. https://doi.org/10.1016/j.jmst.2020.12.058
There are 27 citations in total.

Details

Primary Language English
Subjects Atomic and Molecular Physics, Nuclear Physics
Journal Section Natural Sciences and Mathematics / Fen Bilimleri ve Matematik
Authors

Ufuk Perişanoğlu 0000-0003-4110-2241

Publication Date August 31, 2024
Submission Date June 7, 2024
Acceptance Date July 10, 2024
Published in Issue Year 2024

Cite

APA Perişanoğlu, U. (2024). Gamma Radiation Shielding Efficiency of High Entropy Alloys: A Comparative Study. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 29(2), 458-467. https://doi.org/10.53433/yyufbed.1497606