Research Article
BibTex RIS Cite

CoAsS Kristalinin Bazı Fiziksel Özelliklerinin Basınç Altında İncelenmesi

Year 2021, Volume: 26 Issue: 2, 102 - 113, 31.08.2021
https://doi.org/10.53433/yyufbed.898639

Abstract

CoAsS kristalinin temel durumdaki (P=0 GPa) ve 10, 20, 30 ve 40 GPa basınçları altındaki yapısal, elektronik, optik, elastik ve termodinamik özellikleri Yoğunluk Fonksiyoneli Teorisi ile Genelleştirilmiş Gradyent Yaklaşımı altında incelenmiştir. CoAsS kristali 1.06 eV luk doğrusal olmayan band aralığı ile yarıiletken bir karaktere sahiptir. CoAsS üzerindeki basınç artırıldığında kristal bant aralığı beklendiği gibi artmakta ancak yüksek basıncın neden olduğu yapısal deformasyon nedeniyle 40 GPa değerinden itibaren bant aralığı düşme eğilimindedir. Elektronik bant yapısının grafikleri, durum yoğunluğu, optik ve termodinamik özellikler için tüm grafikler, tüm basınç değerleri ile çizilip, kolay bir karşılaştırma sağlamak için tek bir figürde verilmiştir. Basıncın CoAsS kristali üzerindeki etkisini göstermek için elastik özellikler de verilmiştir. Kübik CoAsS mineralinin kırılgan olduğu bulunmuştur.

References

  • Bayliss, P. (1982). A further crystal structure refinement of cobaltite. American Mineralogist, 67, 1048-1057.
  • Erdinc, B., Secuk, M. N., Aycibin, M., Gulebagan, S. E., Dogan, E. K. & Akkus, H. (2015). Ab-initio calculations of physical properties of alkali chloride XCl (X = K, Rb and Li) under pressure. Computational Condensed Matter, 4, 6-12. doi:10.1016/j.cocom.2015.05.001
  • Ertseva, L. N & Tsymbulov, L. B. (2002). On transformations of iron, nickel, and cobalt arsenides and sulfoarsenides under thermal treatment in various media. Russian Journal of Applied Chemistry, 75 (10), 1547-1556.
  • Fleet, M. E. & Burns, P. C. (1990). Structure and twinning of cobaltite. Canadian Minerologist, 28, 719-723.
  • Fuch, M. & Scheffler, M. (1999). Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory. Computer Physics Communications, 119, 67-98. doi:10.1016/S0010-4655(98)00201-X
  • Gao, M. R., Zheng, Y. R., Jiang, J. & Yu, S. H. (2017). Pyrite-type nanomaterials for advanced electrocatalysis. Accounts of Chemical Research, 50, 2194−2204. doi:10.1021/acs.accounts.7b00187
  • Gonze, X., Beuken, J. M., Caracas, R., Detraux, F., Fuchs, M., Rignanese, G. M., Sindie, L., Verstrate, M., Zerah, G., Jollet, F., Torrent, M., Roy, A., Mikami, M., Ghosez, P., Raty, J. Y. & Allan, D. C. (2002). First-principles computation of material properties: the ABINIT software Project. Computational Materials Science, 25, 478-492. doi:10.1016/s0927-0256(02)00325-7
  • Jain A., Ong S. P., Hautier, G., Chen, W., Richards, W. D., Dacek, S., Cholia, S., Gunter, D., Skinner, D., Ceder, G. & Persson, K. A. (2013). Commentary: The materials project: A materials genome approach to accelerating materials innovation. APL Materials, 1(1), 011002. doi:10.1063/1.4812323
  • Kaura, P. & Bera, C. (2017). Effect of alloying on thermal conductivity and thermoelectric properties of CoAsS and CoSbS. Physical Chemistry Chemical Physics,19, 24928-24933.
  • Kohn, W. & Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Physical Review, 140, A1133. doi:10.1103/PhysRev.140.A1133
  • Liu, L. & Zhuang, H. L. (2019). Single-layer ferromagnetic and piezoelectric CoAsS with pentagonal structure. APL Materials, 7, 011101. doi:10.1063/1.5079867
  • Monkhorst, J. H. & Pack, J. D. (1976). Special points for Brillouin-zone integrations. Physical Review B, 13, 5188-5192. doi:10.1103/PhysRevB.13.5188.
  • Mosselmans, J. F. W., Pattrick, R. A. D., van der Laan, G., Charnock, J. M., Vaughan, D. J., Henderson, C. M. B. & Garner, C. D. (1995). X-ray absorption near-edge spectra of transition metal disulfides FeS2 (pyrite and marcasite) COS2, NiS2 and CuS2, and their isomorphs FeAsS and CoAsS. Physics and Chemistry of Minerals, 22, 311-317. doi:10.1007/bf00202771
  • Mouhat, F. & Coudert, F. X. (2014). Necessary and sufficient elastic stability conditions in various crystal systems. Physical Review B, 90, 224104. doi:10.1103/PhysRevB.90.224104
  • Okoye, C. M. I. (2004). Investigation of the pressure dependence of band gaps for silver halides within a first-principles method. Solid State Communications, 129, 69-73. doi:10.1016/j.ssc.2003.09.014
  • Payne, M. C., Teter, M. P., Allan, D. C., Arias, T. A. & Joannopoulos, J. D. (1992). Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Review of Modern Physics, 64, 1045-1097. doi:10.1103/RevModPhys.64.1045
  • Perdew, J. P., Chevary, J. A., Vosko, S. H., Jackson, K. A., Pederson, M. R., Singh, D. J., & Fiolhais, C. (1992). Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Physical Review B, 46, 6671-6687. doi:10.1103/PhysRevB.46.6671
  • Pielnhofer, F., Schöneich, M., Lorenz, T., Yan, W., Nilges, T., Weihrich, R. & Schmidt, P. (2015). A rational approach to IrPTe – DFT and CalPhaD studies on phase stability, formation, and structure of IrPTe. Zeitschrift für anorganische Chemie, 641 (6), 1099–1105. doi:10.1002/zaac.201500149
  • Troullier, N. & Martins, J. L. (1991). Efficient pseudopotentials for plane-wave calculations. Physical Review B, 43, 1993-2006. doi:10.1103/PhysRevB.43.1993
  • Weihrich, R., Kurowski, D., Stückl, A. C., Matar, S. F. Rau, F. & Bernerta, T. (2004). On the ordering in new low gapsemiconductors: PtSnS, PtSnSe, PtSnTe. Experimental and DFT studies. Journal of Solid State Chemistry, 177, 2591–2599. doi:10.1016/j.jssc.2004.03.031

Investigation of Some Physical Properties of CoAsS Crystal Under Pressure

Year 2021, Volume: 26 Issue: 2, 102 - 113, 31.08.2021
https://doi.org/10.53433/yyufbed.898639

Abstract

Density functional theory (DFT) within the generalized gradient approximation (GGA) was used to inquire the structural, electronic, optical, elastic and thermodynamic properties of CoAsS crystal for the ground state (P=0 GPa) and for some pressure values such as 10, 20, 30, 40 and 50 GPa. CoAsS crystal has a semiconductor character with 1.06 eV indirect band gap. By increasing the pressure on CoAsS crystal band gap values were increasing as expected but by 40 GPa band gap value intented to decrease because of the structural deformation caused by the high pressure. The graphs of electronic band structure, density of states, and the all graphs for optic and thermodynamic properties were plotted with all pressure values and given in one figure to provide an easy comparison. Elastic properties were also given to show the effect of pressure on CoAsS crystal. It was noticed that cubic CoAsS mineral was fragile.

References

  • Bayliss, P. (1982). A further crystal structure refinement of cobaltite. American Mineralogist, 67, 1048-1057.
  • Erdinc, B., Secuk, M. N., Aycibin, M., Gulebagan, S. E., Dogan, E. K. & Akkus, H. (2015). Ab-initio calculations of physical properties of alkali chloride XCl (X = K, Rb and Li) under pressure. Computational Condensed Matter, 4, 6-12. doi:10.1016/j.cocom.2015.05.001
  • Ertseva, L. N & Tsymbulov, L. B. (2002). On transformations of iron, nickel, and cobalt arsenides and sulfoarsenides under thermal treatment in various media. Russian Journal of Applied Chemistry, 75 (10), 1547-1556.
  • Fleet, M. E. & Burns, P. C. (1990). Structure and twinning of cobaltite. Canadian Minerologist, 28, 719-723.
  • Fuch, M. & Scheffler, M. (1999). Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory. Computer Physics Communications, 119, 67-98. doi:10.1016/S0010-4655(98)00201-X
  • Gao, M. R., Zheng, Y. R., Jiang, J. & Yu, S. H. (2017). Pyrite-type nanomaterials for advanced electrocatalysis. Accounts of Chemical Research, 50, 2194−2204. doi:10.1021/acs.accounts.7b00187
  • Gonze, X., Beuken, J. M., Caracas, R., Detraux, F., Fuchs, M., Rignanese, G. M., Sindie, L., Verstrate, M., Zerah, G., Jollet, F., Torrent, M., Roy, A., Mikami, M., Ghosez, P., Raty, J. Y. & Allan, D. C. (2002). First-principles computation of material properties: the ABINIT software Project. Computational Materials Science, 25, 478-492. doi:10.1016/s0927-0256(02)00325-7
  • Jain A., Ong S. P., Hautier, G., Chen, W., Richards, W. D., Dacek, S., Cholia, S., Gunter, D., Skinner, D., Ceder, G. & Persson, K. A. (2013). Commentary: The materials project: A materials genome approach to accelerating materials innovation. APL Materials, 1(1), 011002. doi:10.1063/1.4812323
  • Kaura, P. & Bera, C. (2017). Effect of alloying on thermal conductivity and thermoelectric properties of CoAsS and CoSbS. Physical Chemistry Chemical Physics,19, 24928-24933.
  • Kohn, W. & Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Physical Review, 140, A1133. doi:10.1103/PhysRev.140.A1133
  • Liu, L. & Zhuang, H. L. (2019). Single-layer ferromagnetic and piezoelectric CoAsS with pentagonal structure. APL Materials, 7, 011101. doi:10.1063/1.5079867
  • Monkhorst, J. H. & Pack, J. D. (1976). Special points for Brillouin-zone integrations. Physical Review B, 13, 5188-5192. doi:10.1103/PhysRevB.13.5188.
  • Mosselmans, J. F. W., Pattrick, R. A. D., van der Laan, G., Charnock, J. M., Vaughan, D. J., Henderson, C. M. B. & Garner, C. D. (1995). X-ray absorption near-edge spectra of transition metal disulfides FeS2 (pyrite and marcasite) COS2, NiS2 and CuS2, and their isomorphs FeAsS and CoAsS. Physics and Chemistry of Minerals, 22, 311-317. doi:10.1007/bf00202771
  • Mouhat, F. & Coudert, F. X. (2014). Necessary and sufficient elastic stability conditions in various crystal systems. Physical Review B, 90, 224104. doi:10.1103/PhysRevB.90.224104
  • Okoye, C. M. I. (2004). Investigation of the pressure dependence of band gaps for silver halides within a first-principles method. Solid State Communications, 129, 69-73. doi:10.1016/j.ssc.2003.09.014
  • Payne, M. C., Teter, M. P., Allan, D. C., Arias, T. A. & Joannopoulos, J. D. (1992). Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Review of Modern Physics, 64, 1045-1097. doi:10.1103/RevModPhys.64.1045
  • Perdew, J. P., Chevary, J. A., Vosko, S. H., Jackson, K. A., Pederson, M. R., Singh, D. J., & Fiolhais, C. (1992). Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Physical Review B, 46, 6671-6687. doi:10.1103/PhysRevB.46.6671
  • Pielnhofer, F., Schöneich, M., Lorenz, T., Yan, W., Nilges, T., Weihrich, R. & Schmidt, P. (2015). A rational approach to IrPTe – DFT and CalPhaD studies on phase stability, formation, and structure of IrPTe. Zeitschrift für anorganische Chemie, 641 (6), 1099–1105. doi:10.1002/zaac.201500149
  • Troullier, N. & Martins, J. L. (1991). Efficient pseudopotentials for plane-wave calculations. Physical Review B, 43, 1993-2006. doi:10.1103/PhysRevB.43.1993
  • Weihrich, R., Kurowski, D., Stückl, A. C., Matar, S. F. Rau, F. & Bernerta, T. (2004). On the ordering in new low gapsemiconductors: PtSnS, PtSnSe, PtSnTe. Experimental and DFT studies. Journal of Solid State Chemistry, 177, 2591–2599. doi:10.1016/j.jssc.2004.03.031
There are 20 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Ferhat Arslanbaş 0000-0002-9835-9745

Emel Kilit Doğan 0000-0001-7609-7206

Publication Date August 31, 2021
Submission Date March 17, 2021
Published in Issue Year 2021 Volume: 26 Issue: 2

Cite

APA Arslanbaş, F., & Kilit Doğan, E. (2021). Investigation of Some Physical Properties of CoAsS Crystal Under Pressure. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 26(2), 102-113. https://doi.org/10.53433/yyufbed.898639