Kömür, Biyokütle ve Kömür-Biyokütle Karışımına Hidrotermal Ön İşlem Uygulanmasının Yakıt Özelliklerine Etkisi
Year 2022,
Volume: 27 Issue: 3, 649 - 666, 25.12.2022
Sibel Başakçılardan Kabakcı
,
Medya Hatun Tanış
,
Başak Çevik
Abstract
Odun talaşı, Trakya linyiti ve ağırlıkça %50 odun talaşı-Trakya linyitinden oluşan karışıma ayrı ayrı hidrotermal ön işlem uygulanmıştır. Her birinin yakıt özelliklerindeki ve termokimyasal dönüşüm karakterlerindeki değişim gözlemlenmiştir. Ayrıca, karışımın hidrotermal ön işlemiyle biyokütlenin kömür üzerinde sinerjik etkisine bakılmıştır. Optimum şartların 230 °C ve 90 dk olduğu ve otojenik basınçta gerçekleşen hidrotermal ön işlem sonrası tüm yakıtlarda sabit karbon yüzdesi ve ısıl değer artmış, kül içeriği azalmıştır. Linyit ve odun talaşına kıyasla, karışıma beraber hidrotermal işlem uygulandığında daha yüksek elementel karbon içeriğine, daha düşük oksijen yüzdesine ve daha yüksek ısıl değere sahip bir yakıt elde edilmiştir. Karışıma uygulanan hidrotermal işlem, karışımın yapısal özelliklerini ve uçucu madde tipini modifiye etmiştir. Bu nedenle hidrotermal ön işlem görmüş karışımın piroliz ve yanma reaksiyonlarındaki reaktivitesi artmış, kütle kaybı hızının maksimum olduğu pik sıcaklıklar da ötelenmiştir.
Supporting Institution
Yalova Üniversitesi Bilimsel Araştırma Projeleri Birimi
Project Number
2018/YL/0015
Thanks
Bu proje Yalova Üniversitesi Bilimsel Araştırma Projeleri Birimi tarafından desteklenmiştir [Proje No: 2018/YL/0015].
References
- Adams, P., Bridgwater, T., Lea-Langton, A., Ross, A., & Watson, I. (2018). Chapter 8 - Biomass Conversion Technologies. In P. Thornley & P. Adams (Eds.), Greenhouse Gas Balances of Bioenergy Systems (pp. 107-139). Academic Press. doi: 10.1016/B978-0-08-101036-5.00008-2
- Alzagameem, A., El Khaldi-Hansen, B., Kamm, B., & Schulze, M. (2018). Lignocellulosic Biomass for Energy, Biofuels, Biomaterials, and Chemicals. In S. Vaz Jr (Ed.), Biomass and Green Chemistry: Building a Renewable Pathway (pp. 95-132). Springer International Publishing. doi: 10.1007/978-3-319-66736-2_5
- Arauzo, P. J., Atienza-Martinez, M., Abrego, J., Olszewski, M. P., Cao, Z. B., & Kruse, A. (2020). Combustion characteristics of hydrochar and pyrochar derived from digested sewage sludge. Energies, 13(16), 4164. doi: 10.3390/en13164164
- Basso, D., Weiss-Hortala, E., Patuzzi, F., Castello, D., Baratieri, M., & Fiori, L. (2015). Hydrothermal carbonization of off-specification compost: A byproduct of the organic municipal solid waste treatment. Bioresource Technology, 182, 217-224. doi: 10.1016/j.biortech.2015.01.118
- Bi, H. B., Ni, Z. S., Tian, J. J., Wang, C. X., Jiang, C. L., Zhou, W. L., Bao, L., Sun, H., & Lin, Q. Z. (2021). The effect of biomass addition on pyrolysis characteristics and gas emission of coal gangue by multi-component reaction model and TG-FTIR-MS. Science of the Total Environment, 798, 149290. doi: 10.1016/j.scitotenv.2021.149290
- Broch, A., Jena, U., Hoekman, S. K., & Langford, J. (2014). Analysis of solid and aqueous phase products from hydrothermal carbonization of whole and lipid-extracted algae. Energies, 7(1), 62-79. doi: 10.3390/en7010062
- Cao, J., Xiao, G., Xu, X., Shen, D. K., & Jin, B. S. (2013). Study on carbonization of lignin by TG-FTIR and high-temperature carbonization reactor. Fuel Processing Technology, 106, 41-47. doi: 10.1016/j.fuproc.2012.06.016
- Cheng, H. F., Liu, Q. F., Huang, M., Zhang, S. L., & Frost, R. L. (2013). Application of TG-FTIR to study SO2 evolved during the thermal decomposition of coal-derived pyrite. Thermochimica Acta, 555, 1-6. doi: 10.1016/j.tca.2012.12.025
- Cheng, S. C., Huang, A. M., Wang, S. N., & Zhang, Q. H. (2016). Effect of different heat treatment temperatures on the chemical composition and structure of chinese fir wood. Bioresources, 11(2), 4006-4016. doi: 10.15376/biores.11.2.4006-4016
- Donar, Y. O., Caglar, E., & Sinag, A. (2016). Preparation and characterization of agricultural waste biomass based hydrochars. Fuel, 183, 366-372. doi: 10.1016/j.fuel.2016.06.108
- Funke, A., & Ziegler, F. (2010). Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering. Biofuels Bioproducts & Biorefining-Biofpr, 4(2), 160-177. doi: 10.1002/bbb.198
- Ge, L. C., Feng, H. C., Xu, C., Zhang, Y. W., & Wang, Z. H. (2018). Effect of hydrothermal dewatering on the pyrolysis characteristics of Chinese low-rank coals. Applied Thermal Engineering, 141, 70-78. doi: 10.1016/j.applthermaleng.2018.05.098
- Ghanim, B. M., Pandey, D. S., Kwapinski, W., & Leahy, J. J. (2016). Hydrothermal carbonisation of poultry litter: Effects of treatment temperature and residence time on yields and chemical properties of hydrochars. Bioresource Technology, 216, 373-380. doi: 10.1016/j.biortech.2016.05.087
- Gil, M. V., & Rubiera, F. (2019). Coal and Biomass Cofiring: Fundamentals And Future Trends. In I. Suarez Ruiz, M. A. Diez, & F. Rubiera (Eds.), New Trends in Coal Conversion: Combustion, Gasification, Emissions, and Coking (pp. 117-140). Woodhead Publishing. doi: 10.1016/b978-0-08-102201-6.00005-4
- UNFCCC. (2021). Glasgow Climate Pact. https://unfccc.int/sites/default/files/resource/cma2021_L16_adv.pdf Erişim tarihi: 13.04.2022.
- Guo, F. H., He, Y., Hassanpour, A., Gardy, J., & Zhong, Z. P. (2020). Thermogravimetric analysis on the co-combustion of biomass pellets with lignite and bituminous coal. Energy, 197, 117147. doi: 10.1016/j.energy.2020.117147
- Heilmann, S. M., Molde, J. S., Timler, J. G., Wood, B. M., Mikula, A. L., Vozhdayev, G. V., Colosky, E. C., Spokas, K. A., & Valentas, K. J. (2014). Phosphorus reclamation through hydrothermal carbonization of animal manures. Environmental Science & Technology, 48(17), 10323-10329. doi: 10.1021/es501872k
- Hoekman, S. K., Broch, A., & Robbins, C. (2011). Hydrothermal carbonization (HTC) of lignocellulosic biomass. Energy & Fuels, 25(4), 1802-1810. doi: 10.1021/ef101745n
- Hou, J., Ma, Y., Li, S., & Shang, W. (2018). A comparative study on characteristics of sulfur and nitrogen transformation and gaseous emission for combustion of bituminous coal and char. Carbon Resources Conversion, 1(1), 86-93. doi: 10.1016/j.crcon.2018.04.004
- Huang, H. Y., Liu, J. Y., Liu, H., Evrendilek, F., & Buyukada, M. (2020). Pyrolysis of water hyacinth biomass parts: Bioenergy, gas emissions, and by-products using TG-FTIR and Py-GC/MS analyses. Energy Conversion and Management, 20, 1125527. doi: 10.1016/j.enconman.2020.112552
- IEA. (2021). Coal 2021, IEA, Paris. https://www.iea.org/reports/coal-2021 Erişim tarihi:13.04.2022.
- Kim, D., Park, S., & Park, K. Y. (2017). Upgrading the fuel properties of sludge and low rank coal mixed fuel through hydrothermal carbonization. Energy, 141, 598-602. doi: 10.1016/j.energy.2017.09.113
- Koottatep, T., Fakkaew, K., Tajai, N., Pradeep, S. V., & Polprasert, C. (2016). Sludge stabilization and energy recovery by hydrothermal carbonization process. Renewable Energy, 99, 978-985. doi: 10.1016/j.renene.2016.07.068
- Li, J. H., Xu, R. S., Wang, G. W., Zhang, J. L., Song, B., Liang, W., & Wang, C. A. (2021). Study on the feasibility and co-combustion mechanism of mixed injection of biomass hydrochar and anthracite in blast furnace. Fuel, 304, 121465. doi: 10.1016/j.fuel.2021.121465
- Lin, B. W., Zhou, J. S., Qin, Q. W., Song, X., & Luo, Z. Y. (2019). Thermal behavior and gas evolution characteristics during co-pyrolysis of lignocellulosic biomass and coal: A TG-FTIR investigation. Journal of Analytical and Applied Pyrolysis, 144, 104718. doi: 10.1016/j.jaap.2019.104718
- Liu, S. C., Zhao, H. Y., Liu, X. Y., Li, Y. H., Zhao, G. F., Wang, Y. G., & Zeng, M. (2020). Effect of hydrothermal upgrading on the pyrolysis and gasification characteristics of baiyinhua lignite and a mechanistic analysis. Fuel, 276, 118081. doi: 10.1016/j.fuel.2020.118081
- Liu, X. P., Wu, X. T., & Wang, J. (2018). Substantial upgrading of a high-ash lignite by hydrothermal treatment followed by Ca(OH)(2) digestion/acid leaching. Fuel, 222, 269-277. doi: 10.1016/j.fuel.2018.02.034
- Liu, Z. G., Quek, A., Hoekman, S. K., Srinivasan, M. P., & Balasubramanian, R. (2012). Thermogravimetric investigation of hydrochar-lignite co-combustion. Bioresource Technology, 123, 646-652. doi: 10.1016/j.biortech.2012.06.063
- Loeffler, D., & Anderson, N. (2014). Emissions tradeoffs associated with cofiring forest biomass with coal: A case study in Colorado, USA. Applied Energy, 113, 67-77. doi: 10.1016/j.apenergy.2013.07.011
- Lu, Y. D., Levine, R. B., & Savage, P. E. (2015). Fatty Acids for nutraceuticals and biofuels from hydrothermal carbonization of microalgae. Industrial & Engineering Chemistry Research, 54(16), 4066-4071. doi: 10.1021/ie503448u
- Mo, Q., Liao, J. J., Chang, L. P., Chaffee, A. L., & Bao, W. R. (2019). Transformation behaviors of C, H, O, N and S in lignite during hydrothermal dewatering process. Fuel, 236, 228-235. doi: 10.1016/j.fuel.2018.08.128
- Nonaka, M., Hirajima, T., & Sasaki, K. (2011). Upgrading of low rank coal and woody biomass mixture by hydrothermal treatment. Fuel, 90(8), 2578-2584. doi: 10.1016/j.fuel.2011.03.028
- Pala, M., Kantarli, I. C., Buyukisik, H. B., & Yanik, J. (2014). Hydrothermal carbonization and torrefaction of grape pomace: A comparative evaluation. Bioresource Technology, 161, 255-262. doi: 10.1016/j.biortech.2014.03.052
- Parshetti, G. K., Quek, A., Betha, R., & Balasubramanian, R. (2014). TGA-FTIR investigation of co-combustion characteristics of blends of hydrothermally carbonized oil palm biomass (EFB) and coal. Fuel Processing Technology, 118, 228-234. doi: 10.1016/j.fuproc.2013.09.010
- Petrovic, J., Perisic, N., Maksimovic, J. D., Maksimovic, V., Kragovic, M., Stojanovic, M., Lausevic, M., & Mihajlovic, M. (2016). Hydrothermal conversion of grape pomace: Detailed characterization of obtained hydrochar and liquid phase. Journal of Analytical and Applied Pyrolysis, 118, 267-277. doi: 10.1016/j.jaap.2016.02.010
- Reza, M. T., Lynam, J. G., Uddin, M. H., & Coronella, C. J. (2013). Hydrothermal carbonization: Fate of inorganics. Biomass & Bioenergy, 49, 86-94. doi: 10.1016/j.biombioe.2012.12.004
- Reza, M. T., Wirth, B., Luder, U., & Werner, M. (2014). Behavior of selected hydrolyzed and dehydrated products during hydrothermal carbonization of biomass. Bioresource Technology, 169, 352-361. doi: 10.1016/j.biortech.2014.07.010
- Saba, A., Saha, P., & Reza, M. T. (2017). Co-Hydrothermal Carbonization of coal-biomass blend: Influence of temperature on solid fuel properties. Fuel Processing Technology, 167, 711-720. doi: 10.1016/j.fuproc.2017.08.016
- Singh, S., Wu, C. F., & Williams, P. T. (2012). Pyrolysis of waste materials using TGA-MS and TGA-FTIR as complementary characterisation techniques. Journal of Analytical and Applied Pyrolysis, 94, 99-107. doi: 10.1016/j.jaap.2011.11.011
- Smith, A. M., & Ross, A. B. (2016). Production of bio-coal, bio-methane and fertilizer from seaweed via hydrothermal carbonisation. Algal Research-Biomass Biofuels and Bioproducts, 16, 1-11. doi: 10.1016/j.algal.2016.02.026
- Su, W., Ma, H. Z., Wang, Q. H., Li, J., & Ma, J. Y. (2013). Thermal behavior and gaseous emission analysis during co-combustion of ethanol fermentation residue from food waste and coal using TG-FTIR. Journal of Analytical and Applied Pyrolysis, 99, 79-84. doi: 10.1016/j.jaap.2012.10.023
- Tillman, D. A., Duong, D. N. B., & Harding, N. S. (2012). Blending Coal with Biomass Cofiring Biomass with Coal. In D. A. Tillman, D. N. B. Duong, & N. S. Harding (Eds.), Solid Fuel Blending: Principles, Practices, and Problems (pp. 125-200). Massachusetts, USA: Elsevier Butterworth-Heinemann.
- Tipo, R., Chaichana, C., Noda, R., & Chaiklangmuang, S. (2021). Influence of coal treatments on the Ni loading mechanism of Ni-loaded lignite char catalysts. Rsc Advances, 11(56), 35624-35643. doi: 10.1039/d1ra05046j
- Ullah, H., Liu, G. J., Yousaf, B., Ali, M. U., Abbas, Q., Zhou, C. C., & Rashid, A. (2018). Hydrothermal dewatering of low-rank coals: Influence on the properties and combustion characteristics of the solid products. Energy, 158, 1192-1203. doi: 10.1016/j.energy.2018.06.052
- Volli, V., Gollakota, A. R. K., & Shu, C. M. (2021). Comparative studies on thermochemical behavior and kinetics of lignocellulosic biomass residues using TG-FTIR and Py-GC/MS. Science of the Total Environment, 792, 148392. doi: 10.1016/j.scitotenv.2021.148392
- vom Eyser, C., Schmidt, T. C., & Tuerk, J. (2016). Fate and behaviour of diclofenac during hydrothermal carbonization. Chemosphere, 153, 280-286. doi: 10.1016/j.chemosphere.2016.03.051
- Wang, C. X., Bi, H. B., Lin, Q. Z., Jiang, X. D., & Jiang, C. L. (2020). Co-pyrolysis of sewage sludge and rice husk by TG-FTIR-MS: Pyrolysis behavior, kinetics, and condensable/non-condensable gases characteristics. Renewable Energy, 160, 1048-1066. doi: 10.1016/j.renene.2020.07.046
- Wang, X. D., Li, C. X., Zhang, B., Lin, J. J., Chi, Q. Q., & Wang, Y. (2016). Migration and risk assessment of heavy metals in sewage sludge during hydrothermal treatment combined with pyrolysis. Bioresource Technology, 221, 560-567. doi: 10.1016/j.biortech.2016.09.069
- Yang, M. S., Xie, Q., Wang, X., Dong, H., Zhang, H., & Li, C. Q. (2019). Lowering ash slagging and fouling tendency of high-alkali coal by hydrothermal pretreatment. International Journal of Mining Science and Technology, 29(3), 521-525. doi: 10.1016/j.ijmst.2018.05.007
- Yao, Z. L., Ma, X. Q., Wu, Z. D., & Yao, T. T. (2017). TGA-FTIR analysis of co-pyrolysis characteristics of hydrochar and paper sludge. Journal of Analytical and Applied Pyrolysis, 123, 40-48. doi: 10.1016/j.jaap.2016.12.031
- Zhai, Y. B., Liu, X. M., Zhu, Y., Peng, C., Wang, T. F., Zhu, L., Li, C. T., & Zeng, G. M. (2016). Hydrothermal carbonization of sewage sludge: The effect of feed-water pH on fate and risk of heavy metals in hydrochars. Bioresource Technology, 218, 183-188. doi: 10.1016/j.biortech.2016.06.085
- Zhang, N., Wang, G. W., Zhang, J. L., Ning, X. J., Li, Y. J., Liang, W., & Wang, C. (2020). Study on co-combustion characteristics of hydrochar and anthracite coal. Journal of the Energy Institute, 93(3), 1125-1137. doi: 10.1016/j.joei.2019.10.006
- Zhang, Z. M., Yang, J. T., Qian, J. Q., Zhao, Y., Wang, T. F., & Zhai, Y. B. (2021). Biowaste hydrothermal carbonization for hydrochar valorization: Skeleton structure, conversion pathways and clean biofuel applications. Bioresource Technology, 324, 124686. doi: 10.1016/j.biortech.2021.124686
- Zhao, S. X., Ta, N., & Wang, X. D. (2017). Effect of temperature on the structural and physicochemical properties of biochar with apple tree branches as feedstock material. Energies, 10(9), 1293. doi: 10.3390/en10091293
- Zheng, Q. X., Morimoto, M., Fouquet, T., Sato, H., & Takanohashi, T. (2018). Effect of hydrothermal conditions on production of coal organic microspheres. Fuel, 234, 1301-1312. doi: 10.1016/j.fuel.2018.08.002
The Effect of Hydrothermal Pre-Treatment of Coal, Biomass and Coal-Biomass Mixture on Fuel Properties
Year 2022,
Volume: 27 Issue: 3, 649 - 666, 25.12.2022
Sibel Başakçılardan Kabakcı
,
Medya Hatun Tanış
,
Başak Çevik
Abstract
Hydrothermal pretreatment was applied to wood sawdust, Trakya lignite and wood sawdust-Trakya lignite mixture (50%, wt) individually. Changes in fuel properties and thermochemical conversion characteristics of each were observed. In addition, the synergistic effect of biomass on coal with hydrothermal pretreatment of the mixture was investigated. After hydrothermal pretreatment, where the optimum conditions were 230 °C and 90 minutes and under autogeneous pressure, fixed carbon percentage and heating value increased and ash content decreased in all fuels. Compared to lignite and wood sawdust, a fuel with higher elemental carbon content, lower oxygen percentage and higher calorific value was obtained when the mixture was co-hydrothermally pretreated. Hydrothermal pretreatment applied to the mixture modified the structural properties and volatiles of the mixture. For this reason, the reactivity of the hydrothermal pretreated mixture in pyrolysis and combustion reactions increased, and the peak temperatures at which the mass loss rate was maximum were shifted to higher.
Project Number
2018/YL/0015
References
- Adams, P., Bridgwater, T., Lea-Langton, A., Ross, A., & Watson, I. (2018). Chapter 8 - Biomass Conversion Technologies. In P. Thornley & P. Adams (Eds.), Greenhouse Gas Balances of Bioenergy Systems (pp. 107-139). Academic Press. doi: 10.1016/B978-0-08-101036-5.00008-2
- Alzagameem, A., El Khaldi-Hansen, B., Kamm, B., & Schulze, M. (2018). Lignocellulosic Biomass for Energy, Biofuels, Biomaterials, and Chemicals. In S. Vaz Jr (Ed.), Biomass and Green Chemistry: Building a Renewable Pathway (pp. 95-132). Springer International Publishing. doi: 10.1007/978-3-319-66736-2_5
- Arauzo, P. J., Atienza-Martinez, M., Abrego, J., Olszewski, M. P., Cao, Z. B., & Kruse, A. (2020). Combustion characteristics of hydrochar and pyrochar derived from digested sewage sludge. Energies, 13(16), 4164. doi: 10.3390/en13164164
- Basso, D., Weiss-Hortala, E., Patuzzi, F., Castello, D., Baratieri, M., & Fiori, L. (2015). Hydrothermal carbonization of off-specification compost: A byproduct of the organic municipal solid waste treatment. Bioresource Technology, 182, 217-224. doi: 10.1016/j.biortech.2015.01.118
- Bi, H. B., Ni, Z. S., Tian, J. J., Wang, C. X., Jiang, C. L., Zhou, W. L., Bao, L., Sun, H., & Lin, Q. Z. (2021). The effect of biomass addition on pyrolysis characteristics and gas emission of coal gangue by multi-component reaction model and TG-FTIR-MS. Science of the Total Environment, 798, 149290. doi: 10.1016/j.scitotenv.2021.149290
- Broch, A., Jena, U., Hoekman, S. K., & Langford, J. (2014). Analysis of solid and aqueous phase products from hydrothermal carbonization of whole and lipid-extracted algae. Energies, 7(1), 62-79. doi: 10.3390/en7010062
- Cao, J., Xiao, G., Xu, X., Shen, D. K., & Jin, B. S. (2013). Study on carbonization of lignin by TG-FTIR and high-temperature carbonization reactor. Fuel Processing Technology, 106, 41-47. doi: 10.1016/j.fuproc.2012.06.016
- Cheng, H. F., Liu, Q. F., Huang, M., Zhang, S. L., & Frost, R. L. (2013). Application of TG-FTIR to study SO2 evolved during the thermal decomposition of coal-derived pyrite. Thermochimica Acta, 555, 1-6. doi: 10.1016/j.tca.2012.12.025
- Cheng, S. C., Huang, A. M., Wang, S. N., & Zhang, Q. H. (2016). Effect of different heat treatment temperatures on the chemical composition and structure of chinese fir wood. Bioresources, 11(2), 4006-4016. doi: 10.15376/biores.11.2.4006-4016
- Donar, Y. O., Caglar, E., & Sinag, A. (2016). Preparation and characterization of agricultural waste biomass based hydrochars. Fuel, 183, 366-372. doi: 10.1016/j.fuel.2016.06.108
- Funke, A., & Ziegler, F. (2010). Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering. Biofuels Bioproducts & Biorefining-Biofpr, 4(2), 160-177. doi: 10.1002/bbb.198
- Ge, L. C., Feng, H. C., Xu, C., Zhang, Y. W., & Wang, Z. H. (2018). Effect of hydrothermal dewatering on the pyrolysis characteristics of Chinese low-rank coals. Applied Thermal Engineering, 141, 70-78. doi: 10.1016/j.applthermaleng.2018.05.098
- Ghanim, B. M., Pandey, D. S., Kwapinski, W., & Leahy, J. J. (2016). Hydrothermal carbonisation of poultry litter: Effects of treatment temperature and residence time on yields and chemical properties of hydrochars. Bioresource Technology, 216, 373-380. doi: 10.1016/j.biortech.2016.05.087
- Gil, M. V., & Rubiera, F. (2019). Coal and Biomass Cofiring: Fundamentals And Future Trends. In I. Suarez Ruiz, M. A. Diez, & F. Rubiera (Eds.), New Trends in Coal Conversion: Combustion, Gasification, Emissions, and Coking (pp. 117-140). Woodhead Publishing. doi: 10.1016/b978-0-08-102201-6.00005-4
- UNFCCC. (2021). Glasgow Climate Pact. https://unfccc.int/sites/default/files/resource/cma2021_L16_adv.pdf Erişim tarihi: 13.04.2022.
- Guo, F. H., He, Y., Hassanpour, A., Gardy, J., & Zhong, Z. P. (2020). Thermogravimetric analysis on the co-combustion of biomass pellets with lignite and bituminous coal. Energy, 197, 117147. doi: 10.1016/j.energy.2020.117147
- Heilmann, S. M., Molde, J. S., Timler, J. G., Wood, B. M., Mikula, A. L., Vozhdayev, G. V., Colosky, E. C., Spokas, K. A., & Valentas, K. J. (2014). Phosphorus reclamation through hydrothermal carbonization of animal manures. Environmental Science & Technology, 48(17), 10323-10329. doi: 10.1021/es501872k
- Hoekman, S. K., Broch, A., & Robbins, C. (2011). Hydrothermal carbonization (HTC) of lignocellulosic biomass. Energy & Fuels, 25(4), 1802-1810. doi: 10.1021/ef101745n
- Hou, J., Ma, Y., Li, S., & Shang, W. (2018). A comparative study on characteristics of sulfur and nitrogen transformation and gaseous emission for combustion of bituminous coal and char. Carbon Resources Conversion, 1(1), 86-93. doi: 10.1016/j.crcon.2018.04.004
- Huang, H. Y., Liu, J. Y., Liu, H., Evrendilek, F., & Buyukada, M. (2020). Pyrolysis of water hyacinth biomass parts: Bioenergy, gas emissions, and by-products using TG-FTIR and Py-GC/MS analyses. Energy Conversion and Management, 20, 1125527. doi: 10.1016/j.enconman.2020.112552
- IEA. (2021). Coal 2021, IEA, Paris. https://www.iea.org/reports/coal-2021 Erişim tarihi:13.04.2022.
- Kim, D., Park, S., & Park, K. Y. (2017). Upgrading the fuel properties of sludge and low rank coal mixed fuel through hydrothermal carbonization. Energy, 141, 598-602. doi: 10.1016/j.energy.2017.09.113
- Koottatep, T., Fakkaew, K., Tajai, N., Pradeep, S. V., & Polprasert, C. (2016). Sludge stabilization and energy recovery by hydrothermal carbonization process. Renewable Energy, 99, 978-985. doi: 10.1016/j.renene.2016.07.068
- Li, J. H., Xu, R. S., Wang, G. W., Zhang, J. L., Song, B., Liang, W., & Wang, C. A. (2021). Study on the feasibility and co-combustion mechanism of mixed injection of biomass hydrochar and anthracite in blast furnace. Fuel, 304, 121465. doi: 10.1016/j.fuel.2021.121465
- Lin, B. W., Zhou, J. S., Qin, Q. W., Song, X., & Luo, Z. Y. (2019). Thermal behavior and gas evolution characteristics during co-pyrolysis of lignocellulosic biomass and coal: A TG-FTIR investigation. Journal of Analytical and Applied Pyrolysis, 144, 104718. doi: 10.1016/j.jaap.2019.104718
- Liu, S. C., Zhao, H. Y., Liu, X. Y., Li, Y. H., Zhao, G. F., Wang, Y. G., & Zeng, M. (2020). Effect of hydrothermal upgrading on the pyrolysis and gasification characteristics of baiyinhua lignite and a mechanistic analysis. Fuel, 276, 118081. doi: 10.1016/j.fuel.2020.118081
- Liu, X. P., Wu, X. T., & Wang, J. (2018). Substantial upgrading of a high-ash lignite by hydrothermal treatment followed by Ca(OH)(2) digestion/acid leaching. Fuel, 222, 269-277. doi: 10.1016/j.fuel.2018.02.034
- Liu, Z. G., Quek, A., Hoekman, S. K., Srinivasan, M. P., & Balasubramanian, R. (2012). Thermogravimetric investigation of hydrochar-lignite co-combustion. Bioresource Technology, 123, 646-652. doi: 10.1016/j.biortech.2012.06.063
- Loeffler, D., & Anderson, N. (2014). Emissions tradeoffs associated with cofiring forest biomass with coal: A case study in Colorado, USA. Applied Energy, 113, 67-77. doi: 10.1016/j.apenergy.2013.07.011
- Lu, Y. D., Levine, R. B., & Savage, P. E. (2015). Fatty Acids for nutraceuticals and biofuels from hydrothermal carbonization of microalgae. Industrial & Engineering Chemistry Research, 54(16), 4066-4071. doi: 10.1021/ie503448u
- Mo, Q., Liao, J. J., Chang, L. P., Chaffee, A. L., & Bao, W. R. (2019). Transformation behaviors of C, H, O, N and S in lignite during hydrothermal dewatering process. Fuel, 236, 228-235. doi: 10.1016/j.fuel.2018.08.128
- Nonaka, M., Hirajima, T., & Sasaki, K. (2011). Upgrading of low rank coal and woody biomass mixture by hydrothermal treatment. Fuel, 90(8), 2578-2584. doi: 10.1016/j.fuel.2011.03.028
- Pala, M., Kantarli, I. C., Buyukisik, H. B., & Yanik, J. (2014). Hydrothermal carbonization and torrefaction of grape pomace: A comparative evaluation. Bioresource Technology, 161, 255-262. doi: 10.1016/j.biortech.2014.03.052
- Parshetti, G. K., Quek, A., Betha, R., & Balasubramanian, R. (2014). TGA-FTIR investigation of co-combustion characteristics of blends of hydrothermally carbonized oil palm biomass (EFB) and coal. Fuel Processing Technology, 118, 228-234. doi: 10.1016/j.fuproc.2013.09.010
- Petrovic, J., Perisic, N., Maksimovic, J. D., Maksimovic, V., Kragovic, M., Stojanovic, M., Lausevic, M., & Mihajlovic, M. (2016). Hydrothermal conversion of grape pomace: Detailed characterization of obtained hydrochar and liquid phase. Journal of Analytical and Applied Pyrolysis, 118, 267-277. doi: 10.1016/j.jaap.2016.02.010
- Reza, M. T., Lynam, J. G., Uddin, M. H., & Coronella, C. J. (2013). Hydrothermal carbonization: Fate of inorganics. Biomass & Bioenergy, 49, 86-94. doi: 10.1016/j.biombioe.2012.12.004
- Reza, M. T., Wirth, B., Luder, U., & Werner, M. (2014). Behavior of selected hydrolyzed and dehydrated products during hydrothermal carbonization of biomass. Bioresource Technology, 169, 352-361. doi: 10.1016/j.biortech.2014.07.010
- Saba, A., Saha, P., & Reza, M. T. (2017). Co-Hydrothermal Carbonization of coal-biomass blend: Influence of temperature on solid fuel properties. Fuel Processing Technology, 167, 711-720. doi: 10.1016/j.fuproc.2017.08.016
- Singh, S., Wu, C. F., & Williams, P. T. (2012). Pyrolysis of waste materials using TGA-MS and TGA-FTIR as complementary characterisation techniques. Journal of Analytical and Applied Pyrolysis, 94, 99-107. doi: 10.1016/j.jaap.2011.11.011
- Smith, A. M., & Ross, A. B. (2016). Production of bio-coal, bio-methane and fertilizer from seaweed via hydrothermal carbonisation. Algal Research-Biomass Biofuels and Bioproducts, 16, 1-11. doi: 10.1016/j.algal.2016.02.026
- Su, W., Ma, H. Z., Wang, Q. H., Li, J., & Ma, J. Y. (2013). Thermal behavior and gaseous emission analysis during co-combustion of ethanol fermentation residue from food waste and coal using TG-FTIR. Journal of Analytical and Applied Pyrolysis, 99, 79-84. doi: 10.1016/j.jaap.2012.10.023
- Tillman, D. A., Duong, D. N. B., & Harding, N. S. (2012). Blending Coal with Biomass Cofiring Biomass with Coal. In D. A. Tillman, D. N. B. Duong, & N. S. Harding (Eds.), Solid Fuel Blending: Principles, Practices, and Problems (pp. 125-200). Massachusetts, USA: Elsevier Butterworth-Heinemann.
- Tipo, R., Chaichana, C., Noda, R., & Chaiklangmuang, S. (2021). Influence of coal treatments on the Ni loading mechanism of Ni-loaded lignite char catalysts. Rsc Advances, 11(56), 35624-35643. doi: 10.1039/d1ra05046j
- Ullah, H., Liu, G. J., Yousaf, B., Ali, M. U., Abbas, Q., Zhou, C. C., & Rashid, A. (2018). Hydrothermal dewatering of low-rank coals: Influence on the properties and combustion characteristics of the solid products. Energy, 158, 1192-1203. doi: 10.1016/j.energy.2018.06.052
- Volli, V., Gollakota, A. R. K., & Shu, C. M. (2021). Comparative studies on thermochemical behavior and kinetics of lignocellulosic biomass residues using TG-FTIR and Py-GC/MS. Science of the Total Environment, 792, 148392. doi: 10.1016/j.scitotenv.2021.148392
- vom Eyser, C., Schmidt, T. C., & Tuerk, J. (2016). Fate and behaviour of diclofenac during hydrothermal carbonization. Chemosphere, 153, 280-286. doi: 10.1016/j.chemosphere.2016.03.051
- Wang, C. X., Bi, H. B., Lin, Q. Z., Jiang, X. D., & Jiang, C. L. (2020). Co-pyrolysis of sewage sludge and rice husk by TG-FTIR-MS: Pyrolysis behavior, kinetics, and condensable/non-condensable gases characteristics. Renewable Energy, 160, 1048-1066. doi: 10.1016/j.renene.2020.07.046
- Wang, X. D., Li, C. X., Zhang, B., Lin, J. J., Chi, Q. Q., & Wang, Y. (2016). Migration and risk assessment of heavy metals in sewage sludge during hydrothermal treatment combined with pyrolysis. Bioresource Technology, 221, 560-567. doi: 10.1016/j.biortech.2016.09.069
- Yang, M. S., Xie, Q., Wang, X., Dong, H., Zhang, H., & Li, C. Q. (2019). Lowering ash slagging and fouling tendency of high-alkali coal by hydrothermal pretreatment. International Journal of Mining Science and Technology, 29(3), 521-525. doi: 10.1016/j.ijmst.2018.05.007
- Yao, Z. L., Ma, X. Q., Wu, Z. D., & Yao, T. T. (2017). TGA-FTIR analysis of co-pyrolysis characteristics of hydrochar and paper sludge. Journal of Analytical and Applied Pyrolysis, 123, 40-48. doi: 10.1016/j.jaap.2016.12.031
- Zhai, Y. B., Liu, X. M., Zhu, Y., Peng, C., Wang, T. F., Zhu, L., Li, C. T., & Zeng, G. M. (2016). Hydrothermal carbonization of sewage sludge: The effect of feed-water pH on fate and risk of heavy metals in hydrochars. Bioresource Technology, 218, 183-188. doi: 10.1016/j.biortech.2016.06.085
- Zhang, N., Wang, G. W., Zhang, J. L., Ning, X. J., Li, Y. J., Liang, W., & Wang, C. (2020). Study on co-combustion characteristics of hydrochar and anthracite coal. Journal of the Energy Institute, 93(3), 1125-1137. doi: 10.1016/j.joei.2019.10.006
- Zhang, Z. M., Yang, J. T., Qian, J. Q., Zhao, Y., Wang, T. F., & Zhai, Y. B. (2021). Biowaste hydrothermal carbonization for hydrochar valorization: Skeleton structure, conversion pathways and clean biofuel applications. Bioresource Technology, 324, 124686. doi: 10.1016/j.biortech.2021.124686
- Zhao, S. X., Ta, N., & Wang, X. D. (2017). Effect of temperature on the structural and physicochemical properties of biochar with apple tree branches as feedstock material. Energies, 10(9), 1293. doi: 10.3390/en10091293
- Zheng, Q. X., Morimoto, M., Fouquet, T., Sato, H., & Takanohashi, T. (2018). Effect of hydrothermal conditions on production of coal organic microspheres. Fuel, 234, 1301-1312. doi: 10.1016/j.fuel.2018.08.002