BibTex RIS Cite

Cu (II) Removal from Industrial Waste Leachate by Adsorption Using Expanded Perlite

Year 2014, Volume: 19 Issue: 1-2, 54 - 61, 25.11.2014

Abstract

The aim of the present study is to investigate the feasibility of using expanded perlite for the adsorptive removal of Cu (II) from industrial leachate. The adsorption capacities and sorption efficiencies were determined. The pseudo-second order, Elovich and the intra particle diffusion kinetic models were used to describe the kinetic data to estimate the rate constants. The results indicated that expanded perlite showed excellent adsorptive characteristics for the removal of Cu (II) from industrial leachate.

References

  • Ajmal, M., Rao, R.A.K., Khan, M.A., (2005). Adsorption of copper from aqueous
  • campestris (mustard oil cake), J. Hazard. Mater. 122 (1-2):177-183.
  • Alkan, M., Kalay, B., Doğan, M., Demirbaş, O., (2008). Removal of copper ions from aqueous solutions by kaolinite and batch design, J. Hazard. Mater. 153:867-876.
  • Allen, S.J., McKay, G., Khader, K.Y.H., (1989). Intraparticle diffusion of a basic dye during adsorption onto Sphagnum Peat, Environ. Pollut. 56: 39-50.
  • Aman, T., Kazi, A.A., Sabri, M.U., Bano, Q., (2008). Potato peels as solid waste for the removal of heavy metal copper(II) from waste water/industrial effluent. Colloid Surface B. 63:116- 121.
  • APHA, (1985). Standard Methods for the of
  • Wastewater, 19th edition, A.D. Eaton, L.S. Clesceri, A.E. Greenberg (Eds.), Washington, D.C. Water
  • and Bhattacharyya, K.G., Gupta, S.S., (2006). Kaolinite, montmorillonite, and their modified derivatives as adsorbents for removal of Cu (II) from aqueous solution, 50(3):388-397.
  • Technol. Chen, W.J., Hsiao, L.C., Chen, K.K.Y., (2003). Metal desorption from copper (II)/nickel (II)-spiked kaolin as a soil component saponin
  • Biochem. 43 (5):1619-1627.
  • Process Chien, S.H., Clayton, W.R., (1980). Application of Elovich equation to the kinetics of phosphate release and sorption in soils, Soil Sci. Soc. Am. J. 44:265-268.
  • El-Ashtoukhy, E.-S.Z., Amin, N.K., Abdelwahab, O., (2008). Removal of lead (II) and copper (II) from aqueous solution using Pomegranate Peel as a new adsorbent, Desalination 223:162- 173.
  • Fonseca, M.G., Oliveira, M.M., Arakaki, L.N.H., cadmium, cromium
  • solution by a clay mineral, J. Hazard. Mater. B. 137:288-292. of and manganese from aqueous Bioresour.
  • Technol. Gök, Ö., Özcan, A., Erdem, B., Özcan, A.S., (2008). Prediction of the kinetics, thermodynamic
  • adsorption of copper (II) ions onto 8- hydroxy bentonite,
  • Physicochem. Eng. Aspects 317:174- 185. and of parameters quinoline Colloids Surfaces
  • A: Hizal, J., Apak, R., (2006). Modeling of copper (II) and lead (II) adsorption on kaolinite-based
  • individually and in the presence of humic acid, J. Colloid Interface Sci. 295:1-13.
  • minerals Ho, Y.S., (2004). Citation review of Lagergreen kinetic rate equation on adsorption reaction, Scientometrics 59:171-177.
  • Jones, D.L., Williamson, K.L., Owen, A.G., (2006). Phytoremediation of landfill leachate, Wate Management 26, 825-837.
  • Justin, M.J., Zupančič, M., (2009). Combined purification and reuse of landfill
  • wetland and irrigation of grass and willows, Desalination, 246:157-168.
  • Kanan, K., Sundaram, M.M., (2001). Kinetics and mechanism of removal methylene blue by adsorption on various carbons-a comparative study, Dyes Pigments, 51:25-40.
  • Khajeh, M., (2009). Optimization of microwave-assisted
  • procedure for zinc and copper determination in food samples by Box-Behnken
  • Compos. Anal. 22:343-346. J.
  • Food Kjeldsen, P., Barlaz, M.A., Rooker, A.P., Baun, A., Ledin, A., Christensen, T.H., (2002). Present and long term composition leachate:
  • Environ. Sci. Technol. 32:297-336.
  • Kula, I., Uğurlu, M., Karaoğlu, H., Çelik, A., (2008). Adsorption of Cd (II) ions from olive Stone by ZnCl2 activation, Bioresour. Technol. 99:492-501.
  • Low, M.J.D., 1960. Kinetics of chemisorption of gases on solids, Chem. Rev. 60, 267-312.
  • Müller G.T., Giacobbo A., Chiaramonte E.A.D.S.,
  • Meneguzzi, A., Bernardes, A.M., (2015). The effect of sanitary landfill leachate aging on the biological treatment
  • photoelectrooxidation treatment
  • Management, 36:177-183. M.A.S., and assessment as a
  • pre- waste process,
  • Pamukoğlu, M.Y., Kargı, F., (2009). Removal of Cu (II) ions biosorption onto powdered waste sludge (PWS) prior to biological treatment in an activated sludge unit: A statistical design approach, Bioresour. Technol. 100:2348-2354.
  • Pellera, F.M., Giannis, A., Kalderis, D., Anastasiadou, K., Stegmann, R., Wang, E., Gidarakos, F.M., (2012). Adsorption of Cu(II) ions from aqueous prepared
  • products, Journal of Environmental Management, 96:35-42.
  • biochars by- Rožić, M., Cerjan-Stefanović,
  • Š., Kurajica, S., Vančina, V., (2000). Ammonical nitrogen removal from water by treatment with clays and zeolites, Wat. Res. 34(14):3675-3681. Singh, S.P., Ma, L.Q., Hendry, M.J., (2006). Characterization of aqueous lead removal by phosphatic clay: Equilibrium and kinetic studies, J Hazard. Mater. B, 136:654-662.
  • Sparks, D.L., (1999). Kinetic and mechanisms of chemical reactions at the soil mineral/water interface, in Soil Physical Chemistry, CRC Press, Boca Raton, Florida, pp. 135-192.
  • Srihari, V., Das, A., (2008). The kinetic and
  • phenol-sorption onto three agro-based carbons, Desalination, 225:220-234.
  • Şölener, M., Tunali, S., Özcan, A.S., Özcan, A., Gedikbey, T., (2008). Adsorption characteristics of lead (II) ions
  • (methoxyethyl) acrylamide (PMEA) composite from aqueous solutions, Desalination, 223:308-322.
  • clay/poly Townsend, T., Jang, Y.C., Tolaymat, T., (2003). A Guide to the Use of Leaching Tests in Solid Waste Management Decision Making, The Florida Hazardous
  • University of Florida, Gainesville, Florida. Solid and Waste
  • Management, Tripathi, P., Srivastava, V.C., Kumar, A., (2009). Optimization of an azo dye batch adsorption parameters using Box-Behnken design, Desalination 249, 1273-1279.
  • Vieira, M.G.A., Almeida Neto, A.F., Gimenes, M.L., da Silva, M.G.C., (2010).
  • equilibrium fort he removal of nickel ions from aqueous phase on calcined Bofe bentonite clay, J. Hazard. Mater. 177:362-371. kinetics
  • and WHO, (2004). Copper in Drinking-water: Background
  • Development of WHO Guidelines for Drinking-water Quality, (WHO/SDE/ WSH/03.04/88) Genova,
  • for Zorpas, A.A., Vlyssides, A.G., Loizidou, M.,
  • Anaerobically-Stabilized
  • Sewage Sludge Composting: Metal Leachability and Uptake by Natural Clinoptilolite, Commun. Soil Sci. Plant Anal., 30 (11&12):1603-1613.

Genleştirilmiş Perlit Kullanılarak Adsorpsiyonla Endüstriyel Atık Sızıntı Suyundan Cu (II) Giderimi

Year 2014, Volume: 19 Issue: 1-2, 54 - 61, 25.11.2014

Abstract

Çalışmanın amacı endüstriyel atık sızıntı suyundan genleştirilmiş perlit kullanarak adsorpsiyonla Cu (II) gideriminin incelenmesidir. Çalışmada, adsorpsiyon kapasitesi ve giderim verimleri araştırılmıştır. Adsorpsiyon kinetiğini belirleyebilmek için ikinci derece, Elovich ve partiküller arası difüzyon kinetik modelleri kullanılmıştır. Sonuçlar, genleştirilmiş perlitin, endüstriyel atık sızıntı suyundan Cu(II) gideriminde oldukça yüksek adsorplama karakteristiklerine sahip olduğunu göstermiştir.

References

  • Ajmal, M., Rao, R.A.K., Khan, M.A., (2005). Adsorption of copper from aqueous
  • campestris (mustard oil cake), J. Hazard. Mater. 122 (1-2):177-183.
  • Alkan, M., Kalay, B., Doğan, M., Demirbaş, O., (2008). Removal of copper ions from aqueous solutions by kaolinite and batch design, J. Hazard. Mater. 153:867-876.
  • Allen, S.J., McKay, G., Khader, K.Y.H., (1989). Intraparticle diffusion of a basic dye during adsorption onto Sphagnum Peat, Environ. Pollut. 56: 39-50.
  • Aman, T., Kazi, A.A., Sabri, M.U., Bano, Q., (2008). Potato peels as solid waste for the removal of heavy metal copper(II) from waste water/industrial effluent. Colloid Surface B. 63:116- 121.
  • APHA, (1985). Standard Methods for the of
  • Wastewater, 19th edition, A.D. Eaton, L.S. Clesceri, A.E. Greenberg (Eds.), Washington, D.C. Water
  • and Bhattacharyya, K.G., Gupta, S.S., (2006). Kaolinite, montmorillonite, and their modified derivatives as adsorbents for removal of Cu (II) from aqueous solution, 50(3):388-397.
  • Technol. Chen, W.J., Hsiao, L.C., Chen, K.K.Y., (2003). Metal desorption from copper (II)/nickel (II)-spiked kaolin as a soil component saponin
  • Biochem. 43 (5):1619-1627.
  • Process Chien, S.H., Clayton, W.R., (1980). Application of Elovich equation to the kinetics of phosphate release and sorption in soils, Soil Sci. Soc. Am. J. 44:265-268.
  • El-Ashtoukhy, E.-S.Z., Amin, N.K., Abdelwahab, O., (2008). Removal of lead (II) and copper (II) from aqueous solution using Pomegranate Peel as a new adsorbent, Desalination 223:162- 173.
  • Fonseca, M.G., Oliveira, M.M., Arakaki, L.N.H., cadmium, cromium
  • solution by a clay mineral, J. Hazard. Mater. B. 137:288-292. of and manganese from aqueous Bioresour.
  • Technol. Gök, Ö., Özcan, A., Erdem, B., Özcan, A.S., (2008). Prediction of the kinetics, thermodynamic
  • adsorption of copper (II) ions onto 8- hydroxy bentonite,
  • Physicochem. Eng. Aspects 317:174- 185. and of parameters quinoline Colloids Surfaces
  • A: Hizal, J., Apak, R., (2006). Modeling of copper (II) and lead (II) adsorption on kaolinite-based
  • individually and in the presence of humic acid, J. Colloid Interface Sci. 295:1-13.
  • minerals Ho, Y.S., (2004). Citation review of Lagergreen kinetic rate equation on adsorption reaction, Scientometrics 59:171-177.
  • Jones, D.L., Williamson, K.L., Owen, A.G., (2006). Phytoremediation of landfill leachate, Wate Management 26, 825-837.
  • Justin, M.J., Zupančič, M., (2009). Combined purification and reuse of landfill
  • wetland and irrigation of grass and willows, Desalination, 246:157-168.
  • Kanan, K., Sundaram, M.M., (2001). Kinetics and mechanism of removal methylene blue by adsorption on various carbons-a comparative study, Dyes Pigments, 51:25-40.
  • Khajeh, M., (2009). Optimization of microwave-assisted
  • procedure for zinc and copper determination in food samples by Box-Behnken
  • Compos. Anal. 22:343-346. J.
  • Food Kjeldsen, P., Barlaz, M.A., Rooker, A.P., Baun, A., Ledin, A., Christensen, T.H., (2002). Present and long term composition leachate:
  • Environ. Sci. Technol. 32:297-336.
  • Kula, I., Uğurlu, M., Karaoğlu, H., Çelik, A., (2008). Adsorption of Cd (II) ions from olive Stone by ZnCl2 activation, Bioresour. Technol. 99:492-501.
  • Low, M.J.D., 1960. Kinetics of chemisorption of gases on solids, Chem. Rev. 60, 267-312.
  • Müller G.T., Giacobbo A., Chiaramonte E.A.D.S.,
  • Meneguzzi, A., Bernardes, A.M., (2015). The effect of sanitary landfill leachate aging on the biological treatment
  • photoelectrooxidation treatment
  • Management, 36:177-183. M.A.S., and assessment as a
  • pre- waste process,
  • Pamukoğlu, M.Y., Kargı, F., (2009). Removal of Cu (II) ions biosorption onto powdered waste sludge (PWS) prior to biological treatment in an activated sludge unit: A statistical design approach, Bioresour. Technol. 100:2348-2354.
  • Pellera, F.M., Giannis, A., Kalderis, D., Anastasiadou, K., Stegmann, R., Wang, E., Gidarakos, F.M., (2012). Adsorption of Cu(II) ions from aqueous prepared
  • products, Journal of Environmental Management, 96:35-42.
  • biochars by- Rožić, M., Cerjan-Stefanović,
  • Š., Kurajica, S., Vančina, V., (2000). Ammonical nitrogen removal from water by treatment with clays and zeolites, Wat. Res. 34(14):3675-3681. Singh, S.P., Ma, L.Q., Hendry, M.J., (2006). Characterization of aqueous lead removal by phosphatic clay: Equilibrium and kinetic studies, J Hazard. Mater. B, 136:654-662.
  • Sparks, D.L., (1999). Kinetic and mechanisms of chemical reactions at the soil mineral/water interface, in Soil Physical Chemistry, CRC Press, Boca Raton, Florida, pp. 135-192.
  • Srihari, V., Das, A., (2008). The kinetic and
  • phenol-sorption onto three agro-based carbons, Desalination, 225:220-234.
  • Şölener, M., Tunali, S., Özcan, A.S., Özcan, A., Gedikbey, T., (2008). Adsorption characteristics of lead (II) ions
  • (methoxyethyl) acrylamide (PMEA) composite from aqueous solutions, Desalination, 223:308-322.
  • clay/poly Townsend, T., Jang, Y.C., Tolaymat, T., (2003). A Guide to the Use of Leaching Tests in Solid Waste Management Decision Making, The Florida Hazardous
  • University of Florida, Gainesville, Florida. Solid and Waste
  • Management, Tripathi, P., Srivastava, V.C., Kumar, A., (2009). Optimization of an azo dye batch adsorption parameters using Box-Behnken design, Desalination 249, 1273-1279.
  • Vieira, M.G.A., Almeida Neto, A.F., Gimenes, M.L., da Silva, M.G.C., (2010).
  • equilibrium fort he removal of nickel ions from aqueous phase on calcined Bofe bentonite clay, J. Hazard. Mater. 177:362-371. kinetics
  • and WHO, (2004). Copper in Drinking-water: Background
  • Development of WHO Guidelines for Drinking-water Quality, (WHO/SDE/ WSH/03.04/88) Genova,
  • for Zorpas, A.A., Vlyssides, A.G., Loizidou, M.,
  • Anaerobically-Stabilized
  • Sewage Sludge Composting: Metal Leachability and Uptake by Natural Clinoptilolite, Commun. Soil Sci. Plant Anal., 30 (11&12):1603-1613.
There are 56 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Yüksel Ardalı

N. Turan This is me

Fulya Temel This is me

Publication Date November 25, 2014
Submission Date November 25, 2015
Published in Issue Year 2014 Volume: 19 Issue: 1-2

Cite

APA Ardalı, Y., Turan, N., & Temel, F. (2014). Cu (II) Removal from Industrial Waste Leachate by Adsorption Using Expanded Perlite. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 19(1-2), 54-61.