Research Article
BibTex RIS Cite

Ortam Gürültü Şiddetinin, Ios ve Android Tabanlı Ses Ölçüm Uygulamaları ile Ticari Ses Ölçüm Cihazları Kullanılarak Karşılaştırılması ve Ölçüm Belirsizliğinin Elde Edilmesi

Year 2021, , 69 - 79, 31.08.2021
https://doi.org/10.53433/yyufbed.894712

Abstract

Bu çalışmada, ios ve android işletim sistemi tabanlı cep telefonlarındaki ses ölçüm uygulamaları ile (Soundmeter, Decibel X), ticari ses ölçüm cihazları (Cem dt8852, Svantek sv104) arasındaki ses ölçümü test edilmiştir. Ses ölçüm şiddetleri ve enerjileri belirlenmiş, ios ve android cihazların, uygulamaya göre ölçüm belirsizlikleri belirlenmiştir. Ölçümler iç ve dış ortamda aynı anda gerçekleştirilmiştir. Ios kullanan iphone 7+ ve android kullanan samsung note 8 cihazı kullanılmıştır. İki farklı cep telefonu uygulamaları arasında önemli ses ölçüm farkları elde edilmiştir. Ticari ölçüm cihazları arasında ise önemli bir fark bulunmamıştır. Ticari ölçüm cihazları kalibre edilmiş olduğundan, referans cihaz olarak kullanılabilir. Bu cihazlar kullanılarak, ios ve android tabanlı uygulamaların ortalama %10-20 arasında hatalı ölçüm aldığı gözlenmiştir. Uygulamalar ile alınan ölçümler sonucunda, ölçüm belirsizliği yaklaşık 4-5dB aralığında olduğu tespit edilmiştir.

References

  • ANSI S1.4-1983. (2007). Specification for Sound Level Meters (American National Standards Institute), New York.
  • D’Hondt, E., Stevens, M., Jacobs, A. (2013). Participatory noise mapping works! An evaluation of participatory sensing as an alternative to standard techniques for environmental monitoring. Pervasive Mobile Computing, 9, 681–94. doi.org/10.1016/j.pmcj.2012.09.002
  • Expression of the Uncertainty of Measurement in Calibration. EA-European Co-operation for Accreditation, EA-4/0. (2013). https://european-accreditation.org/wp-content/uploads/2018/10/ea-4-02-m-rev01-september-2013.pdf (accessed at 25.01.2021).
  • European environment agency report. (2013). Environmental indicator report. http://www.eea.europa.eu/publications#c7=en&c11=5&c14=&c12=&b_start=0 (accessed at 25.01.2021).
  • Kanhere, S.S. (2013). Participatory sensing: Crowdsourcing data from mobile smartphones in urban space. Distributed computing and internet technology; Springer. pp19-26.
  • Kanjo, E. (2010). NoiseSPY: A Real-Time Mobile Phone Platform for Urban Noise Monitoring and Mapping. Mobile networks and applications, 15, 562–574. doi.org/10.1007/s11036-009-0217-y
  • Kardousb, C.A., Shaw P.B., (2014). Evaluation of smartphone sound measurement applications. The journal of the acoustical society of America, 135 (4), ELI186. doi.org/10.1121/1.4865269
  • Maisonneuve, N., Mathias, N., Ochab, B. (2010). Participatory noise pollution monitoring using mobile phones. Information polity, 15, 51-71. Doi.org/10.3233/IP-2010-0200
  • Maisonnuve, N., Mattias, S., et.al. (2009). Citizen noise pollution monitoring. Proceedings of the 10th annual international conference on digital government research: social networks. Digital government society of north America, 96-103. doi.org/ 10.5555/1556176.1556198
  • May, J.J. (2000). Occupational hearing loss. American journal of industrial medicine , 37(1), 112-20. doi.org/10.1002/(SICI)1097-0274(200001)37:1<112::AID-AJIM9>3.0.CO;2-%23
  • Murphy, E., King, A. (2016). Testing the accuracy of smartphones and sound level meter applications for measuring environmental noise. Applied Acoustics, 106, 16–22. doi.org/10.1016/j.apacoust.2015.12.012
  • NIOSH. (1998). Criteria for a recommended standard, occupational noise exposure. Public no.98-126. Ohio.
  • O’malley, V., King, E., et.al. (2009). Assessing methodologies for calculating road traffic noise levels in Ireland – Converting CRTN indicators to the EU indicators (Lden, Lnight). Applied Acoustics, 70, 284–296. doi.org/10.1016/j.apacoust.2008.04.003
  • OSHA 1683 standard. (2013). http://www.osha.gov/dts/osta/otm/new_noise (accessed at 25.01.2021).
  • Pienkowski, M., Munguia, R., Eggermont, J.J. (2013). Effects of passive, moderate-level sound exposure on the mature auditory cortex: Spectral edges, spectrotemporal density, and real-world noise. Hearing research, 296, 121–130. doi.org/10.1016/j.heares.2012.11.006
  • Serway, R., Beichner, R., Jewett, J. (1999). Physics for scientists and engineers, 5th edition, Brooks cole, pp520-535.
  • Serway, R., Jewett, J., (2010). Physics for scientists and engineers with modern physics, 10th edition, Brook cole, pp 507-522.
  • Sheppard, A., Ralli, M., et.al. (2020). Occupational Noise: Auditory and Non-Auditory Consequences. International journal of environmental research and public health , 17(23), 8963. doi.org/10.3390/ijerph17238963
  • Sriwattanatamma, P., Breysse, P. (2000). Comparison of NIOSH noise criteria and OSHA hearing conservation criteria. American journal of industrial medicine, 37,334–338. doi.org/10.1002/(SICI)1097-0274(200004)37:4<334::AID-AJIM2>3.0.CO;2-Z
  • Sun, D.W., Wang, B.S., et.al. (2020). Single nucleotide polymorphisms in JNK1 are associated with susceptibility to noise-induced hearing loss in a Chinese population. International archives of occupational and environmental health, Accepted paper. doi.org/ 10.1007/s00420-020-01644-0
  • Turkish Standards Institution TSE 61672-1 standard. (2004). http://intweb.tse.org.tr/Standard/Standard/Standard.aspx?081118051115108051104119110104055047105102120088111043113104073083065084050121081083112073117103 (accessed at 27.01.2021).
  • Turkish 6331 no, Occupational health and safety law. (2012). http://www.mevzuat.gov.tr/mevzuat?MevzuatNo=6331&MevzuatTur=1&MevzuatTertip=5 (accessed at 25.01.2021).
  • Young, H., Freedman, R. (2011). Sears&Zemansky University physics, V1, 10th edition, Addison Wesley, pp521-540.
  • Young, H, Freedman, R, et al. (2013). Sears&Zemansky university physics with modern physics, 13th edition, Addison Wesley, pp 488-510.

Comparison of Environment Noise Intensity Using Ios and Android Based Sound Measurement Applications and Commercial Sound Measurement Devices and Obtaining the Measurement Uncertainty

Year 2021, , 69 - 79, 31.08.2021
https://doi.org/10.53433/yyufbed.894712

Abstract

In this study, sound measurement between ios and android operating system based mobile phones (Soundmeter, Decibel X) and commercial sound measurement devices (Cem dt8852, Svantek sv104) was tested. Sound measurement intensities and energies were determined, measurement uncertainties of ios and android devices according to the application were determined. Measurements were carried out at the same time in the indoor and outdoor environment. Iphone 7+ (Ios operation system) and Samsung note 8 (Andorid operation system) used. Significant sound measurement differences were obtained between the two different mobile phone applications. There was no significant difference between commercial measurement devices. Commercial measuring devices were calibrated and can be used as reference devices. Using these devices, it was observed that ios and android-based applications receive faulty measurements on average between 10-20%. As a result of the measurements taken with the applications, it was determined that the measurement uncertainty is in the range of approximately 4-5dB.

References

  • ANSI S1.4-1983. (2007). Specification for Sound Level Meters (American National Standards Institute), New York.
  • D’Hondt, E., Stevens, M., Jacobs, A. (2013). Participatory noise mapping works! An evaluation of participatory sensing as an alternative to standard techniques for environmental monitoring. Pervasive Mobile Computing, 9, 681–94. doi.org/10.1016/j.pmcj.2012.09.002
  • Expression of the Uncertainty of Measurement in Calibration. EA-European Co-operation for Accreditation, EA-4/0. (2013). https://european-accreditation.org/wp-content/uploads/2018/10/ea-4-02-m-rev01-september-2013.pdf (accessed at 25.01.2021).
  • European environment agency report. (2013). Environmental indicator report. http://www.eea.europa.eu/publications#c7=en&c11=5&c14=&c12=&b_start=0 (accessed at 25.01.2021).
  • Kanhere, S.S. (2013). Participatory sensing: Crowdsourcing data from mobile smartphones in urban space. Distributed computing and internet technology; Springer. pp19-26.
  • Kanjo, E. (2010). NoiseSPY: A Real-Time Mobile Phone Platform for Urban Noise Monitoring and Mapping. Mobile networks and applications, 15, 562–574. doi.org/10.1007/s11036-009-0217-y
  • Kardousb, C.A., Shaw P.B., (2014). Evaluation of smartphone sound measurement applications. The journal of the acoustical society of America, 135 (4), ELI186. doi.org/10.1121/1.4865269
  • Maisonneuve, N., Mathias, N., Ochab, B. (2010). Participatory noise pollution monitoring using mobile phones. Information polity, 15, 51-71. Doi.org/10.3233/IP-2010-0200
  • Maisonnuve, N., Mattias, S., et.al. (2009). Citizen noise pollution monitoring. Proceedings of the 10th annual international conference on digital government research: social networks. Digital government society of north America, 96-103. doi.org/ 10.5555/1556176.1556198
  • May, J.J. (2000). Occupational hearing loss. American journal of industrial medicine , 37(1), 112-20. doi.org/10.1002/(SICI)1097-0274(200001)37:1<112::AID-AJIM9>3.0.CO;2-%23
  • Murphy, E., King, A. (2016). Testing the accuracy of smartphones and sound level meter applications for measuring environmental noise. Applied Acoustics, 106, 16–22. doi.org/10.1016/j.apacoust.2015.12.012
  • NIOSH. (1998). Criteria for a recommended standard, occupational noise exposure. Public no.98-126. Ohio.
  • O’malley, V., King, E., et.al. (2009). Assessing methodologies for calculating road traffic noise levels in Ireland – Converting CRTN indicators to the EU indicators (Lden, Lnight). Applied Acoustics, 70, 284–296. doi.org/10.1016/j.apacoust.2008.04.003
  • OSHA 1683 standard. (2013). http://www.osha.gov/dts/osta/otm/new_noise (accessed at 25.01.2021).
  • Pienkowski, M., Munguia, R., Eggermont, J.J. (2013). Effects of passive, moderate-level sound exposure on the mature auditory cortex: Spectral edges, spectrotemporal density, and real-world noise. Hearing research, 296, 121–130. doi.org/10.1016/j.heares.2012.11.006
  • Serway, R., Beichner, R., Jewett, J. (1999). Physics for scientists and engineers, 5th edition, Brooks cole, pp520-535.
  • Serway, R., Jewett, J., (2010). Physics for scientists and engineers with modern physics, 10th edition, Brook cole, pp 507-522.
  • Sheppard, A., Ralli, M., et.al. (2020). Occupational Noise: Auditory and Non-Auditory Consequences. International journal of environmental research and public health , 17(23), 8963. doi.org/10.3390/ijerph17238963
  • Sriwattanatamma, P., Breysse, P. (2000). Comparison of NIOSH noise criteria and OSHA hearing conservation criteria. American journal of industrial medicine, 37,334–338. doi.org/10.1002/(SICI)1097-0274(200004)37:4<334::AID-AJIM2>3.0.CO;2-Z
  • Sun, D.W., Wang, B.S., et.al. (2020). Single nucleotide polymorphisms in JNK1 are associated with susceptibility to noise-induced hearing loss in a Chinese population. International archives of occupational and environmental health, Accepted paper. doi.org/ 10.1007/s00420-020-01644-0
  • Turkish Standards Institution TSE 61672-1 standard. (2004). http://intweb.tse.org.tr/Standard/Standard/Standard.aspx?081118051115108051104119110104055047105102120088111043113104073083065084050121081083112073117103 (accessed at 27.01.2021).
  • Turkish 6331 no, Occupational health and safety law. (2012). http://www.mevzuat.gov.tr/mevzuat?MevzuatNo=6331&MevzuatTur=1&MevzuatTertip=5 (accessed at 25.01.2021).
  • Young, H., Freedman, R. (2011). Sears&Zemansky University physics, V1, 10th edition, Addison Wesley, pp521-540.
  • Young, H, Freedman, R, et al. (2013). Sears&Zemansky university physics with modern physics, 13th edition, Addison Wesley, pp 488-510.
There are 24 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

İsrafil Şabikoğlu 0000-0002-2260-3326

Duygu Akbaba Şabikoğlu 0000-0002-5608-2813

Publication Date August 31, 2021
Submission Date March 10, 2021
Published in Issue Year 2021

Cite

APA Şabikoğlu, İ., & Akbaba Şabikoğlu, D. (2021). Comparison of Environment Noise Intensity Using Ios and Android Based Sound Measurement Applications and Commercial Sound Measurement Devices and Obtaining the Measurement Uncertainty. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 26(2), 69-79. https://doi.org/10.53433/yyufbed.894712