Research Article
BibTex RIS Cite

Modeling Categorical Data By Using Neural Network and Logistic Regression

Year 2009, Volume: 14 Issue: 2, 112 - 116, 01.12.2009

Abstract

Artificial Neural Network is an application of artificial intelligence developed for the aim of enabling the ability to carry out the features of human brain of deriving, forming and discovering new knowledge via learning without taking any support. İn the present study the artificial neural network and logistic regression methods were compared to classify the data. At the end of the study, the artificial neural network was found to be more effective than logistic regression for data classification.

References

  • Aitkin, M., Titterington,D. M., 2000. Statistics and Neural Network. The Statistican, 49, 627- 628.
  • Akian, A.ve ark., (2005). Aufomatic seizure detection in EGG using logistic regression and artificial neural network. Journal of Neuroscience Methods, 148, 167- 176.
  • Andrew, R. B., 1994. A Review from Siatisticaf Perpective. Statistical Science, 9, 33-35
  • Bing, C., Titterington, D.M., (1994). A Review from Statistical Perpective. Statistical Science, 9, 49-54
  • V.. S.ve ark, 2007. Breast Cancer Predictions by Neural Networks Analysis: A Comparison with Logistic Regression. Processing of the 29th AnnualInternational Conference of the IEEE EMBS, Lyon, France, August 23-26.
  • Bourdes,

Yapay Sinir Ağı ve Lojistik Regresyon Kullanılarak Kategorik Verilerin Modellenmesi

Year 2009, Volume: 14 Issue: 2, 112 - 116, 01.12.2009

Abstract

Yapay sinir ağları; insan beyninin özelliklerinden olan, öğrenme yolu ile yeni bilgiler türetebilme, oluşturabilme ve keşfedilme gibi yetenekleri herhangi bir yardım almadan otomatik olarak gerçekleştirmek amacı ile geliştirilen yapay zeka uygulamalarıdır. Bu çalışmada verilerin sınıflandırmak için Yapay sinir ağı modeli ile Lojistik regresyon yöntemleri karşılaştırılmıştır. Çalışma sonunda Yapay sinir ağının lojistik regresyona göre verilerin sınıflandırılmasında daha etkin olduğu görülmüştür.

References

  • Aitkin, M., Titterington,D. M., 2000. Statistics and Neural Network. The Statistican, 49, 627- 628.
  • Akian, A.ve ark., (2005). Aufomatic seizure detection in EGG using logistic regression and artificial neural network. Journal of Neuroscience Methods, 148, 167- 176.
  • Andrew, R. B., 1994. A Review from Siatisticaf Perpective. Statistical Science, 9, 33-35
  • Bing, C., Titterington, D.M., (1994). A Review from Statistical Perpective. Statistical Science, 9, 49-54
  • V.. S.ve ark, 2007. Breast Cancer Predictions by Neural Networks Analysis: A Comparison with Logistic Regression. Processing of the 29th AnnualInternational Conference of the IEEE EMBS, Lyon, France, August 23-26.
  • Bourdes,
There are 6 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Yılmaz Kaya

Abdullah Yeşilova

Publication Date December 1, 2009
Submission Date December 1, 2009
Published in Issue Year 2009 Volume: 14 Issue: 2

Cite

APA Kaya, Y., & Yeşilova, A. (2009). Yapay Sinir Ağı ve Lojistik Regresyon Kullanılarak Kategorik Verilerin Modellenmesi. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 14(2), 112-116.