Research Article
BibTex RIS Cite

Investigation of the Effect of Tunnel Geometry on Deformations in Shallow and Stratified Rock Formation

Year 2022, Volume: 27 Issue: 3, 548 - 556, 25.12.2022
https://doi.org/10.53433/yyufbed.1090576

Abstract

Deformations in the tunnel occur as a result of surcharge load from the structures on the surface, overloading, internal stresses in the rock or soil, and other factors. In-tunnel deformation measurement is important to determine the magnitude of plastic deformation in the tunnel and is an important step in monitoring tunnel safety. In this study, three-dimensional and non-linear behavior of tunnels designed as horseshoe or egg shape in a groundwater environment in a four-layered rock formation and gradually excavated with NATM (New Austrian Tunneling Method) principle were analyzed using the finite element method. The tunnel crown and wall, which were exposed to different loading conditions according to the excavation steps, were examined in detail in terms of permanent deformations. In addition, thanks to the deformation curves, the permanent deformations occurring along the critical sections of the tunnel during all excavation stages were compared relatively for both tunnel geometries. It has been determined that it is more advantageous to choose the tunnel geometry as egg-shaped rather than horseshoe type for reducing the settlement and the convergence in the shallow and layered rock environment.

References

  • Athar, M. F., Zaid, M., & Sadique, M. R. (2019, February). Stability of different shapes of tunnels in weathering stages of basalt. Proceedings of National Conference on Advances on Structural Technology, NIT Silchar, India.
  • Carranza-Torres, C., & Fairhurst, C. (1999). The elasto-plastic response of underground excavations in rock masses that satisfy the Hoek-Brown failure criterion. International Journal of Rock Mechanics and Mining Sciences, 36, 777–809. doi: 10.1016/S0148-9062(99)00047-9
  • Chehade, F. H., & Shahrour, I. (2008). Numerical analysis of the interaction between twin-tunnels: influence of the relative position and construction procedure. Tunnelling and Underground Space Technology, 23, 210-214. doi: 10.1016/j.tust.2007.03.004
  • Gao, C. L., Li, S. C., Wang, J., Li, L. P., & Lin, P. (2018). The risk assessment of tunnels based on grey correlation and entropy weight method. Geotechnical and Geological Engineering, 36(3), 1621-1631. doi: 10.1007/s10706-017-0415-5
  • Gupta, A. S. (1997). Engineering behavior and classification of weathering rocks. (PhD), Indian Institute of Technology, Delhi, India.
  • Li, S. C., Zhou, Z. Q., Li, L. P., Xu, Z. H., Zhang, Q. Q., & Shi, S. S. (2013). Risk assessment of water inrush in karst tunnels based on attribute synthetic evaluation system. Tunnelling and Underground Space Technology, 38, 50-58. doi: 10.1016/j.tust.2013.05.001
  • Meguid, M. A., Saada, O., Nunes, M. A., & Mattar, J. (2008). Physical modeling of tunnels in soft ground: A review. Tunnelling and Underground Space Technology, 23, 185-198. doi: 10.1016/j.tust.2007.02.003
  • Mishra, S., Rao, S., Gupta, N. K., & Kumar, A. (2018). Damage to shallow tunnels in different geomaterials under static and dynamic loading. Thin-Walled Structures, 126, 138-149. doi: 10.1016/j.tws.2017.11.051
  • Moussaeia, N., Sharifzadehb, M., Sahriarc, K., & Khosravia, M. H. (2019). A new classification of failure mechanisms at tunnels in stratified rock masses through physical and numerical modeling. Tunnelling and Underground Space Technology, 91, 103017. doi: 10.1016/j.tust.2019.103017
  • Naqvi, M. W., Akhtar, M. F., Zaid, M., & Sadique, M. R. (2020). Effect of superstructure on the stability of underground tunnels. Transportation Infrastructure Geotechnology, 8, 142-161. doi: 10.1007/s40515-020-00119-6
  • Ouchi, A. M., Pakalnis, R., & Brady, T. M. (2004, April). Update of span design curve for weak rock masses. Proceedings of the 99th annual AGM-CIM conference, Edmonton, AB, Canada.
  • Öztürk, H. T. (2007). Tüneller ve Tasarım İlkeleri. (M.Sc), Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü, İnşaat Mühendisliği Bölümü, Trabzon, Türkiye.
  • Sakurai, S. (1983, September). Displacement measurements associated with the design of underground openings. Proceedings of international symposium on field measurements in geo-mechanics, Zurich, Switzerland.
  • Song, S., Li, S., Li, L., Shi, S., Zhou, Z., Liu, Z., ... & Sun, H. (2019). Model test study on vibration blasting of large cross-section tunnel with small clearance in horizontal stratified surrounding rock. Tunnelling and Underground Space Technology, 92, 103013. doi: 10.1016/j.tust.2019.103013
  • Wang, J., Li, S. C., Li, L. P., Lin, P., Xu, Z. H., & Gao, C. L. (2019). Attribute recognition model for risk assessment of water inrush. Bulletin of Engineering Geology and the Environment, 78(2), 1057-1071. doi: 10.1007/s10064-017-1159-4
  • Zaid, M., & Mishra, S. (2021). Numerical analysis of shallow tunnels under static loading: A finite element approach. Geotechnical and Geological Engineering, 39, 2581-2607. doi: 10.1007/s10706-020-01647-1

Tünel Geometrisinin Deformasyonlar Üzerindeki Etkisinin Sığ ve Tabakalı Kaya Ortamında İncelenmesi

Year 2022, Volume: 27 Issue: 3, 548 - 556, 25.12.2022
https://doi.org/10.53433/yyufbed.1090576

Abstract

Tünel içindeki deformasyonlar, üst yapıdan gelen sürşarj yükü, aşırı yükleme, kayaç veya zemin biriminde oluşan içsel gerilmeler ile diğer faktörlerin bir sonucu olarak ortaya çıkar. Tünel içi deformasyon ölçümü, tüneldeki plastik şekil değiştirmenin büyüklüğünü belirleyebilmek için önemlidir ve tünel güvenliğinin izlenmesinde önemli bir safhayı oluşturur. Bu çalışmada, dört tabakalı bir kaya formasyonunda ve yeraltı suyu etkisinde bulunan, at nalı veya yumurta şeklinde tasarlanan, NATM (Yeni Avusturya Tünel Açma Metodu) tekniği ile kademeli olarak açılacak olan tünellerin üç boyutlu ve doğrusal olmayan davranışları sonlu elemanlar yöntemi ile analiz edilmiştir. Kazı adımlarına göre farklı yükleme koşullarına maruz kalan taç ve tünel çevresinde meydana gelen kalıcı deformasyonlar ayrıntılı olarak incelenmiştir. Ayrıca her iki tünel geometrisinde, bütün kazı aşamalarında tünelin kritik kesitleri boyunca oluşacak olan kalıcı şekil değiştirmeler, deformasyon eğrileri sayesinde göreli olarak karşılaştırılmıştır. Sığ ve tabakalı kaya ortamında tasman ve konverjans miktarının azaltılmasında, tünel geometrisinin at nalı tipi yerine yumurta şeklinde seçilmesinin daha avantajlı olduğu tespit edilmiştir.

References

  • Athar, M. F., Zaid, M., & Sadique, M. R. (2019, February). Stability of different shapes of tunnels in weathering stages of basalt. Proceedings of National Conference on Advances on Structural Technology, NIT Silchar, India.
  • Carranza-Torres, C., & Fairhurst, C. (1999). The elasto-plastic response of underground excavations in rock masses that satisfy the Hoek-Brown failure criterion. International Journal of Rock Mechanics and Mining Sciences, 36, 777–809. doi: 10.1016/S0148-9062(99)00047-9
  • Chehade, F. H., & Shahrour, I. (2008). Numerical analysis of the interaction between twin-tunnels: influence of the relative position and construction procedure. Tunnelling and Underground Space Technology, 23, 210-214. doi: 10.1016/j.tust.2007.03.004
  • Gao, C. L., Li, S. C., Wang, J., Li, L. P., & Lin, P. (2018). The risk assessment of tunnels based on grey correlation and entropy weight method. Geotechnical and Geological Engineering, 36(3), 1621-1631. doi: 10.1007/s10706-017-0415-5
  • Gupta, A. S. (1997). Engineering behavior and classification of weathering rocks. (PhD), Indian Institute of Technology, Delhi, India.
  • Li, S. C., Zhou, Z. Q., Li, L. P., Xu, Z. H., Zhang, Q. Q., & Shi, S. S. (2013). Risk assessment of water inrush in karst tunnels based on attribute synthetic evaluation system. Tunnelling and Underground Space Technology, 38, 50-58. doi: 10.1016/j.tust.2013.05.001
  • Meguid, M. A., Saada, O., Nunes, M. A., & Mattar, J. (2008). Physical modeling of tunnels in soft ground: A review. Tunnelling and Underground Space Technology, 23, 185-198. doi: 10.1016/j.tust.2007.02.003
  • Mishra, S., Rao, S., Gupta, N. K., & Kumar, A. (2018). Damage to shallow tunnels in different geomaterials under static and dynamic loading. Thin-Walled Structures, 126, 138-149. doi: 10.1016/j.tws.2017.11.051
  • Moussaeia, N., Sharifzadehb, M., Sahriarc, K., & Khosravia, M. H. (2019). A new classification of failure mechanisms at tunnels in stratified rock masses through physical and numerical modeling. Tunnelling and Underground Space Technology, 91, 103017. doi: 10.1016/j.tust.2019.103017
  • Naqvi, M. W., Akhtar, M. F., Zaid, M., & Sadique, M. R. (2020). Effect of superstructure on the stability of underground tunnels. Transportation Infrastructure Geotechnology, 8, 142-161. doi: 10.1007/s40515-020-00119-6
  • Ouchi, A. M., Pakalnis, R., & Brady, T. M. (2004, April). Update of span design curve for weak rock masses. Proceedings of the 99th annual AGM-CIM conference, Edmonton, AB, Canada.
  • Öztürk, H. T. (2007). Tüneller ve Tasarım İlkeleri. (M.Sc), Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü, İnşaat Mühendisliği Bölümü, Trabzon, Türkiye.
  • Sakurai, S. (1983, September). Displacement measurements associated with the design of underground openings. Proceedings of international symposium on field measurements in geo-mechanics, Zurich, Switzerland.
  • Song, S., Li, S., Li, L., Shi, S., Zhou, Z., Liu, Z., ... & Sun, H. (2019). Model test study on vibration blasting of large cross-section tunnel with small clearance in horizontal stratified surrounding rock. Tunnelling and Underground Space Technology, 92, 103013. doi: 10.1016/j.tust.2019.103013
  • Wang, J., Li, S. C., Li, L. P., Lin, P., Xu, Z. H., & Gao, C. L. (2019). Attribute recognition model for risk assessment of water inrush. Bulletin of Engineering Geology and the Environment, 78(2), 1057-1071. doi: 10.1007/s10064-017-1159-4
  • Zaid, M., & Mishra, S. (2021). Numerical analysis of shallow tunnels under static loading: A finite element approach. Geotechnical and Geological Engineering, 39, 2581-2607. doi: 10.1007/s10706-020-01647-1
There are 16 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Kübra Nur Adlım 0000-0001-8590-0371

Sinem Bozatlı 0000-0002-8285-6050

Yavuz Abut 0000-0003-4249-7791

Early Pub Date December 25, 2022
Publication Date December 25, 2022
Submission Date March 21, 2022
Published in Issue Year 2022 Volume: 27 Issue: 3

Cite

APA Adlım, K. N., Bozatlı, S., & Abut, Y. (2022). Tünel Geometrisinin Deformasyonlar Üzerindeki Etkisinin Sığ ve Tabakalı Kaya Ortamında İncelenmesi. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 27(3), 548-556. https://doi.org/10.53433/yyufbed.1090576