Psikobiyotikler yeterli miktarda beslenmeye dahil edildiklerinde bireylere ruhsal sağlık açısından çeşitli faydalar sağlayan bir grup probiyotiktir. Bu probiyotikler; nöral, bağışıklık ve metabolik yolları içeren bağırsak-beyin ekseni aracılığıyla insan davranışını ve merkezi sinir sistemini etkilemektedir. İncelen literatür gastrointestinal sistemin işleyişini iyileştiren psikobiyotik takviyelerin insanlarda stresin etkilerini azaltmak ve çok çeşitli yan etkileri olan kimyasal ilaçların kullanımından kaçınmak için umut verici uygulamalar olduğunu göstermektedir. Bilindiği gibi, bakteriyel canlılık gıda matrisinin türü ve mikroorganizma suşu ile yakından ilişkilidir. Bu bağlamda yapılan çalışmalarda süt ürünlerinin psikobiyotik olanlar da dahil olmak üzere probiyotik suşlar için en etkili taşıyıcılar olduğu bildirilmiştir. Süt açısından zengin diyetlerin psikobiyotik alımıyla birleştirilmesinde bağırsak mikrobiyotası üzerindeki etkisinin, beyin fonksiyonuyla ilişkisinin ve psikiyatrik semptomlar üzerindeki potansiyel terapötik etkilerinin açıklığa kavuşturulması için daha fazla bilimsel kanıta ihtiyaç duyulmaktadır. Ayrıca ruhsal sağlığı iyileştirmek için psikobiyotiklerin kullanımında sürekliliğin sağlanması ve bireyler tarafından daha kolay ulaşılabilir olması için diyette nasıl dahil edileceğine dair yapılan çalışmaların sayısının arttırılması gerekmektedir. Bu derleme ile psikobiyotiklerin etki mekanizmaları ve süt ürünlerindeki potansiyel uygulamaları değerlendirilerek farklı yaklaşımlara ışık tutmak amaçlanmaktadır.
Agarkova, Y., Fedotova, O., & Chilikin, A. (2021). The prospect of using natural psychobitics in dairy products to stabilize the diet. IOP Conference Series: Earth and Environmental Science, 677 (3), 032051. https://doi.org/10.1088/1755-1315/677/3/032051
Akbari, E., Asemi, Z., Daneshvar Kakhaki, R., Bahmani, F., Kouchaki, E., Tamtaji, O. R., Hamidi, G. A., & Salami, M. (2016). Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer's disease: a randomized, double-blind and controlled trial. Frontiers in Aging Neuroscience, 8, 256. https://doi.org/10.3389/fnagi.2016.00256
Barros, C. P., Guimarães, J. T., Esmerino, E. A., Duarte, M. C. K., Silva, M. C., Silva, R., Ferreira, B. M., Sant’Ana, A. S., Freitas, M. Q., & Cruz, A. G. (2020). Paraprobiotics and postbiotics: concepts and potential applications in dairy products. Current Opinion in Food Science, 32, 1-8. https://doi.org/10.1016/j.cofs.2019.12.003
Benton, D., Williams, C., & Brown, A. (2007). Impact of consuming a milk drink containing a probiotic on mood and cognition. European Journal of Clinical Nutrition, 61(3), 355-361.
Casertano, M., Fogliano, V., & Ercolini, D. (2022). Psychobiotics, gut microbiota and fermented foods can help preserving mental health. Food Research International, 152, 110892. https://doi.org/10.1016/j.foodres.2021.110892
Cichońska, P., Kowalska, E., & Ziarno, M. (2023). The survival of psychobiotics in fermented food and the gastrointestinal tract: A review. Microorganisms, 11(4), 996. https://doi.org/10.3390/microorganisms11040996
Collins, S. M., & Bercik, P. (2009). The relationship between intestinal microbiota and the central nervous system in normal gastrointestinal function and disease. Gastroenterology, 136(6), 2003-2014. https://doi.org/10.1053/j.gastro.2009.01.075
Das, P., Babaei, P., & Nielsen, J. (2019). Metagenomic analysis of microbe-mediated vitamin metabolism in the human gut microbiome. BMC Genomics, 20(208), 1-11. https://doi.org/10.1186/s12864-019-5591-7
Dinan, T. G., Stanton, C., & Cryan, J. F. (2013). Psychobiotics: a novel class of psychotropic. Biological Psychiatry, 74(10), 720-726. https://doi.org/10.1016/j.biopsych.2013.05.001
Edebol Carlman, H. M., Rode, J., König, J., Repsilber, D., Hutchinson, A. N., Thunberg, P., Persson, J., Kiselev, A., Pruessner, J. C., & Brummer, R. J. (2022). Probiotic mixture containing Lactobacillus helveticus, Bifidobacterium longum and Lactiplantibacillus plantarum affects brain responses to an arithmetic stress task in healthy subjects: a randomised clinical trial and proof-of-concept study. Nutrients, 14(7), 1329. https://doi.org/10.3390/nu14071329
Fernández‐Aranda, F., Casas, M., Claes, L., Bryan, D. C., Favaro, A., Granero, R., Gudiol, C., Jiménez‐Murcia, S., Karwautz, A., & Le Grange, D. (2020). COVID‐19 and implications for eating disorders. European Eating Disorders Review, 28(3), 239. https://doi.org/10.1002/erv.2738
Fichna, J., & Storr, M. A. (2012). Brain-gut interactions in IBS. Frontiers in Pharmacology, 3, 127. https://doi.org/10.3389/fphar.2012.00127
Gao, J., Xu, K., Liu, H., Liu, G., Bai, M., Peng, C., Li, T., & Yin, Y. (2018). Impact of the gut microbiota on intestinal immunity mediated by tryptophan metabolism. Frontiers in Cellular and Infection Microbiology, 8(13), 1-22. https://doi.org/10.3389/fcimb.2018.00013
Gibson, G. R., & Roberfroid, M. (Eds.). (2008). Handbook of Prebiotics. Crc Press.
Granato, D., Branco, G. F., Cruz, A. G., Faria, J. d. A. F., & Shah, N. P. (2010). Probiotic dairy products as functional foods. Comprehensive Reviews in Food Science and Food Safety, 9(5), 455-470. https://doi.org/10.1111/j.1541-4337.2010.00120.x
Grover, S., Rashmi, H. M., Srivastava, A. K., & Batish, V. K. (2012). Probiotics for human health–new innovations and emerging trends. Gut Pathogens, 4, 1-14. https://doi.org/10.1186/1757-4749-4-15
Hamaker, B. R., & Tuncil, Y. E. (2014). A perspective on the complexity of dietary fiber structures and their potential effect on the gut microbiota. Journal of Molecular Biology, 426(23), 3838-3850. https://doi.org/10.1016/j.jmb.2014.07.028
Hattori, M., & Taylor, T. D. (2009). The human intestinal microbiome: a new frontier of human biology. DNA Research, 16(1), 1-12. https://doi.org/10.1093/dnares/dsn033
Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., Morelli, L., Canani, R. B., Flint, H. J., & Salminen, S. (2014). The ınternational scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology & Hepatology, 11(8), 506-514. https://doi.org/10.1038/nrgastro.2014.66
Jostins, L., Ripke, S., Weersma, R. K., Duerr, R. H., McGovern, D. P., Hui, K. Y., Lee, J. C., Schumm, L. P., Sharma, Y., Anderson, C. A., Essers, J., Mitrovic, M., Ning, K., Cleynen, I., Theatre, E., Spain, S. L., Raychaudhuri, S., Goyette, P., Wei, Z., . . . Cho, J. H. (2012). Host–microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature, 491(7422), 119-124. https://doi.org/10.1038/nature11582
Jovanović, M., Vojvodić, P., Tenji, D., Tomić, N., Nešić, J., Mitić-Ćulafić, D., & Miočinović, J. (2023). Cheese fermented with human-derived Limosilactobacillus reuteri DSM 17938 and mushroom powders: A novel psychobiotic food with enhanced bioactivity and sensory acceptability. Fermentation, 9(8), 745. https://doi.org/10.3390/fermentation9080745
Kato-Kataoka, A., Nishida, K., Takada, M., Suda, K., Kawai, M., Shimizu, K., Kushiro, A., Hoshi, R., Watanabe, O., Igarashi, T., Miyazaki, K., Kuwano, Y., & Rokutan, K. (2016). Fermented milk containing Lactobacillus casei strain Shirota prevents the onset of physical symptoms in medical students under academic examination stress. Beneficial Microbes, 7(2), 153-156. https://doi.org/10.3920/BM2015.0100
Kumar, M. R., Azizi, N. F., Yeap, S. K., Abdullah, J. O., Khalid, M., Omar, A. R., Osman, M. A., Leow, A. T. C., Mortadza, S. A. S., & Alitheen, N. B. (2022). Clinical and preclinical studies of fermented foods and their effects on Alzheimer's disease. Antioxidants, 11(5), 883. https://doi.org/10.3390/antiox11050883
Kunze, W. A., Mao, Y. K., Wang, B., Huizinga, J. D., Ma, X., Forsythe, P., & Bienenstock, J. (2009). Lactobacillus reuteri enhances excitability of colonic AH neurons by inhibiting calcium‐dependent potassium channel opening. Journal of Cellular and Molecular Medicine, 13(8b), 2261-2270. https://doi.org/10.1111/j.1582-4934.2009.00686.x
Liu, Y.W., Liong, M. T., Chung, Y.C. E., Huang, H.Y., Peng, W.S., Cheng, Y.F., Lin, Y.S., Wu, Y.Y., & Tsai, Y.C. (2019). Effects of Lactobacillus plantarum PS128 on children with autism spectrum disorder in Taiwan: a randomized, double-blind, placebo-controlled trial. Nutrients, 11(4), 820. https://doi.org/10.3390/nu11040820
Long-Smith, C., O'Riordan, K. J., Clarke, G., Stanton, C., Dinan, T. G., & Cryan, J. F. (2020). Microbiota-gut-brain axis: new therapeutic opportunities. Annual Review of Pharmacology and Toxicology, 60(1), 477-502. https://doi.org/10.1146/annurev-pharmtox-010919-023628
Ma, T., Jin, H., Kwok, L.Y., Sun, Z., Liong, M.T., & Zhang, H. (2021). Probiotic consumption relieved human stress and anxiety symptoms possibly via modulating the neuroactive potential of the gut microbiota. Neurobiology of Stress, 14, 100294. https://doi.org/10.1016/j.ynstr.2021.100294
Mayer, E. A. (2011). Gut feelings: the emerging biology of gut–brain communication. Nature Reviews Neuroscience, 12(8), 453-466. https://doi.org/10.1038/nrn3071
Mayer, E. A., Tillisch, K., & Gupta, A. (2015). Gut/brain axis and the microbiota. The Journal of Clinical Investigation, 125(3), 926-938. https://doi.org/10.1172/JCI76304
Messaoudi, M., Lalonde, R., Violle, N., Javelot, H., Desor, D., Nejdi, A., Bisson, J.-F., Rougeot, C., Pichelin, M., & Cazaubiel, M. (2011). Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. British Journal of Nutrition, 105(5), 755-764. https://doi.org/10.1017/S0007114510004319
Milani, C., Duranti, S., Bottacini, F., Casey, E., Turroni, F., Mahony, J., Belzer, C., Delgado Palacio, S., Arboleya Montes, S., & Mancabelli, L. (2017). The first microbial colonizers of the human gut: composition, activities, and health implications of the infant gut microbiota. Microbiology and Molecular Biology Reviews, 81(4), 10-1128. https://doi.org/10.1128/mmbr.00036-17
Mirković, M., Mirković, N., Miočinović, J., Radulović, A., Paunović, D., Ilić, M., & Radulović, Z. (2021). Probiotic yogurt and cheese from ultrafiltered milk: Sensory quality and viability of free‐living and spray dried Lactiplantibacillus plantarum 564 and Lactiplantibacillus plantarum 299v. Journal of Food Processing and Preservation, 45(9), e15713. https://doi.org/10.1111/jfpp.15713
Misra, S., & Mohanty, D. (2019). Psychobiotics: A new approach for treating mental illness? Critical Reviews in Food Science and Nutrition, 59(8), 1230-1236. https://doi.org/10.1080/10408398.2017.1399860
Mohammad, F. K., Palukuri, M. V., Shivakumar, S., Rengaswamy, R., & Sahoo, S. (2022). A computational framework for studying gut-brain axis in autism spectrum disorder. Frontiers in Physiology, 13, 760753. https://doi.org/10.3389/fphys.2022.760753
Mohammadi, A. A., Jazayeri, S., Khosravi-Darani, K., Solati, Z., Mohammadpour, N., Asemi, Z., Adab, Z., Djalali, M., Tehrani-Doost, M., & Hosseini, M. (2016). The effects of probiotics on mental health and hypothalamic-pituitary-adrenal axis: a randomized, double-blind, placebo-controlled trial in petrochemical workers. Nutritional Neuroscience, 19(9), 387-395. https://doi.org/10.1179/1476830515Y.0000000023
Mossad, O., Batut, B., Yilmaz, B., Dokalis, N., Mezö, C., Nent, E., Nabavi, L. S., Mayer, M., Maron, F. J. M., & Buescher, J. M. (2022). Gut microbiota drives age-related oxidative stress and mitochondrial damage in microglia via the metabolite N 6-carboxymethyllysine. Nature Neuroscience, 25(3), 295-305. https://doi.org/10.1038/s41593-022-01027-3
Nataraj, B. H., Ali, S. A., Behare, P. V., & Yadav, H. (2020). Postbiotics-parabiotics: the new horizons in microbial biotherapy and functional foods. Microbial Cell Factories, 19(1), 168. https://doi.org/10.1186/s12934-020-01426-w
Ohsawa, K., Nakamura, F., Uchida, N., Mizuno, S., & Yokogoshi, H. (2018). Lactobacillus helveticus-fermented milk containing lactononadecapeptide (NIPPLTQTPVVVPPFLQPE) improves cognitive function in healthy middle-aged adults: a randomised, double-blind, placebo-controlled trial. International Journal of Food Sciences and Nutrition, 69(3), 369-376. https://doi.org/10.1080/09637486.2017.1365824
Quigley, E. M. (2017). Microbiota-brain-gut axis and neurodegenerative diseases. Current Neurology and Neuroscience Reports, 17, 1-9. https://doi.org/10.1007/s11910-017-0802-6
Roshchina, V. V. (2016). New trends and perspectives in the evolution of neurotransmitters in microbial, plant, and animal cells. Microbial Endocrinology: Interkingdom Signaling in Infectious Disease and Health, 25-77. https://doi.org/10.1007/978-3-319-20215-0_2
Sarkar, A., Harty, S., Lehto, S. M., Moeller, A. H., Dinan, T. G., Dunbar, R. I., Cryan, J. F., & Burnet, P. W. (2018). The microbiome in psychology and cognitive neuroscience. Trends in Cognitive Sciences, 22(7), 611-636. https://doi.org/10.1016/j.tics.2018.04.006
Sarkar, A., Lehto, S. M., Harty, S., Dinan, T. G., Cryan, J. F., & Burnet, P. W. (2016). Psychobiotics and the manipulation of bacteria–gut–brain signals. Trends in Neurosciences, 39(11), 763-781. https://doi.org/10.1016/j.tins.2016.09.002
Sharma, H., & Bajwa, J. (2021). Potential role and mechanism of probiotics. Annals of the Romanian Society for Cell Biology, 3616-3624. http://annalsofrscb.ro/index.php/journal/article/view/472
Sharma, R., Gupta, D., Mehrotra, R., & Mago, P. (2021). Psychobiotics: The next-generation probiotics for the brain. Current Microbiology, 78, 449-463. https://doi.org/10.1007/s00284-020-02289-5
Shi, H. N., & Walker, W. A. (2015). Development and physiology of the intestinal mucosal defense (Chapter 2). In J. Mestecky, W. Strober, M. W. Russell, B. L. Kelsall, H. Cheroutre, & B. N. Lambrecht (Eds.), Mucosal İmmunology (pp. 9-29). Academic Press. https://doi.org/10.1016/B978-0-12-415847-4.00002-1
Soccol, C. R., Vandenberghe, L. d. S., Spier, M. R., Medeiros, A. B. P., Yamaguishi, C. T., Lindner, J. D. D., Ashok Pandey, A. P., & Thomaz-Soccol, V. (2010). The potential of probiotics: a review. Food Technology Biotechnology, 48 (4) 413–434.
Thursby, E., & Juge, N. (2017). Introduction to the human gut microbiota. Biochemical Journal, 474(11), 1823-1836. https://doi.org/10.1042/BCJ20160510
Tillisch, K., Labus, J., Kilpatrick, L., Jiang, Z., Stains, J., Ebrat, B., Guyonnet, D., Legrain–Raspaud, S., Trotin, B., Naliboff, B., & Mayer, E. A. (2013). Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology, 144(7), 1394-1401. e1394. https://doi.org/10.1053/j.gastro.2013.02.043
van de Wouw, M., Walsh, A. M., Crispie, F., van Leuven, L., Lyte, J. M., Boehme, M., Clarke, G., Dinan, T. G., Cotter, P. D., & Cryan, J. F. (2020). Distinct actions of the fermented beverage kefir on host behaviour, immunity and microbiome gut-brain modules in the mouse. Microbiome, 8, 1-20. https://doi.org/10.1186/s40168-020-00846-5
Walsh, C. J., Guinane, C. M., O’Toole, P. W., & Cotter, P. D. (2014). Beneficial modulation of the gut microbiota. FEBS Letters, 588(22), 4120-4130. https://doi.org/10.1016/j.febslet.2014.03.035
Wasilewski, A., Zielińska, M., Storr, M., & Fichna, J. (2015). Beneficial effects of probiotics, prebiotics, synbiotics, and psychobiotics in inflammatory bowel disease. Inflammatory Bowel Diseases, 21(7), 1674-1682. https://doi.org/10.1097/mib.0000000000000364
Wu, S.-I., Wu, C.-C., Tsai, P.-J., Cheng, L.-H., Hsu, C.-C., Shan, I.-K., Chan, P.-Y., Lin, T.-W., Ko, C.-J., & Chen, W.-L. (2021). Psychobiotic supplementation of PS128TM improves stress, anxiety, and insomnia in highly stressed information technology specialists: a pilot study. Frontiers in Nutrition, 8, 614105. https://doi.org/10.3389/fnut.2021.614105
Yano, J. M., Yu, K., Donaldson, G. P., Shastri, G. G., Ann, P., Ma, L., Nagler, C. R., Ismagilov, R. F., Mazmanian, S. K., & Hsiao, E. Y. (2015). Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell, 161(2), 264-276. https://doi.org/10.1016/j.cell.2015.02.047
Psychobiotics and Their Potential Applications in Dairy Products
Psychobiotics are a group of probiotics that provide various mental health benefits to individuals when included in adequate amounts in the diet. These probiotics influence human behavior and central nervous system through the gut-brain axis including neural, immune and metabolic pathways. The reviewed literature indicates that psychobiotic supplements that improve the functioning of the gastrointestinal tract are promising applications to reduce the effects of stress in humans and avoid the use of chemical drugs with a wide range of side effects. As is known, bacterial viability is closely related to the type of food matrix and the strain of microorganism. In this context, studies have reported that dairy products may be the most effective carriers for probiotic strains, including psychobiotic ones. More scientific evidence is needed to clarify the effect of milk-rich diets combined with psychobiotic intake on gut microbiota, its relationship with brain function and potential therapeutic effects on psychiatric symptoms. In addition, the number of studies on how to include psychobiotics in the diet should be increased to ensure continuity in the use of psychobiotics to improve mental health and to make them more easily accessible to individuals. This review aims to shed light on different approaches by evaluating the mechanisms of action of psychobiotics and their potential applications in dairy products.
Agarkova, Y., Fedotova, O., & Chilikin, A. (2021). The prospect of using natural psychobitics in dairy products to stabilize the diet. IOP Conference Series: Earth and Environmental Science, 677 (3), 032051. https://doi.org/10.1088/1755-1315/677/3/032051
Akbari, E., Asemi, Z., Daneshvar Kakhaki, R., Bahmani, F., Kouchaki, E., Tamtaji, O. R., Hamidi, G. A., & Salami, M. (2016). Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer's disease: a randomized, double-blind and controlled trial. Frontiers in Aging Neuroscience, 8, 256. https://doi.org/10.3389/fnagi.2016.00256
Barros, C. P., Guimarães, J. T., Esmerino, E. A., Duarte, M. C. K., Silva, M. C., Silva, R., Ferreira, B. M., Sant’Ana, A. S., Freitas, M. Q., & Cruz, A. G. (2020). Paraprobiotics and postbiotics: concepts and potential applications in dairy products. Current Opinion in Food Science, 32, 1-8. https://doi.org/10.1016/j.cofs.2019.12.003
Benton, D., Williams, C., & Brown, A. (2007). Impact of consuming a milk drink containing a probiotic on mood and cognition. European Journal of Clinical Nutrition, 61(3), 355-361.
Casertano, M., Fogliano, V., & Ercolini, D. (2022). Psychobiotics, gut microbiota and fermented foods can help preserving mental health. Food Research International, 152, 110892. https://doi.org/10.1016/j.foodres.2021.110892
Cichońska, P., Kowalska, E., & Ziarno, M. (2023). The survival of psychobiotics in fermented food and the gastrointestinal tract: A review. Microorganisms, 11(4), 996. https://doi.org/10.3390/microorganisms11040996
Collins, S. M., & Bercik, P. (2009). The relationship between intestinal microbiota and the central nervous system in normal gastrointestinal function and disease. Gastroenterology, 136(6), 2003-2014. https://doi.org/10.1053/j.gastro.2009.01.075
Das, P., Babaei, P., & Nielsen, J. (2019). Metagenomic analysis of microbe-mediated vitamin metabolism in the human gut microbiome. BMC Genomics, 20(208), 1-11. https://doi.org/10.1186/s12864-019-5591-7
Dinan, T. G., Stanton, C., & Cryan, J. F. (2013). Psychobiotics: a novel class of psychotropic. Biological Psychiatry, 74(10), 720-726. https://doi.org/10.1016/j.biopsych.2013.05.001
Edebol Carlman, H. M., Rode, J., König, J., Repsilber, D., Hutchinson, A. N., Thunberg, P., Persson, J., Kiselev, A., Pruessner, J. C., & Brummer, R. J. (2022). Probiotic mixture containing Lactobacillus helveticus, Bifidobacterium longum and Lactiplantibacillus plantarum affects brain responses to an arithmetic stress task in healthy subjects: a randomised clinical trial and proof-of-concept study. Nutrients, 14(7), 1329. https://doi.org/10.3390/nu14071329
Fernández‐Aranda, F., Casas, M., Claes, L., Bryan, D. C., Favaro, A., Granero, R., Gudiol, C., Jiménez‐Murcia, S., Karwautz, A., & Le Grange, D. (2020). COVID‐19 and implications for eating disorders. European Eating Disorders Review, 28(3), 239. https://doi.org/10.1002/erv.2738
Fichna, J., & Storr, M. A. (2012). Brain-gut interactions in IBS. Frontiers in Pharmacology, 3, 127. https://doi.org/10.3389/fphar.2012.00127
Gao, J., Xu, K., Liu, H., Liu, G., Bai, M., Peng, C., Li, T., & Yin, Y. (2018). Impact of the gut microbiota on intestinal immunity mediated by tryptophan metabolism. Frontiers in Cellular and Infection Microbiology, 8(13), 1-22. https://doi.org/10.3389/fcimb.2018.00013
Gibson, G. R., & Roberfroid, M. (Eds.). (2008). Handbook of Prebiotics. Crc Press.
Granato, D., Branco, G. F., Cruz, A. G., Faria, J. d. A. F., & Shah, N. P. (2010). Probiotic dairy products as functional foods. Comprehensive Reviews in Food Science and Food Safety, 9(5), 455-470. https://doi.org/10.1111/j.1541-4337.2010.00120.x
Grover, S., Rashmi, H. M., Srivastava, A. K., & Batish, V. K. (2012). Probiotics for human health–new innovations and emerging trends. Gut Pathogens, 4, 1-14. https://doi.org/10.1186/1757-4749-4-15
Hamaker, B. R., & Tuncil, Y. E. (2014). A perspective on the complexity of dietary fiber structures and their potential effect on the gut microbiota. Journal of Molecular Biology, 426(23), 3838-3850. https://doi.org/10.1016/j.jmb.2014.07.028
Hattori, M., & Taylor, T. D. (2009). The human intestinal microbiome: a new frontier of human biology. DNA Research, 16(1), 1-12. https://doi.org/10.1093/dnares/dsn033
Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., Morelli, L., Canani, R. B., Flint, H. J., & Salminen, S. (2014). The ınternational scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology & Hepatology, 11(8), 506-514. https://doi.org/10.1038/nrgastro.2014.66
Jostins, L., Ripke, S., Weersma, R. K., Duerr, R. H., McGovern, D. P., Hui, K. Y., Lee, J. C., Schumm, L. P., Sharma, Y., Anderson, C. A., Essers, J., Mitrovic, M., Ning, K., Cleynen, I., Theatre, E., Spain, S. L., Raychaudhuri, S., Goyette, P., Wei, Z., . . . Cho, J. H. (2012). Host–microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature, 491(7422), 119-124. https://doi.org/10.1038/nature11582
Jovanović, M., Vojvodić, P., Tenji, D., Tomić, N., Nešić, J., Mitić-Ćulafić, D., & Miočinović, J. (2023). Cheese fermented with human-derived Limosilactobacillus reuteri DSM 17938 and mushroom powders: A novel psychobiotic food with enhanced bioactivity and sensory acceptability. Fermentation, 9(8), 745. https://doi.org/10.3390/fermentation9080745
Kato-Kataoka, A., Nishida, K., Takada, M., Suda, K., Kawai, M., Shimizu, K., Kushiro, A., Hoshi, R., Watanabe, O., Igarashi, T., Miyazaki, K., Kuwano, Y., & Rokutan, K. (2016). Fermented milk containing Lactobacillus casei strain Shirota prevents the onset of physical symptoms in medical students under academic examination stress. Beneficial Microbes, 7(2), 153-156. https://doi.org/10.3920/BM2015.0100
Kumar, M. R., Azizi, N. F., Yeap, S. K., Abdullah, J. O., Khalid, M., Omar, A. R., Osman, M. A., Leow, A. T. C., Mortadza, S. A. S., & Alitheen, N. B. (2022). Clinical and preclinical studies of fermented foods and their effects on Alzheimer's disease. Antioxidants, 11(5), 883. https://doi.org/10.3390/antiox11050883
Kunze, W. A., Mao, Y. K., Wang, B., Huizinga, J. D., Ma, X., Forsythe, P., & Bienenstock, J. (2009). Lactobacillus reuteri enhances excitability of colonic AH neurons by inhibiting calcium‐dependent potassium channel opening. Journal of Cellular and Molecular Medicine, 13(8b), 2261-2270. https://doi.org/10.1111/j.1582-4934.2009.00686.x
Liu, Y.W., Liong, M. T., Chung, Y.C. E., Huang, H.Y., Peng, W.S., Cheng, Y.F., Lin, Y.S., Wu, Y.Y., & Tsai, Y.C. (2019). Effects of Lactobacillus plantarum PS128 on children with autism spectrum disorder in Taiwan: a randomized, double-blind, placebo-controlled trial. Nutrients, 11(4), 820. https://doi.org/10.3390/nu11040820
Long-Smith, C., O'Riordan, K. J., Clarke, G., Stanton, C., Dinan, T. G., & Cryan, J. F. (2020). Microbiota-gut-brain axis: new therapeutic opportunities. Annual Review of Pharmacology and Toxicology, 60(1), 477-502. https://doi.org/10.1146/annurev-pharmtox-010919-023628
Ma, T., Jin, H., Kwok, L.Y., Sun, Z., Liong, M.T., & Zhang, H. (2021). Probiotic consumption relieved human stress and anxiety symptoms possibly via modulating the neuroactive potential of the gut microbiota. Neurobiology of Stress, 14, 100294. https://doi.org/10.1016/j.ynstr.2021.100294
Mayer, E. A. (2011). Gut feelings: the emerging biology of gut–brain communication. Nature Reviews Neuroscience, 12(8), 453-466. https://doi.org/10.1038/nrn3071
Mayer, E. A., Tillisch, K., & Gupta, A. (2015). Gut/brain axis and the microbiota. The Journal of Clinical Investigation, 125(3), 926-938. https://doi.org/10.1172/JCI76304
Messaoudi, M., Lalonde, R., Violle, N., Javelot, H., Desor, D., Nejdi, A., Bisson, J.-F., Rougeot, C., Pichelin, M., & Cazaubiel, M. (2011). Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. British Journal of Nutrition, 105(5), 755-764. https://doi.org/10.1017/S0007114510004319
Milani, C., Duranti, S., Bottacini, F., Casey, E., Turroni, F., Mahony, J., Belzer, C., Delgado Palacio, S., Arboleya Montes, S., & Mancabelli, L. (2017). The first microbial colonizers of the human gut: composition, activities, and health implications of the infant gut microbiota. Microbiology and Molecular Biology Reviews, 81(4), 10-1128. https://doi.org/10.1128/mmbr.00036-17
Mirković, M., Mirković, N., Miočinović, J., Radulović, A., Paunović, D., Ilić, M., & Radulović, Z. (2021). Probiotic yogurt and cheese from ultrafiltered milk: Sensory quality and viability of free‐living and spray dried Lactiplantibacillus plantarum 564 and Lactiplantibacillus plantarum 299v. Journal of Food Processing and Preservation, 45(9), e15713. https://doi.org/10.1111/jfpp.15713
Misra, S., & Mohanty, D. (2019). Psychobiotics: A new approach for treating mental illness? Critical Reviews in Food Science and Nutrition, 59(8), 1230-1236. https://doi.org/10.1080/10408398.2017.1399860
Mohammad, F. K., Palukuri, M. V., Shivakumar, S., Rengaswamy, R., & Sahoo, S. (2022). A computational framework for studying gut-brain axis in autism spectrum disorder. Frontiers in Physiology, 13, 760753. https://doi.org/10.3389/fphys.2022.760753
Mohammadi, A. A., Jazayeri, S., Khosravi-Darani, K., Solati, Z., Mohammadpour, N., Asemi, Z., Adab, Z., Djalali, M., Tehrani-Doost, M., & Hosseini, M. (2016). The effects of probiotics on mental health and hypothalamic-pituitary-adrenal axis: a randomized, double-blind, placebo-controlled trial in petrochemical workers. Nutritional Neuroscience, 19(9), 387-395. https://doi.org/10.1179/1476830515Y.0000000023
Mossad, O., Batut, B., Yilmaz, B., Dokalis, N., Mezö, C., Nent, E., Nabavi, L. S., Mayer, M., Maron, F. J. M., & Buescher, J. M. (2022). Gut microbiota drives age-related oxidative stress and mitochondrial damage in microglia via the metabolite N 6-carboxymethyllysine. Nature Neuroscience, 25(3), 295-305. https://doi.org/10.1038/s41593-022-01027-3
Nataraj, B. H., Ali, S. A., Behare, P. V., & Yadav, H. (2020). Postbiotics-parabiotics: the new horizons in microbial biotherapy and functional foods. Microbial Cell Factories, 19(1), 168. https://doi.org/10.1186/s12934-020-01426-w
Ohsawa, K., Nakamura, F., Uchida, N., Mizuno, S., & Yokogoshi, H. (2018). Lactobacillus helveticus-fermented milk containing lactononadecapeptide (NIPPLTQTPVVVPPFLQPE) improves cognitive function in healthy middle-aged adults: a randomised, double-blind, placebo-controlled trial. International Journal of Food Sciences and Nutrition, 69(3), 369-376. https://doi.org/10.1080/09637486.2017.1365824
Quigley, E. M. (2017). Microbiota-brain-gut axis and neurodegenerative diseases. Current Neurology and Neuroscience Reports, 17, 1-9. https://doi.org/10.1007/s11910-017-0802-6
Roshchina, V. V. (2016). New trends and perspectives in the evolution of neurotransmitters in microbial, plant, and animal cells. Microbial Endocrinology: Interkingdom Signaling in Infectious Disease and Health, 25-77. https://doi.org/10.1007/978-3-319-20215-0_2
Sarkar, A., Harty, S., Lehto, S. M., Moeller, A. H., Dinan, T. G., Dunbar, R. I., Cryan, J. F., & Burnet, P. W. (2018). The microbiome in psychology and cognitive neuroscience. Trends in Cognitive Sciences, 22(7), 611-636. https://doi.org/10.1016/j.tics.2018.04.006
Sarkar, A., Lehto, S. M., Harty, S., Dinan, T. G., Cryan, J. F., & Burnet, P. W. (2016). Psychobiotics and the manipulation of bacteria–gut–brain signals. Trends in Neurosciences, 39(11), 763-781. https://doi.org/10.1016/j.tins.2016.09.002
Sharma, H., & Bajwa, J. (2021). Potential role and mechanism of probiotics. Annals of the Romanian Society for Cell Biology, 3616-3624. http://annalsofrscb.ro/index.php/journal/article/view/472
Sharma, R., Gupta, D., Mehrotra, R., & Mago, P. (2021). Psychobiotics: The next-generation probiotics for the brain. Current Microbiology, 78, 449-463. https://doi.org/10.1007/s00284-020-02289-5
Shi, H. N., & Walker, W. A. (2015). Development and physiology of the intestinal mucosal defense (Chapter 2). In J. Mestecky, W. Strober, M. W. Russell, B. L. Kelsall, H. Cheroutre, & B. N. Lambrecht (Eds.), Mucosal İmmunology (pp. 9-29). Academic Press. https://doi.org/10.1016/B978-0-12-415847-4.00002-1
Soccol, C. R., Vandenberghe, L. d. S., Spier, M. R., Medeiros, A. B. P., Yamaguishi, C. T., Lindner, J. D. D., Ashok Pandey, A. P., & Thomaz-Soccol, V. (2010). The potential of probiotics: a review. Food Technology Biotechnology, 48 (4) 413–434.
Thursby, E., & Juge, N. (2017). Introduction to the human gut microbiota. Biochemical Journal, 474(11), 1823-1836. https://doi.org/10.1042/BCJ20160510
Tillisch, K., Labus, J., Kilpatrick, L., Jiang, Z., Stains, J., Ebrat, B., Guyonnet, D., Legrain–Raspaud, S., Trotin, B., Naliboff, B., & Mayer, E. A. (2013). Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology, 144(7), 1394-1401. e1394. https://doi.org/10.1053/j.gastro.2013.02.043
van de Wouw, M., Walsh, A. M., Crispie, F., van Leuven, L., Lyte, J. M., Boehme, M., Clarke, G., Dinan, T. G., Cotter, P. D., & Cryan, J. F. (2020). Distinct actions of the fermented beverage kefir on host behaviour, immunity and microbiome gut-brain modules in the mouse. Microbiome, 8, 1-20. https://doi.org/10.1186/s40168-020-00846-5
Walsh, C. J., Guinane, C. M., O’Toole, P. W., & Cotter, P. D. (2014). Beneficial modulation of the gut microbiota. FEBS Letters, 588(22), 4120-4130. https://doi.org/10.1016/j.febslet.2014.03.035
Wasilewski, A., Zielińska, M., Storr, M., & Fichna, J. (2015). Beneficial effects of probiotics, prebiotics, synbiotics, and psychobiotics in inflammatory bowel disease. Inflammatory Bowel Diseases, 21(7), 1674-1682. https://doi.org/10.1097/mib.0000000000000364
Wu, S.-I., Wu, C.-C., Tsai, P.-J., Cheng, L.-H., Hsu, C.-C., Shan, I.-K., Chan, P.-Y., Lin, T.-W., Ko, C.-J., & Chen, W.-L. (2021). Psychobiotic supplementation of PS128TM improves stress, anxiety, and insomnia in highly stressed information technology specialists: a pilot study. Frontiers in Nutrition, 8, 614105. https://doi.org/10.3389/fnut.2021.614105
Yano, J. M., Yu, K., Donaldson, G. P., Shastri, G. G., Ann, P., Ma, L., Nagler, C. R., Ismagilov, R. F., Mazmanian, S. K., & Hsiao, E. Y. (2015). Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell, 161(2), 264-276. https://doi.org/10.1016/j.cell.2015.02.047
Konak Göktepe, Ç. (2024). Psikobiyotikler ve Süt Ürünlerindeki Potansiyel Uygulamaları. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 29(3), 1052-1063. https://doi.org/10.53433/yyufbed.1510149