Research Article
BibTex RIS Cite

Ekmeklik Buğdaya Salisilik Asit Uygulamasının Çimlenme Döneminde Kuraklık Stresine Etkisinin Belirlenmesi

Year 2022, Volume: 27 Issue: 2, 315 - 322, 30.08.2022
https://doi.org/10.53433/yyufbed.1104968

Abstract

Tohum çimlenmesi ve fide oluşumu, bitki büyüme döngüsündeki en hayati aşamadır. Kuraklığa meyilli alanlarda, zayıf tohum çimlenmesi ve fide çıkışı başlıca problemlerdendir. Mevcut araştırma, iki ekmeklik buğday genotipine (DZ17-1 ve Empire Plus) farklı dozlarda salisilik asit uygulamasının çimlenme ve erken gelişim döneminde kuraklık stresine etkilerinin belirlenmesi amacıyla yürütülmüştür. Araştırma Şırnak Üniversitesi Ziraat Fakültesi Tarla Bitkileri Bölümü laboratuvarında tesadüf parsellerinde faktöriyel deneme desenine göre dört tekrarlamalı olarak kurulmuştur. Çalışmada, ekmeklik buğday genotiplerinin tohumlarına 0, 0.5 ve 1 mM SA uygulanmıştır. Tohumlar 5 farklı kuraklık stresi (0, -0.25, -0.50, -0.75, -1 MPa PEG 6000 çözeltisi) ortamında çimlendirilmiştir. Koleoptil uzunluğu, kök uzunluğu, fide boyu, çimlenme hızı ve çimlenme gücü özellikleri incelenmiştir. Araştırma sonuçlarına göre; artan kuraklık stresi incelenen tüm özellikler üzerinde olumsuz etkiye sahip olmuştur. Kuraklık koşullarında sadece 0.5 mM SA uygulaması çimlenme hızı ve çimlenme gücü özelliklerinde artırıcı etkiye sahip olduğu görülmüştür. Empire Plus çeşidinin kuraklık stresine daha toleranslı olduğu belirlenmiştir.

References

  • Almansouri, M., Kinet, J. M., & Lutts, S. (2001). Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). Plant and soil, 231(2), 243-254.
  • Ashraf, M., Akram, N. A., Arteca, R. N., & Foolad, M. R. (2010). The physiological, biochemical and molecular roles of brassinosteroids and salicylic acid in plant processes and salt tolerance. Critical Reviews in Plant Sciences, 29(3), 162-190. doi:10.1080/07352689.2010.483580
  • Ashraf, M., & Foolad, M. R. (2005). Pre‐sowing seed treatment—A shotgun approach to improve germination, plant growth, and crop yield under saline and non‐saline conditions. Advances in Agronomy, 88, 223-271. doi:10.1016/S0065-2113(05)88006-X
  • Asseng, S., Ewert, F., Martre, P., Rötter, R. P., Lobell, D. B., Cammarano, D., & Zhu, Y. (2015). Rising temperatures reduce global wheat production. Nature Climate Change, 5(2), 143-147. doi: 10.1038/NCLIMATE2470
  • Baloch, M. J., Dunwell, J., Khakwani, A. A., Dennett, M., Jatoi, W. A., & Channa, S. A. (2012). Assessment of wheat cultivars for drought tolerance via osmotic stress imposed at early seedling growth stages. Journal of Agricultural Research, 50(3), 299-310.
  • Bayoumi, T. Y., Eid, M. H., & Metwali, E. M. (2008). Application of physiological and biochemical indices as a screening technique for drought tolerance in wheat genotypes. African Journal of Biotechnology, 7(14), 2341-2352.
  • Bahrani, A., & Pourreza, J. (2012). Gibberellic acid and salicylic acid effects on seed germination and seedlings growth of wheat (Triticum aestivum L.) under salt stress condition. World Applied Sciences Journal, 18, 633–641. doi: 10.5829/idosi.wasj.2012.18.05.1372
  • Dilday, R. H., Mgonja, M. A., Amonsilpa, S. A., Collins, F. C., & Wells, B. R. (1990). Plant height vs. mesocotyl and celeoptile elongation in rice: linkage or pleitropism? Crop Science, 30(4), 815-818.
  • Dolatabadian, A., Modarres Sanavy, S. A. M., & Sharifi, M. (2009). Effect of salicylic acid and salt on wheat seed germination. Acta Agriculturae Scandinavica Section B–Soil and Plant Science, 59(5), 456-464. doi:10.1080/09064710802342350
  • Duan, H., Zhu, Y., Li, J., Ding, W., Wang, H., Jiang, L., & Zhou, Y. (2017). Effects of drought stress on growth and development of wheat seedlings. International Journal of Agriculture and Biology, 19(5), 1119-1124.
  • Giraldo, P., Benavente, E., Manzano-Agugliaro, F., & Gimenez, E. (2019). Worldwide research trends on wheat and barley: A bibliometric comparative analysis. Agronomy, 9(7), 352. doi:10.3390/agronomy9070352
  • Hoegh-Guldberg, O., Jacob, D., Taylor, M., Bindi, M., Brown, S., Camilloni, I., Diedhiou, A., & Djalante, R. (2018). Impacts of 1.5ºC global warming on natural and human systems. http://pure.iiasa.ac.at/id/eprint/15518 Erişim tarihi: 21.03.2021.
  • Iyem, E., Yildirim, M., & Kizilgeci, F. (2021). Germination, seedling growth and physio-biochemical indices of bread wheat (Triticum aestivum L.) genotypes under peg induced drought stress. Agriculture and Forestry / Poljoprivreda i Sumarstvo, 67(1), 163-168. doi: 10.17707/AgricultForest.67.1.14
  • Jajarmi, V. (2015). Effect of water stress on germination indices in seven wheat cultivars. World Academy of Science Engineering and Technology Journal, 49, 105-106.
  • Janiak, A., Kwaśniewski, M., & Szarejko, I. (2016). Gene expression regulation in roots under drought. Journal of Experimental Botany, 67(4), 1003-1014. doi:10.1093/jxb/erv512
  • Kafi, M., Nezami, H., Hossini, F., & Masomy, A. (2005). Physiological effects of drought stress induced by poly‐ ethylene glycol on germination of lentil genotypes. Iranian Journal of Field Crops Research, 3(2), 91¬-101.
  • Khan S. U., Bano A, Din J. U., & Gurmani A. R. (2012). Abscisic acid and salicylic acid seed treatment as potent inducer of drought tolerance in wheat (Triticum aestivum L.). Pakistan Journal of Botany, 44, 43-49.
  • Kizilgeci, F., Tazebay, N., Namlı, M., Albayrak, Ö., & Yıldırım, M. (2017). The drought effect on seed germination and seedling growth in bread wheat (Triticum aestivum L.). International Journal of Agriculture Environment and Food Sciences, 1(1), 33-37. doi:10.31015/jaefs.17005
  • Kizilgeci, F., Mokhtari, N. E. P., & Hossain, A. (2020). Growth and physiological traits of five bread wheat (Triticum aestivum L.) genotypes are influenced by different levels of salinity and drought stress. Fresenius Environmental Bulletin, 29(9a), 8592-8599.
  • Maghsoudi, K., & Arvin, M. J. (2010). Salicylic acid and osmotic stress effects on seed germination and seedling growth of wheat (Triticum aestivum L.) cultivars. Plant Ecophysiology, 2, 7-11.
  • Movaghatian, A., & Khorsandi, F. (2013). Effects of salicylic acid on wheat germination parameters under drought stress. American-Eurasian Journal of Agricultural and Environmental Sciences, 13, 1603-1608.
  • Rajasekaran, L. R., Claude, A. S., & Caldwell, D. (2002). Stand establishment in processing carrots Effects of various temperature regimes on germination and the role of salicylates in promoting germination at low temperatures. Canadian Journal of Plant Science, 82, 443-450.
  • Rebetzke, G. J., Richards, R. A., Fettell, N. A., Long, M., Condon, A. G., Forrester, R. I., & Botwright, T. L. (2007). Genotypic increases in coleoptile length improves stand establishment, vigour and grain yield of deep-sown wheat. Field Crops Research, 100(1), 10-23. doi: 10.1016/j.fcr.2006.05.001
  • Shatpathy, P., Kar, M., Dwibedi, S. K., & Dash, A. (2018). Seed priming with salicylic acid improves germination and seedling growth of rice (Oryza sativa L.) under PEG-6000 induced water stress. International Journal of Current Microbiology and Applied Sciences, 7(10), 907-24.
  • Singh, P. K., Chaturvedi, V. K., & Bose, B. (2010). Effects of salicylic acid on seedling growth and nitrogen metabolism in cucumber (Cucumis sativus L.). Journal of Stress Physiology and Biochemistry, 6, 102-113.
  • Španić, V., Ižaković, M., & Marček, T. (2017). Wheat germination and seedlings under PEG-induced conditons. Agronomski glasnik: Glasilo Hrvatskog Agronomskog Društva, 79(3), 99-109. doi:10.33128/ag.79.3.2
  • Turner, N. C. (1996). Further progress in crop water relations. Advances in agronomy, 58, 293-338.
  • Ullah, F., Bano, A., & Nosheen, A. (2012). Effects of plant growth regulators on growth and oil quality of canola (Brassica napus L.) under drought stress. Pakistan Journal of Botany, 44, 1873-1880.

Determination of the Effect of Salicylic Acid Application on Drought Stress in Germination Stage of Bread Wheat

Year 2022, Volume: 27 Issue: 2, 315 - 322, 30.08.2022
https://doi.org/10.53433/yyufbed.1104968

Abstract

Seed germination and seedling formation are the most important stages in the plant growth cycle. The main issues in drought-prone areas are poor seed germination and seedling emergence. The current study was conducted to determine the responses of two bread wheat genotypes (DZ17-1 and Empire Plus) to drought stress during germination and early development periods. A randomized plots factorial design with four replications was used in the laboratory of the Department of Field Crops, Faculty of Agriculture, Şırnak University. The seeds of bread wheat genotypes were treated with 0, 0.5, and 1 mM SA in the study. Seeds germinated in five different drought stress environments (0, -0.25, -0.50, -0.75, -1 MPa PEG 6000 solution). Coleoptile length, root length, seedling length, germination rate, and germination vigor were all measured. According to the findings, increased drought stress had a negative effect on all of the traits studied. In drought conditions, only 0.5 mM SA application had an increasing effect on germination rate and germination vigor properties. It was found that the Empire Plus cultivar was more drought tolerant.

References

  • Almansouri, M., Kinet, J. M., & Lutts, S. (2001). Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). Plant and soil, 231(2), 243-254.
  • Ashraf, M., Akram, N. A., Arteca, R. N., & Foolad, M. R. (2010). The physiological, biochemical and molecular roles of brassinosteroids and salicylic acid in plant processes and salt tolerance. Critical Reviews in Plant Sciences, 29(3), 162-190. doi:10.1080/07352689.2010.483580
  • Ashraf, M., & Foolad, M. R. (2005). Pre‐sowing seed treatment—A shotgun approach to improve germination, plant growth, and crop yield under saline and non‐saline conditions. Advances in Agronomy, 88, 223-271. doi:10.1016/S0065-2113(05)88006-X
  • Asseng, S., Ewert, F., Martre, P., Rötter, R. P., Lobell, D. B., Cammarano, D., & Zhu, Y. (2015). Rising temperatures reduce global wheat production. Nature Climate Change, 5(2), 143-147. doi: 10.1038/NCLIMATE2470
  • Baloch, M. J., Dunwell, J., Khakwani, A. A., Dennett, M., Jatoi, W. A., & Channa, S. A. (2012). Assessment of wheat cultivars for drought tolerance via osmotic stress imposed at early seedling growth stages. Journal of Agricultural Research, 50(3), 299-310.
  • Bayoumi, T. Y., Eid, M. H., & Metwali, E. M. (2008). Application of physiological and biochemical indices as a screening technique for drought tolerance in wheat genotypes. African Journal of Biotechnology, 7(14), 2341-2352.
  • Bahrani, A., & Pourreza, J. (2012). Gibberellic acid and salicylic acid effects on seed germination and seedlings growth of wheat (Triticum aestivum L.) under salt stress condition. World Applied Sciences Journal, 18, 633–641. doi: 10.5829/idosi.wasj.2012.18.05.1372
  • Dilday, R. H., Mgonja, M. A., Amonsilpa, S. A., Collins, F. C., & Wells, B. R. (1990). Plant height vs. mesocotyl and celeoptile elongation in rice: linkage or pleitropism? Crop Science, 30(4), 815-818.
  • Dolatabadian, A., Modarres Sanavy, S. A. M., & Sharifi, M. (2009). Effect of salicylic acid and salt on wheat seed germination. Acta Agriculturae Scandinavica Section B–Soil and Plant Science, 59(5), 456-464. doi:10.1080/09064710802342350
  • Duan, H., Zhu, Y., Li, J., Ding, W., Wang, H., Jiang, L., & Zhou, Y. (2017). Effects of drought stress on growth and development of wheat seedlings. International Journal of Agriculture and Biology, 19(5), 1119-1124.
  • Giraldo, P., Benavente, E., Manzano-Agugliaro, F., & Gimenez, E. (2019). Worldwide research trends on wheat and barley: A bibliometric comparative analysis. Agronomy, 9(7), 352. doi:10.3390/agronomy9070352
  • Hoegh-Guldberg, O., Jacob, D., Taylor, M., Bindi, M., Brown, S., Camilloni, I., Diedhiou, A., & Djalante, R. (2018). Impacts of 1.5ºC global warming on natural and human systems. http://pure.iiasa.ac.at/id/eprint/15518 Erişim tarihi: 21.03.2021.
  • Iyem, E., Yildirim, M., & Kizilgeci, F. (2021). Germination, seedling growth and physio-biochemical indices of bread wheat (Triticum aestivum L.) genotypes under peg induced drought stress. Agriculture and Forestry / Poljoprivreda i Sumarstvo, 67(1), 163-168. doi: 10.17707/AgricultForest.67.1.14
  • Jajarmi, V. (2015). Effect of water stress on germination indices in seven wheat cultivars. World Academy of Science Engineering and Technology Journal, 49, 105-106.
  • Janiak, A., Kwaśniewski, M., & Szarejko, I. (2016). Gene expression regulation in roots under drought. Journal of Experimental Botany, 67(4), 1003-1014. doi:10.1093/jxb/erv512
  • Kafi, M., Nezami, H., Hossini, F., & Masomy, A. (2005). Physiological effects of drought stress induced by poly‐ ethylene glycol on germination of lentil genotypes. Iranian Journal of Field Crops Research, 3(2), 91¬-101.
  • Khan S. U., Bano A, Din J. U., & Gurmani A. R. (2012). Abscisic acid and salicylic acid seed treatment as potent inducer of drought tolerance in wheat (Triticum aestivum L.). Pakistan Journal of Botany, 44, 43-49.
  • Kizilgeci, F., Tazebay, N., Namlı, M., Albayrak, Ö., & Yıldırım, M. (2017). The drought effect on seed germination and seedling growth in bread wheat (Triticum aestivum L.). International Journal of Agriculture Environment and Food Sciences, 1(1), 33-37. doi:10.31015/jaefs.17005
  • Kizilgeci, F., Mokhtari, N. E. P., & Hossain, A. (2020). Growth and physiological traits of five bread wheat (Triticum aestivum L.) genotypes are influenced by different levels of salinity and drought stress. Fresenius Environmental Bulletin, 29(9a), 8592-8599.
  • Maghsoudi, K., & Arvin, M. J. (2010). Salicylic acid and osmotic stress effects on seed germination and seedling growth of wheat (Triticum aestivum L.) cultivars. Plant Ecophysiology, 2, 7-11.
  • Movaghatian, A., & Khorsandi, F. (2013). Effects of salicylic acid on wheat germination parameters under drought stress. American-Eurasian Journal of Agricultural and Environmental Sciences, 13, 1603-1608.
  • Rajasekaran, L. R., Claude, A. S., & Caldwell, D. (2002). Stand establishment in processing carrots Effects of various temperature regimes on germination and the role of salicylates in promoting germination at low temperatures. Canadian Journal of Plant Science, 82, 443-450.
  • Rebetzke, G. J., Richards, R. A., Fettell, N. A., Long, M., Condon, A. G., Forrester, R. I., & Botwright, T. L. (2007). Genotypic increases in coleoptile length improves stand establishment, vigour and grain yield of deep-sown wheat. Field Crops Research, 100(1), 10-23. doi: 10.1016/j.fcr.2006.05.001
  • Shatpathy, P., Kar, M., Dwibedi, S. K., & Dash, A. (2018). Seed priming with salicylic acid improves germination and seedling growth of rice (Oryza sativa L.) under PEG-6000 induced water stress. International Journal of Current Microbiology and Applied Sciences, 7(10), 907-24.
  • Singh, P. K., Chaturvedi, V. K., & Bose, B. (2010). Effects of salicylic acid on seedling growth and nitrogen metabolism in cucumber (Cucumis sativus L.). Journal of Stress Physiology and Biochemistry, 6, 102-113.
  • Španić, V., Ižaković, M., & Marček, T. (2017). Wheat germination and seedlings under PEG-induced conditons. Agronomski glasnik: Glasilo Hrvatskog Agronomskog Društva, 79(3), 99-109. doi:10.33128/ag.79.3.2
  • Turner, N. C. (1996). Further progress in crop water relations. Advances in agronomy, 58, 293-338.
  • Ullah, F., Bano, A., & Nosheen, A. (2012). Effects of plant growth regulators on growth and oil quality of canola (Brassica napus L.) under drought stress. Pakistan Journal of Botany, 44, 1873-1880.
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Agricultural, Veterinary and Food Sciences
Journal Section Articles
Authors

Melikşah Yılmaz 0000-0001-8102-2268

Ferhat Kızılgeçi 0000-0002-7884-5463

Early Pub Date August 25, 2022
Publication Date August 30, 2022
Submission Date April 17, 2022
Published in Issue Year 2022 Volume: 27 Issue: 2

Cite

APA Yılmaz, M., & Kızılgeçi, F. (2022). Ekmeklik Buğdaya Salisilik Asit Uygulamasının Çimlenme Döneminde Kuraklık Stresine Etkisinin Belirlenmesi. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 27(2), 315-322. https://doi.org/10.53433/yyufbed.1104968