Research Article
BibTex RIS Cite

Karbon ve Boraks ile Modifiye Edilen Perlitin Karakterizasyonu ve Termal Davranışı

Year 2022, Volume: 27 Issue: 1, 93 - 100, 25.04.2022
https://doi.org/10.53433/yyufbed.1059673

Abstract

Bu makalede, Van Gölü Havzası'ndan elde edilen perlitin aktif karbon ve
boraks ile yapılan yüzey modifikasyonlarının perlitin ısıl davranışına etkisi
incelenmiştir. Elde edilen perlit yüzeyi aktif karbon ve boraks ile modifiye
edilmiştir. Böylece saf perlit, aktif karbon ile modifiye edilmiş perlit ve boraks
ile modifiye edilmiş perlit partiküllerinin termal ve yüzey özellikleri
araştırılmıştır. Elde edilen sonuçlara göre, saf perlitin yüzeyi karbon ile önemli
ölçüde değişmezken, boraks modifikasyonundan sonra saf perlitin yüzeyinin
açıkça değiştiği görülmüştür. 30-1000 ºC aralığında ki termogravimetrik analiz
sonuçlarına göre saf perlit, karbon kaplı perlit ve boraks kaplı perlit
partiküllerinin toplam kütle kayıpları sırasıyla; %3.153, %3.156 ve %1.191
olarak tespit edilmiştir. Bu sonuçlar değerlendirildiğinde, boraks
modifikasyonunun perlit partiküllerinin termal özelliklerini açıkça arttırdığını
göstermektedir.

References

  • Al-Homoud, M. S. (2005). Performance characteristics and practical applications of common building thermal insulation materials. Building and Environment, 40(3), 353-366.
  • Celik, A. G., Kilic, A. M., & Cakal, G. O. (2013). Expanded perlite aggregate characterization for use as a lightweight construction raw material. Physicochemical Problems of Mineral Processing, 49.
  • DPT. (2001). Madencilik Özel İhtisas Komisyon Raporu, Endüstriyel Hammaddeler Alt Komisyonu Yapı Malzemeleri III, Pomza-Perlit-Vermikülit-Flogopit-Genleşen Killer Çalışma Grubu Raporu, Ankara.
  • Duaij, J. A. A., El-Laithy K., & Payappilly R. J. (1997). A value engineering approach to determine quality lightweight concrete aggregate, Cost Engineering, 39, 21-26.
  • Ebbesen, TW, (Ed.) (1997). Carbon nanotubes—preparation and properties. Boca Raton, Florida: CRC Press.
  • Hemmings, R. T., & Berry, E. E. (1987). The role of non-crystalline phases in the activation of metallurgical slags. Proc., Int. Workshop on Granulated Blast-Furnace Slag in Concrete, Canada Centre for Mineral and Energy Technology (CANMET), 441–458.
  • Kroto, H. W., Heath, J. R., O'Brien, S. C., Curl, R. F., & Smalley, R. E. (1985). C60: Buckminsterfullerene. Nature, 318, 162-163. doi:10.1038/318162a0.
  • Lanzón, M., & García-Ruiz, P. A. (2008). Lightweight cement mortars: Advantages and inconveniences of expanded perlite and its influence on fresh and hardened state and durability. Construction and Building Materials, 22(8), 1798-1806.
  • Levy, H. A., & Lisensky, G. C. (1978). Crystal structures of sodium sulfate decahydrate (Glauber's salt) and sodium tetraborate decahydrate (borax). Redetermination by neutron diffraction. Acta Crystallographica Section B. 34 (12): 3502–3510. doi:10.1107/S0567740878011504.
  • Liu, W. V., Apel, D. B., & Bindiganavile, V. S. (2014). Thermal properties of lightweight dry-mix shotcrete containing expanded perlite aggregate. Cement and Concrete Composites, 53, 44-51.
  • Majouli, A., Younssi, S. A., Tahiri, S., Albizane, A., Loukili, H., & Belhaj, M. (2011). Characterization of flat membrane support elaborated from local Moroccan Perlite. Desalination, 277(1-3), 61-66.
  • Nasibulin, Albert G. (2007). A novel hybrid carbon material. Nature Nanotechnology, 2, 156–161. doi:10.1038/nnano.2007.37.
  • Ong, H. C., Mahlia, T. M. I., & Masjuki, H. H. (2011). A review on energy scenario and sustainable energy in Malaysia. Renewable and Sustainable Energy Reviews, 15(1), 639-647.
  • Schubert, D. M. (2003). Borates in Industrial Use. In Roesky, Herbert W.; Atwood, David A. (eds.). Group 13 Chemistry III. Group 13 Chemistry III: Industrial Applications. Structure and Bonding. 105. Springer Berlin Heidelberg. pp. 1–40. doi:10.1007/3-540-46110-8_1. ISBN 978-3-540-46110-4.
  • Sengul, O., Azizi, S., Karaosmanoglu, F., & Tasdemir, M. A. (2011). Effect of expanded perlite on the mechanical properties and thermal conductivity of lightweight concrete. Energy and Buildings, 43(2-3), 671-676.
  • Shen, K. K., & O’Connor, R. (1998). Flame retardants: borates. In Plastics Additives (pp. 268-276). Springer, Dordrecht.
  • Sodeyama, K., Sakka, Y., Kamino, Y., & Seki, H. (1999). Preparation of fine expanded perlite. Journal of Materials Science, 34(10), 2461-2468.
  • Türkiye Sınai Kalkınma Bankası, Enerji Görünümü Raporu. 2020.
  • Uluer, O., Karaağaç, İ., Aktaş, M., Durmuş, G., Ağbulut, Ü., Khanlari, A., & Çelik, D. N. (2018). Genleştirilmiş perlitin ısı yalıtım teknolojilerinde kullanılabilirliğinin incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 24(1), 36-42.
  • Xu, X., Zhang, Y., Lin, K., Di, H., & Yang, R. (2005). Modeling and simulation on the thermal performance of shape-stabilized phase change material floor used in passive solar buildings. Energy and Buildings, 37(10), 1084-1091.

Characterization and Thermal Behavior of Modified Perlite with Carbon and Borax

Year 2022, Volume: 27 Issue: 1, 93 - 100, 25.04.2022
https://doi.org/10.53433/yyufbed.1059673

Abstract

In this article, the effect of surface modifications made with activated
carbon and borax on the thermal behavior of perlite obtained from the Van Lake
Basin was investigated. The obtained perlite surface was modified with activated
carbon and borax. Thus, the thermal and surface properties of pure perlite,
activated carbon modified perlite and borax modified perlite particles were
investigated. According to the results obtained, the surface of pure perlite did not
change significantly with carbon, while the surface of pure perlite clearly changed
after borax modification. According to the results of thermogravimetric analysis
in the range of 30-1000 ºC, the total mass losses of pure perlite, carbon-coated
perlite and borax-coated perlite particles are respectively; It was determined as
3.153%, 3.156% and 1.191%. When these results are evaluated, it shows that the
borax modification clearly increases the thermal properties of the pearlite
particles.

References

  • Al-Homoud, M. S. (2005). Performance characteristics and practical applications of common building thermal insulation materials. Building and Environment, 40(3), 353-366.
  • Celik, A. G., Kilic, A. M., & Cakal, G. O. (2013). Expanded perlite aggregate characterization for use as a lightweight construction raw material. Physicochemical Problems of Mineral Processing, 49.
  • DPT. (2001). Madencilik Özel İhtisas Komisyon Raporu, Endüstriyel Hammaddeler Alt Komisyonu Yapı Malzemeleri III, Pomza-Perlit-Vermikülit-Flogopit-Genleşen Killer Çalışma Grubu Raporu, Ankara.
  • Duaij, J. A. A., El-Laithy K., & Payappilly R. J. (1997). A value engineering approach to determine quality lightweight concrete aggregate, Cost Engineering, 39, 21-26.
  • Ebbesen, TW, (Ed.) (1997). Carbon nanotubes—preparation and properties. Boca Raton, Florida: CRC Press.
  • Hemmings, R. T., & Berry, E. E. (1987). The role of non-crystalline phases in the activation of metallurgical slags. Proc., Int. Workshop on Granulated Blast-Furnace Slag in Concrete, Canada Centre for Mineral and Energy Technology (CANMET), 441–458.
  • Kroto, H. W., Heath, J. R., O'Brien, S. C., Curl, R. F., & Smalley, R. E. (1985). C60: Buckminsterfullerene. Nature, 318, 162-163. doi:10.1038/318162a0.
  • Lanzón, M., & García-Ruiz, P. A. (2008). Lightweight cement mortars: Advantages and inconveniences of expanded perlite and its influence on fresh and hardened state and durability. Construction and Building Materials, 22(8), 1798-1806.
  • Levy, H. A., & Lisensky, G. C. (1978). Crystal structures of sodium sulfate decahydrate (Glauber's salt) and sodium tetraborate decahydrate (borax). Redetermination by neutron diffraction. Acta Crystallographica Section B. 34 (12): 3502–3510. doi:10.1107/S0567740878011504.
  • Liu, W. V., Apel, D. B., & Bindiganavile, V. S. (2014). Thermal properties of lightweight dry-mix shotcrete containing expanded perlite aggregate. Cement and Concrete Composites, 53, 44-51.
  • Majouli, A., Younssi, S. A., Tahiri, S., Albizane, A., Loukili, H., & Belhaj, M. (2011). Characterization of flat membrane support elaborated from local Moroccan Perlite. Desalination, 277(1-3), 61-66.
  • Nasibulin, Albert G. (2007). A novel hybrid carbon material. Nature Nanotechnology, 2, 156–161. doi:10.1038/nnano.2007.37.
  • Ong, H. C., Mahlia, T. M. I., & Masjuki, H. H. (2011). A review on energy scenario and sustainable energy in Malaysia. Renewable and Sustainable Energy Reviews, 15(1), 639-647.
  • Schubert, D. M. (2003). Borates in Industrial Use. In Roesky, Herbert W.; Atwood, David A. (eds.). Group 13 Chemistry III. Group 13 Chemistry III: Industrial Applications. Structure and Bonding. 105. Springer Berlin Heidelberg. pp. 1–40. doi:10.1007/3-540-46110-8_1. ISBN 978-3-540-46110-4.
  • Sengul, O., Azizi, S., Karaosmanoglu, F., & Tasdemir, M. A. (2011). Effect of expanded perlite on the mechanical properties and thermal conductivity of lightweight concrete. Energy and Buildings, 43(2-3), 671-676.
  • Shen, K. K., & O’Connor, R. (1998). Flame retardants: borates. In Plastics Additives (pp. 268-276). Springer, Dordrecht.
  • Sodeyama, K., Sakka, Y., Kamino, Y., & Seki, H. (1999). Preparation of fine expanded perlite. Journal of Materials Science, 34(10), 2461-2468.
  • Türkiye Sınai Kalkınma Bankası, Enerji Görünümü Raporu. 2020.
  • Uluer, O., Karaağaç, İ., Aktaş, M., Durmuş, G., Ağbulut, Ü., Khanlari, A., & Çelik, D. N. (2018). Genleştirilmiş perlitin ısı yalıtım teknolojilerinde kullanılabilirliğinin incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 24(1), 36-42.
  • Xu, X., Zhang, Y., Lin, K., Di, H., & Yang, R. (2005). Modeling and simulation on the thermal performance of shape-stabilized phase change material floor used in passive solar buildings. Energy and Buildings, 37(10), 1084-1091.
There are 20 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Ali Kılıçer 0000-0002-1745-854X

Early Pub Date April 25, 2022
Publication Date April 25, 2022
Submission Date January 18, 2022
Published in Issue Year 2022 Volume: 27 Issue: 1

Cite

APA Kılıçer, A. (2022). Characterization and Thermal Behavior of Modified Perlite with Carbon and Borax. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 27(1), 93-100. https://doi.org/10.53433/yyufbed.1059673