Research Article
BibTex RIS Cite

Focusing on Some Physical Properties of Li2TlIn: an Ab Initio Study

Year 2022, Volume: 27 Issue: 3, 521 - 534, 25.12.2022
https://doi.org/10.53433/yyufbed.1101619

Abstract

Structural, electronic, elastic and dynamic properties of Li2TlIn were studied for the ground state (i. e. P = 0 kbar) and under pressure value of 4.53 kbar, using Density Functional Theory (DFT). The electronic band and density of states (DOS) calculations reveal that Li2TlIn crystal is in a metallic structure. Focusing on the elastic properties has shown that this compound is a ductile and mechanically stable material for both ground state and under pressure of 4.53 kbar. In addition, the phonon dispersion curve and the phonon DOS were obtained by density functional perturbation theory. Li2TlIn has negative frequency values both in the phonon distribution curve and phonon DOS graphs which indicate that Li2TlIn compound is dynamically unstable in the ground state. However, our results show that, when a pressure of 4.53 kbar is applied, the Li2TlIn crystal becomes dynamically stable.

References

  • Aroyo, M. I., Perez-Mato, J. M., Capillas, C., Kroumova, E., Ivantchev, S., Madariaga, G., & Kirov, A. (2006). Bilbao crystallographic server: I. Databases and crystallographic computing programs. Zeitschrift für Kristallographie, 221(1), 15-27. doi: 10.1524/zkri.2006.221.1.15
  • Ayhan, S., & Kavak Balcı, G. (2019). Ab-initio calculations structural electronic and elastic properties of LiX2Ge (X = Rh, Cu, Ni, Pd) Heusler compounds. Materials Research Express, 6, 0865e9. doi: 10.1088/2053-1591/ab250c
  • Birch, F. (1947). Finite Elastic Strain of Cubic Crystals. Physical Review, 71, 809-824. doi: 10.1103/PhysRev.71.809
  • Blum, C. G. F., Ouardi, S., Fecher, G. H., Balke, B., Kozina, X., Stryganyuk, G., Ueda, S., Kobayashi, K., Fesler, C., Wurmehl, S., & Büchner, B. (2011). Exploring the details of the martensite-austenite phase transition of the shape memory Heusler compound Mn2NiGa by hard x-ray photoelectron spectroscopy, magnetic and transport measurements. Applied Physics Letters, 98, 252501. doi: 10.1063/1.3600663
  • Bosu, S., Sakuraba, Y., Uchida, K., Saito, K., Ota, T., Saitoh, E., & Takanashi, K. (2011). Spin seeback effect in thin films of the Heusler compound Co2MnSi. Physical Review B, 83, 224401. doi: 10.1103/PhysRevB.83.224401
  • Chen, S., & Ren, Z. (2013). Recent progress of half-Heusler for moderate temperature thermoelectric applications. Materials Today, 16(10), 387-395. doi: 10.1016/j.mattod.2013.09.015
  • Dogan, E. K., & Gulebaglan, S. E. (2021a). Some properties of LiInSi half-Heusler alloy via density functional theory. Bulletin of Materials Science, 44, 208. doi: 10.1007/s12034-021-02499-y
  • Dogan, E. K., & Gulebaglan, S. E. (2021b). Lattice dynamics and electronic properties of heusler alloys Li2AlX (X = Ga, In): a comparison study. Chinese Journal of Chemical Physics, 34, 173-178. doi: 10.1063/1674-0068/cjcp2008151
  • Dogan, E. K., & Gulebaglan, S. E. (2022). A computational estimation on structural, electronic, elastic, optic and dynamic properties of Li2TlA (A = Sb and Bi): First-principles calculations. Materials Science in Semiconductor Processing, 138, 106302. doi: 10.1016/j.mssp.2021.106302
  • Galdun, L., Vega, V., Vargova, Z., Barriga-Castro, E. D., Luna, C., Varga, R., & Prida, V. M. (2018). Intermetalic Co2FeIn Heusler Alloy Nanowires for spintronic Applications. ACS Applied Nano Materials, 1(12), 7066-7074. doi: 10.1021/acsanm.8b01836
  • Galehgirian, S., & Ahmadian F. (2015). First principles study on half-metalilic properties of Heusler compounds Ti2VZ (Z = Al, Ga and In). Solid States Communications, 202, 52-57. doi: 10.1016/j.ssc.2014.10.017
  • Gavrilova, N. D., Malyshkina, I. A., & Novik, O. D. (2021). Hydrogen band as a trigger of ferroelectric-like phase transition in lithium-thallium tartrate monohydrate. Ferroelectrics, 582, 1-11. doi: 10.1080/00150193.2021.1951029
  • Giannozzi, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M., Dabo, I., Corso, A. D., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Samos, L. M., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A. P., Smogunov, A., Umari, P., & Wentzcovitch, R. M. (2009). QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of Physics: Condensed Matter, 21, 395502. doi: 10.1088/0953-8984/21/39/395502
  • Gilleßen, M., & Dronskowski, R. (2010). A combinatorial study of inverse Heusler alloys by first-principles computational methods. Journal of Computational Chemistry, 31, 612-619. doi: 10.1002/jcc.21358.
  • Gilman, J. J. (1997). Chemical and physical “hardness”. Materials Research Innovations, 1, 71–76.
  • Gonze, X., Beuken, J. M., Caracas, R., Detraux, F., Fuch, M., Rignanese, G. M., Sindic, L., Verstrate, M., Zerah, G., Jollet, F., Torrent, M., Roy, A., Mikami, M., Ghosez, P., Raty, J. Y., & Allan, D. C. (2002). First-principles computation of material properties: the ABINIT software Project. Computational Materials Science, 25, 478-492. doi: 10.1016/S0927-0256(02)00325-7
  • Gupta, Y., Sinha, M. M., & Verma, S. S. (2019, June). Structural and lattice dynamical study of half Heusler alloys RuMnX (X = P, As). Proceedings of the International Conference on Advanced Materials: ICAM, India.
  • Gupta, Y., Sinha, M. M., & Verma, S. S. (2020). Theoretical study of structural, electronic and lattice dynamical properties of novel AlNiP half-Heusler alloy. Philosophical Magazine, 100, 2785. doi:10.1080/14786435.2020.1792570
  • Gupta, Y., Sinha, M. M., & Verma, S. S. (2021). Investigations of mechanical and thermoelectric properties of ‘AlNiP’ novel half-Heusler alloy. Materials Chemistry and Physics, 265, 124518. doi:10.1016/j.matchemphys.2021.124518.
  • Gupta, Y., Sinha, M. M., & Verma, S. S. (2022). Effect of spin-polarization on structural, electronic, and lattice dynamical properties of ‘MnY2Ga’ full Heusler alloy. Physica B, 624, 413425. doi: 10.1016/j.physb.2021.413425
  • He, J., Amsler, M., Xia, Y., Naghavi, S. S., Hegde, V. I., Hao, S., Goadecter, S., Ozolins, V., & Wolverton, C. (2016). Ultralow Thermal Conductivity in Full Heusler Semiconductors. Physical Review Letters, 117, 046602. doi:10.1103/PhysRevLett.117.046602
  • Heusler, F. (1903). Über magnetische manganlegierungen. Verhandlungen der DPG, 5, 219-224.
  • Hussain, M. K., Hassan, O. T., & Algubili, A. M. (2018). Investigation of the electronic and magnetic structures of Zr2NiZ (Z = Ga, In, B) Heusler compounds; first principles study. Journal of Electronic Materials, 47, 6221. doi:10.1007/s11664-018-6512-2
  • Jain, A., Ong, S. P., Hautier, G., Chen, W., Richards, W., Davidson, D. S., Cholia, S., Gunter, D., Skinner, D., Ceder, G., & Persson, K. (2013). Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Materials, 1, 011002. doi: 10.1063/1.4812323
  • Jolayemi, O. R., Adetunji, B. I., Ozafile, O. E., & Adebayo, G. A. (2021). Investigation of the thermoelectric properties of Lithium-Aluminium-Silicide (LiAlSi) compound from first principles calculations. Computational Condensed Matter, 27, e00551. doi: 10.1016/j.cocom.2021.e00551
  • Kamlesh, P. K., Gautam, R., Kumari, S., & Verma, A. S. (2021). Investigation of inherent properties of XScZ (X = Li, Na, K; Z = C, Si, Ge) half Heusler compounds: Appropriate for photovoltaic and thermoelectric applications. Physica B: Condensed Matter, 615, 412536. doi: 10.1016/j.physb.2020.412536
  • Khelfaoui, F., Boudali, A., Bentayeb, A., El Hachemi Omari, L., & Abderrahmane, Y. S. (2018). Investigation of structural, elastic, electronic, magnetic and transport properties of the Heusler compounds Zr2PdZ (Z = Al, Ga and In): FP-LAPW method. Acta Physica Polanica A, 133, 157-163. doi:10.12693/APhysPolA.133.157
  • Kohn, W., & Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Physical Review, 140, 1133-1138. doi: 10.1103/PhysRev.140.A1133
  • Lei, F., Tang, C., Wang, S., & He, W. (2011). Half metallic full Heusler compound Ti2NiAl: A first principles study. Journal of Alloys and Compounds, 509, 5187-5189. doi:10.1016/j.jallcom.2011.02.002
  • Li, Y., Liu, G. D., Wang, X. T., Zhao, W. Q., Liu, E. K., Xi, X. K., Wang, W. H., Wu, G. H., & Dai, X. F. (2018). Electronic structures magnetic properties and half-matallicity of Heusler compounds Hf2VZ (Z = Ga, In, Tl, Si, Ge, Sn and Pb): First principles calculations. Journal of Superconductivity and Novel Magnetism, 31, 3063-3074. doi: 10.1007/s10948-017-4544-0
  • Majumder, R., & Mitro, S. K. (2020). Justification of crystal stability and origin of transport properties in ternary half-Heusler ScPtBi. RSC Advances, 10, 37482. doi: 10.1039/d0ra06826h
  • Majumder, R., Mitro, S. K., & Bairagi B. (2020). Influence of metalloid antimony on the physical properties of palladium-based half-Heusler compared to the metallic bismuth: A first-principle study. Journal of Alloys and Compounds, 836,155395. doi: 10.1016/j.jallcom.2020.155395
  • Monkhorst, H., & Pack, J. D. (1976). Special points for Brillouin-zone integrations. Physical Review B, 13, 5188-5192. doi: 10.1103/PhysRevB.13.5188
  • Mouhat, F., & Coudert, F. X. (2014). Necessary and sufficient elastic stability conditions in various crystal systems. Physical Review B, 90, 224104. doi: 10.1103/PhysRevB.90.224104
  • Nielsen, M. D., Ozolins, V., & Heremans, J. P. (2013). Lone pair electrons minimize lattice thermal conductivity. Energy & Environmental Science, 6, 570-578. doi:10.1039/c2ee23391f
  • Nye, J. F. (1985). Physical Properties of Crystals: Their Representation by Tensors and Matrices. New York: Oxford University Press.
  • Pauly, H., Weiss, A., & Witte, H. (1968). The crystal structure of the ternary intermetallice phases Li2 EX (E = Cu,Ag,Au; X = Al,Ga,In,Tl1,S1,Ge, Sn,Pb,Sb,Bi). Zeitschrift für Metallkunde, 59, 47. doi: 10.1515/ijmr-1968-590106
  • Perdew, J. P., Burke, K., & Ernzerhof, M. (1997). Generalized gradient approximation made simple. Physical Review Letters, 78, 1396. doi: 10.1103/PhysRevLett.77.3865
  • Rahman, N., Husain, M., Yang, J., Murtaza, G., Sjjad, M., Habib, A., Zulfiqar, A. K., Ul Haq, M., Rauf, A., Nisar, M., & Khan, M. Y. (2020). First principles study of structural electronic elastic and magnetic properties of Half- Heusler Compounds ScTiX (X = Si, Ge, Pb, In, Sb and Tl). Journal of Superconductivity and Novel Magnetism, 33, 3915. doi: 10.1007/s10948-020-05652-6
  • Rai, D. P. R., Sandeep, Shankar, A., Sakhya, A. P., Sinha, T. P., Khenata, R., Ghimire, M. P., & Thapa, R. K. (2016). Electronic and magnetic properties of X2YZ and XYZ Heusler compounds a comparative study of density functional teory with different exchange correlation potentials. Materials Research Express, 3, 075022. doi: 10.1088/2053-1591/3/7/075022
  • Rasheduzzaman, Md., Hossain, K. M., Mitro, S. K., Hadi, M. A., Modak, J. K., & Hasan, Md. Z. (2021). Structural, mechanical, thermal, and optical properties of inverse-Heusler alloys Cr2CoZ (Z=Al, In): A first-principles investigation. Physics Letters A, 385, 126967. doi: 10.1016/j.physleta.2020.126967
  • Shah, S. H., Khan, S. H., Laref, A., & Murtaza, G. (2018). Optoelectronic and transport properties of LiBZ (B = Al, In, Ga and Z = Si, Ge, Sn) semiconductors. Journal of Solid State Chemistry, 258, 800-808. doi: 10.1016/j.jssc.2017.12.014
  • Siemek, K., Yelisseyev, A. P., Horoek, P., Lobanov, S. I., Goloshumova, A. A., Belushkin, A. V., & Isaenko, L. I. (2020). Optical and positron annihilation studies of structural defects in LiInSe2 single crystals. Optical Materials, 109, 110262. doi: 10.1016/j.optmat.2020.110262
  • Toher, C., Plata, J. J., Levy, O., de Jong, M., Asta, M., Nardelli, M. B., & Curtarolo, S. (2014). High-throughput computational screening of thermal conductivity, Debye temperature, and Gr ̈uneisen parameter using a quasiharmonic Debye model. Physical Review, 90, 174107. doi: 10.1103/physrevb.90.174107
  • Turney, J. E., McGaughey, A. J. H., & Amon, C. H. (2009). Assessing the applicability of quantum corrections to classical thermal conductivity predictions. Physical Review B, 79, 224305. doi: 10.1103/physrevb.79.224305
  • Uzunok, H. Y., Karaca, E., Bağcı, S., & Tütüncü, H. M. (2020). Physical properties and superconductivity of Heusler compound LiGa2Rh: A first principles calculation. Solid State Communications, 311, 113859. doi:10.1016/j.ssc.2020.113859
  • Yahagi, M., Kuriyama, K., & Iwamura, K. (1975). X-ray study of LiAl1-xInx and Li2AlIn. Japanese Journal of Applied Physics, 4, 405.
  • Zipporah, M., Rohit, P., Robinson, M., Julius, M., Ralph, S., & Arti, K. (2017). First principles investigation of structural electronic and magnetic properties of Co2VIn and CoVIn Heusler compounds. AIP Advances, 7, 055705. doi: 10.1063/1.4973763

Li2TlIn'in Bazı Fiziksel Özelliklerine Odaklanmak: Bir Temel İlkeler Çalışması

Year 2022, Volume: 27 Issue: 3, 521 - 534, 25.12.2022
https://doi.org/10.53433/yyufbed.1101619

Abstract

Li2TlIn'in yapısal, elektronik, elastik ve dinamik özellikleri, taban durum
(P = 0 kbar) ve 4.53 kbar basınç değeri için, Yoğunluk Fonksiyonel Teorisi (DFT) kullanılarak incelenmiştir. Elektronik bant ve durum yoğunluğu hesaplamaları, Li2TlIn kristalinin metalik bir yapıda olduğunu ortaya koymaktadır. Elastik özelliklere odaklanmak, bu bileşiğin hem taban durumu hem de 4.53 kbar basınç altında esnek yapıda ve mekanik olarak kararlı bir malzeme olduğunu göstermiştir. Ayrıca yoğunluk fonksiyonel pertürbasyon teorisi ile fonon dağılım eğrisi ve durumların fonon yoğunluğu elde edilmiştir. Li2TlIn, hem fonon dağılım eğrisinde hem de durumların fonon yoğunluğu grafiklerinde negatif frekans değerlerine sahiptir ve bu, Li2TlIn bileşiğinin taban durumunda dinamik olarak kararsız olduğunu gösterir. Ancak, sonuçlarımız 4.53 kbar'lık bir basınç uygulandığında Li2TlIn kristalinin dinamik olarak kararlı hale geldiğini göstermektedir.

References

  • Aroyo, M. I., Perez-Mato, J. M., Capillas, C., Kroumova, E., Ivantchev, S., Madariaga, G., & Kirov, A. (2006). Bilbao crystallographic server: I. Databases and crystallographic computing programs. Zeitschrift für Kristallographie, 221(1), 15-27. doi: 10.1524/zkri.2006.221.1.15
  • Ayhan, S., & Kavak Balcı, G. (2019). Ab-initio calculations structural electronic and elastic properties of LiX2Ge (X = Rh, Cu, Ni, Pd) Heusler compounds. Materials Research Express, 6, 0865e9. doi: 10.1088/2053-1591/ab250c
  • Birch, F. (1947). Finite Elastic Strain of Cubic Crystals. Physical Review, 71, 809-824. doi: 10.1103/PhysRev.71.809
  • Blum, C. G. F., Ouardi, S., Fecher, G. H., Balke, B., Kozina, X., Stryganyuk, G., Ueda, S., Kobayashi, K., Fesler, C., Wurmehl, S., & Büchner, B. (2011). Exploring the details of the martensite-austenite phase transition of the shape memory Heusler compound Mn2NiGa by hard x-ray photoelectron spectroscopy, magnetic and transport measurements. Applied Physics Letters, 98, 252501. doi: 10.1063/1.3600663
  • Bosu, S., Sakuraba, Y., Uchida, K., Saito, K., Ota, T., Saitoh, E., & Takanashi, K. (2011). Spin seeback effect in thin films of the Heusler compound Co2MnSi. Physical Review B, 83, 224401. doi: 10.1103/PhysRevB.83.224401
  • Chen, S., & Ren, Z. (2013). Recent progress of half-Heusler for moderate temperature thermoelectric applications. Materials Today, 16(10), 387-395. doi: 10.1016/j.mattod.2013.09.015
  • Dogan, E. K., & Gulebaglan, S. E. (2021a). Some properties of LiInSi half-Heusler alloy via density functional theory. Bulletin of Materials Science, 44, 208. doi: 10.1007/s12034-021-02499-y
  • Dogan, E. K., & Gulebaglan, S. E. (2021b). Lattice dynamics and electronic properties of heusler alloys Li2AlX (X = Ga, In): a comparison study. Chinese Journal of Chemical Physics, 34, 173-178. doi: 10.1063/1674-0068/cjcp2008151
  • Dogan, E. K., & Gulebaglan, S. E. (2022). A computational estimation on structural, electronic, elastic, optic and dynamic properties of Li2TlA (A = Sb and Bi): First-principles calculations. Materials Science in Semiconductor Processing, 138, 106302. doi: 10.1016/j.mssp.2021.106302
  • Galdun, L., Vega, V., Vargova, Z., Barriga-Castro, E. D., Luna, C., Varga, R., & Prida, V. M. (2018). Intermetalic Co2FeIn Heusler Alloy Nanowires for spintronic Applications. ACS Applied Nano Materials, 1(12), 7066-7074. doi: 10.1021/acsanm.8b01836
  • Galehgirian, S., & Ahmadian F. (2015). First principles study on half-metalilic properties of Heusler compounds Ti2VZ (Z = Al, Ga and In). Solid States Communications, 202, 52-57. doi: 10.1016/j.ssc.2014.10.017
  • Gavrilova, N. D., Malyshkina, I. A., & Novik, O. D. (2021). Hydrogen band as a trigger of ferroelectric-like phase transition in lithium-thallium tartrate monohydrate. Ferroelectrics, 582, 1-11. doi: 10.1080/00150193.2021.1951029
  • Giannozzi, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M., Dabo, I., Corso, A. D., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Samos, L. M., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A. P., Smogunov, A., Umari, P., & Wentzcovitch, R. M. (2009). QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of Physics: Condensed Matter, 21, 395502. doi: 10.1088/0953-8984/21/39/395502
  • Gilleßen, M., & Dronskowski, R. (2010). A combinatorial study of inverse Heusler alloys by first-principles computational methods. Journal of Computational Chemistry, 31, 612-619. doi: 10.1002/jcc.21358.
  • Gilman, J. J. (1997). Chemical and physical “hardness”. Materials Research Innovations, 1, 71–76.
  • Gonze, X., Beuken, J. M., Caracas, R., Detraux, F., Fuch, M., Rignanese, G. M., Sindic, L., Verstrate, M., Zerah, G., Jollet, F., Torrent, M., Roy, A., Mikami, M., Ghosez, P., Raty, J. Y., & Allan, D. C. (2002). First-principles computation of material properties: the ABINIT software Project. Computational Materials Science, 25, 478-492. doi: 10.1016/S0927-0256(02)00325-7
  • Gupta, Y., Sinha, M. M., & Verma, S. S. (2019, June). Structural and lattice dynamical study of half Heusler alloys RuMnX (X = P, As). Proceedings of the International Conference on Advanced Materials: ICAM, India.
  • Gupta, Y., Sinha, M. M., & Verma, S. S. (2020). Theoretical study of structural, electronic and lattice dynamical properties of novel AlNiP half-Heusler alloy. Philosophical Magazine, 100, 2785. doi:10.1080/14786435.2020.1792570
  • Gupta, Y., Sinha, M. M., & Verma, S. S. (2021). Investigations of mechanical and thermoelectric properties of ‘AlNiP’ novel half-Heusler alloy. Materials Chemistry and Physics, 265, 124518. doi:10.1016/j.matchemphys.2021.124518.
  • Gupta, Y., Sinha, M. M., & Verma, S. S. (2022). Effect of spin-polarization on structural, electronic, and lattice dynamical properties of ‘MnY2Ga’ full Heusler alloy. Physica B, 624, 413425. doi: 10.1016/j.physb.2021.413425
  • He, J., Amsler, M., Xia, Y., Naghavi, S. S., Hegde, V. I., Hao, S., Goadecter, S., Ozolins, V., & Wolverton, C. (2016). Ultralow Thermal Conductivity in Full Heusler Semiconductors. Physical Review Letters, 117, 046602. doi:10.1103/PhysRevLett.117.046602
  • Heusler, F. (1903). Über magnetische manganlegierungen. Verhandlungen der DPG, 5, 219-224.
  • Hussain, M. K., Hassan, O. T., & Algubili, A. M. (2018). Investigation of the electronic and magnetic structures of Zr2NiZ (Z = Ga, In, B) Heusler compounds; first principles study. Journal of Electronic Materials, 47, 6221. doi:10.1007/s11664-018-6512-2
  • Jain, A., Ong, S. P., Hautier, G., Chen, W., Richards, W., Davidson, D. S., Cholia, S., Gunter, D., Skinner, D., Ceder, G., & Persson, K. (2013). Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Materials, 1, 011002. doi: 10.1063/1.4812323
  • Jolayemi, O. R., Adetunji, B. I., Ozafile, O. E., & Adebayo, G. A. (2021). Investigation of the thermoelectric properties of Lithium-Aluminium-Silicide (LiAlSi) compound from first principles calculations. Computational Condensed Matter, 27, e00551. doi: 10.1016/j.cocom.2021.e00551
  • Kamlesh, P. K., Gautam, R., Kumari, S., & Verma, A. S. (2021). Investigation of inherent properties of XScZ (X = Li, Na, K; Z = C, Si, Ge) half Heusler compounds: Appropriate for photovoltaic and thermoelectric applications. Physica B: Condensed Matter, 615, 412536. doi: 10.1016/j.physb.2020.412536
  • Khelfaoui, F., Boudali, A., Bentayeb, A., El Hachemi Omari, L., & Abderrahmane, Y. S. (2018). Investigation of structural, elastic, electronic, magnetic and transport properties of the Heusler compounds Zr2PdZ (Z = Al, Ga and In): FP-LAPW method. Acta Physica Polanica A, 133, 157-163. doi:10.12693/APhysPolA.133.157
  • Kohn, W., & Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Physical Review, 140, 1133-1138. doi: 10.1103/PhysRev.140.A1133
  • Lei, F., Tang, C., Wang, S., & He, W. (2011). Half metallic full Heusler compound Ti2NiAl: A first principles study. Journal of Alloys and Compounds, 509, 5187-5189. doi:10.1016/j.jallcom.2011.02.002
  • Li, Y., Liu, G. D., Wang, X. T., Zhao, W. Q., Liu, E. K., Xi, X. K., Wang, W. H., Wu, G. H., & Dai, X. F. (2018). Electronic structures magnetic properties and half-matallicity of Heusler compounds Hf2VZ (Z = Ga, In, Tl, Si, Ge, Sn and Pb): First principles calculations. Journal of Superconductivity and Novel Magnetism, 31, 3063-3074. doi: 10.1007/s10948-017-4544-0
  • Majumder, R., & Mitro, S. K. (2020). Justification of crystal stability and origin of transport properties in ternary half-Heusler ScPtBi. RSC Advances, 10, 37482. doi: 10.1039/d0ra06826h
  • Majumder, R., Mitro, S. K., & Bairagi B. (2020). Influence of metalloid antimony on the physical properties of palladium-based half-Heusler compared to the metallic bismuth: A first-principle study. Journal of Alloys and Compounds, 836,155395. doi: 10.1016/j.jallcom.2020.155395
  • Monkhorst, H., & Pack, J. D. (1976). Special points for Brillouin-zone integrations. Physical Review B, 13, 5188-5192. doi: 10.1103/PhysRevB.13.5188
  • Mouhat, F., & Coudert, F. X. (2014). Necessary and sufficient elastic stability conditions in various crystal systems. Physical Review B, 90, 224104. doi: 10.1103/PhysRevB.90.224104
  • Nielsen, M. D., Ozolins, V., & Heremans, J. P. (2013). Lone pair electrons minimize lattice thermal conductivity. Energy & Environmental Science, 6, 570-578. doi:10.1039/c2ee23391f
  • Nye, J. F. (1985). Physical Properties of Crystals: Their Representation by Tensors and Matrices. New York: Oxford University Press.
  • Pauly, H., Weiss, A., & Witte, H. (1968). The crystal structure of the ternary intermetallice phases Li2 EX (E = Cu,Ag,Au; X = Al,Ga,In,Tl1,S1,Ge, Sn,Pb,Sb,Bi). Zeitschrift für Metallkunde, 59, 47. doi: 10.1515/ijmr-1968-590106
  • Perdew, J. P., Burke, K., & Ernzerhof, M. (1997). Generalized gradient approximation made simple. Physical Review Letters, 78, 1396. doi: 10.1103/PhysRevLett.77.3865
  • Rahman, N., Husain, M., Yang, J., Murtaza, G., Sjjad, M., Habib, A., Zulfiqar, A. K., Ul Haq, M., Rauf, A., Nisar, M., & Khan, M. Y. (2020). First principles study of structural electronic elastic and magnetic properties of Half- Heusler Compounds ScTiX (X = Si, Ge, Pb, In, Sb and Tl). Journal of Superconductivity and Novel Magnetism, 33, 3915. doi: 10.1007/s10948-020-05652-6
  • Rai, D. P. R., Sandeep, Shankar, A., Sakhya, A. P., Sinha, T. P., Khenata, R., Ghimire, M. P., & Thapa, R. K. (2016). Electronic and magnetic properties of X2YZ and XYZ Heusler compounds a comparative study of density functional teory with different exchange correlation potentials. Materials Research Express, 3, 075022. doi: 10.1088/2053-1591/3/7/075022
  • Rasheduzzaman, Md., Hossain, K. M., Mitro, S. K., Hadi, M. A., Modak, J. K., & Hasan, Md. Z. (2021). Structural, mechanical, thermal, and optical properties of inverse-Heusler alloys Cr2CoZ (Z=Al, In): A first-principles investigation. Physics Letters A, 385, 126967. doi: 10.1016/j.physleta.2020.126967
  • Shah, S. H., Khan, S. H., Laref, A., & Murtaza, G. (2018). Optoelectronic and transport properties of LiBZ (B = Al, In, Ga and Z = Si, Ge, Sn) semiconductors. Journal of Solid State Chemistry, 258, 800-808. doi: 10.1016/j.jssc.2017.12.014
  • Siemek, K., Yelisseyev, A. P., Horoek, P., Lobanov, S. I., Goloshumova, A. A., Belushkin, A. V., & Isaenko, L. I. (2020). Optical and positron annihilation studies of structural defects in LiInSe2 single crystals. Optical Materials, 109, 110262. doi: 10.1016/j.optmat.2020.110262
  • Toher, C., Plata, J. J., Levy, O., de Jong, M., Asta, M., Nardelli, M. B., & Curtarolo, S. (2014). High-throughput computational screening of thermal conductivity, Debye temperature, and Gr ̈uneisen parameter using a quasiharmonic Debye model. Physical Review, 90, 174107. doi: 10.1103/physrevb.90.174107
  • Turney, J. E., McGaughey, A. J. H., & Amon, C. H. (2009). Assessing the applicability of quantum corrections to classical thermal conductivity predictions. Physical Review B, 79, 224305. doi: 10.1103/physrevb.79.224305
  • Uzunok, H. Y., Karaca, E., Bağcı, S., & Tütüncü, H. M. (2020). Physical properties and superconductivity of Heusler compound LiGa2Rh: A first principles calculation. Solid State Communications, 311, 113859. doi:10.1016/j.ssc.2020.113859
  • Yahagi, M., Kuriyama, K., & Iwamura, K. (1975). X-ray study of LiAl1-xInx and Li2AlIn. Japanese Journal of Applied Physics, 4, 405.
  • Zipporah, M., Rohit, P., Robinson, M., Julius, M., Ralph, S., & Arti, K. (2017). First principles investigation of structural electronic and magnetic properties of Co2VIn and CoVIn Heusler compounds. AIP Advances, 7, 055705. doi: 10.1063/1.4973763
There are 48 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Nihat Aydın 0000-0001-5580-6982

Emel Kilit Doğan 0000-0001-7609-7206

Early Pub Date December 25, 2022
Publication Date December 25, 2022
Submission Date April 11, 2022
Published in Issue Year 2022 Volume: 27 Issue: 3

Cite

APA Aydın, N., & Kilit Doğan, E. (2022). Focusing on Some Physical Properties of Li2TlIn: an Ab Initio Study. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 27(3), 521-534. https://doi.org/10.53433/yyufbed.1101619