Research Article
BibTex RIS Cite

Spatial and Temporal Analysis of Tropospheric Nitrogen Dioxide (NO2) in COVID-19 Pandemic: Adana-Mersin Region

Year 2022, Volume: 27 Issue: 3, 581 - 594, 25.12.2022
https://doi.org/10.53433/yyufbed.1119418

Abstract

Air pollution is one of the vital problems for the sustainability of cities and public health. The change in human/industrial activities with COVID-19 has enabled air pollution to be observed. This study examines the spatial/temporal relationship of local air quality/air pollution through relatively high-resolution satellite images covering the COVID-19 period in Adana-Mersin cities. For this purpose, 4 x 7 km spatial resolution data on tropospheric nitrogen dioxide (NO2) concentration from the Sentinel 5P were analyzed between January 2019 to January 2022. As a result of the study, industrial and commercial units have the highest NO2 concentration, while the continuous urban area, highways, and related areas are higher value areas. In addition, while 2020 had the lowest values in the classes within the urban areas, 2021 had the highest concentration in the discontinuous urban areas and highway classes. This study also showed the capacity of Sentinel-5P TROPOMI data to monitor air quality and air pollution in local areas. In conclusion, monitoring and regulating NO2 pollution are essential for a sustainable solution to improving environmental quality and population health status for decision-makers

References

  • Bauwens, M., Compernolle, S., Stavrakou, T., Müller, J., Van Gent, J., Eskes, H., Levelt, P. F., Van Der A, R., Veefkind, J. P., & Vlietinck, J. (2020). Impact of coronavirus outbreak on NO2 pollution assessed using TROPOMI and OMI observations. Geophysical Research Letter, 47, 2020GL087978, 1-9. doi: 10.1029/2020GL087978
  • Bechle, M. J., Millet, D. B., & Marshall, J. D. (2013). Remote sensing of exposure to NO2: Satellite versus ground-based measurement in a large urban area. Atmospheric Environment, 69, 345-353. doi: 10.1016/j.atmosenv.2012.11.046
  • Beck, M. J., Hensher, D. A., & Wei, E. (2020). Slowly coming out of COVID-19 restrictions in Australia: Implications for working from home and commuting trips by car and public transport. Journal of Transport Geography, 88, 102846. doi: 10.1016/j.jtrangeo.2020.102846
  • Bonaccorsi, G., Pierri, F., Cinelli, M., Flori, A., Galeazzi, A., Porcelli, F., Schmidt, A. L., Valensise, C. M., Scala, A., & Quattrociocchi, W. (2020). Economic and social consequences of human mobility restrictions under COVID-19. Proceedings of the National Academy of Sciences, 117(20), 15530-15535. doi: 10.1073/pnas.2007658117
  • Brickell, K., Picchioni, F., Natarajan, N., Guermond, V., Parsons, L., Zanello, G., & Bateman, M. (2020). Compounding crises of social reproduction: Microfinance, over-indebtedness and the COVID-19 pandemic. World Development, 136, 105087. doi: 10.1016/j.worlddev.2021.105396
  • Burrows, J. P., Weber, M., Buchwitz, M., Rozanov, V., Ladstätter-Weißenmayer, A., Richter, A., DeBeek, R., Hoogen, R., Bramstedt, K., & Eichmann, K. (1999). The global ozone monitoring experiment (GOME): Mission concept and first scientific results. Journal of the Atmospheric Sciences, 56(2), 151-175. doi: 10.1175/1520-0469(1999)056<0151:TGOMEG>2.0.CO;2
  • Cameletti, M. (2020). The effect of Corona virus lockdown on air pollution: evidence from the city of Brescia in Lombardia region (Italy). Atmospheric Environment, 239, 117794. doi: 10.1016/j.atmosenv.2020.117794
  • Chen, T. M., Kuschner, W. G., Gokhale, J., & Shofer, S. (2007). Outdoor air pollution: nitrogen dioxide, sulfur dioxide, and carbon monoxide health effects. The American Journal of The Medical Sciences, 333(4), 249-256. doi: 10.1097/MAJ.0b013e31803b900f
  • Çukurova Kalkınma Ajansı. (2015). 2014-2023 Çukurova Bölge Planı Raporu. https://www.cka.org.tr/uploads/pages_v/2014--2023-cukurova-bolge-plani.pdf Erişim tarihi:10.04.2022.
  • Conticini, E., Frediani, B., & Caro, D. (2020). Can atmospheric pollution be considered a co-factor in extremely high level of SARS-CoV-2 lethality in Northern Italy? Environmental Pollution, 261, 114465. doi: 10.1016/j.envpol.2020.114465
  • Copernicus. (2018). Sentinel-5P TROPOMI Level 2 Nitrogen dioxide total column products. Version 01. European Space Agency Sentinel 5P. doi:10.5270/S5P-s4ljg54
  • Copernicus. (2022). Copernicus Open Access Hub. https://scihub.copernicus.eu/ Erişim tarihi: 10.05.2022.
  • Dutheil, F., Baker, J. S., & Navel, V. (2020). COVID-19 as a factor influencing air pollution? Environmental Pollution, 263, 114466. doi: 10.1016/j.envpol.2020.114466
  • Avrupa Çevre Ajansı. (2018). Air quality in Europe - 2018 report. European Environment Agency Report No 12/2018. Luxembourg (Copenhagen, Denmark): Publications Office of the European Union, 2018. doi: 10.2800/777411
  • ESA. (2020). COVID-19: nitrogen dioxide over China. https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-5P/COVID-19_nitrogen_dioxide_over_China Erişim tarihi: 18.05.2022.
  • Filippini, T., Rothman, K. J., Goffi, A., Ferrari, F., Maffeis, G., Orsini, N., & Vinceti, M. (2020). Satellite-detected tropospheric nitrogen dioxide and spread of SARS-CoV-2 infection in Northern Italy. Science of the Total Environment, 739, 140278. doi: 10.1016/j.scitotenv.2020.140278
  • Ghasempour, F., Sekertekin, A., & Kutoglu, S. H. (2021). Google Earth Engine based spatio-temporal analysis of air pollutants before and during the first wave COVID-19 outbreak over Turkey via remote sensing. Journal of Cleaner Production, 319, 128599. doi: 10.1016/j.jclepro.2021.128599
  • Guo, L., Luo, J., Yuan, M., Huang, Y., Shen, H., & Li, T. (2019). The influence of urban planning factors on PM2. 5 pollution exposure and implications: A case study in China based on remote sensing, LBS, and GIS data. Science of the Total Environment, 659, 1585-1596. doi: 10.1016/j.scitotenv.2018.12.448
  • Hou, Y., Wang, L., Zhou, Y., Wang, S., Liu, W., & Zhu, J. (2019). Analysis of the tropospheric column nitrogen dioxide over China based on satellite observations during 2008–2017. Atmospheric Pollution Research, 10(2), 651-655. doi: 10.1016/j.apr.2018.11.003
  • Inness, A., Ribas, R., & Engelen, R. (2019). The use of Sentinel-5P air quality data by CAMS. Meteorology Section of ECMWF, 159 (Spring 2019), 25-30. doi: 10.21957/ko66ais8yp
  • Ji, J., & Chang, R. (2020). Air quality changes and Grey relational analysis of pollutants exceeding standards during the COVID-19 pandemic in Wuhan. Research Square, 1-30. doi: 10.21203/rs.3.rs-34041/v3
  • Kampa, M., & Castanas, E. (2008). Human health effects of air pollution. Environmental Pollution 151(2), 362-367. doi: 10.1016/j.envpol.2007.06.012
  • Kaplan, G., & Avdan, Z. Y. (2020). Space-borne air pollution observation from sentinel-5p TROPOMI: relationship between pollutants, geographical and demographic data. International Journal of Engineering and Geosciences (IJEG), 5(3), 130-137. doi: 10.26833/ijeg.644089
  • Khorrami, B., Gunduz, O., Patel, N., Ghouzlane, S., & Najjar, M. (2019). Land surface temperature anomalies in response to changes in forest cover. International Journal of Engineering and Geosciences, 4 (3), 149-156. doi: 10.26833/ijeg.549944
  • Le, T., Wang, Y., Liu, L., Yang, J., Yung, Y. L., Li, G., & Seinfeld, J. H. (2020). Unexpected air pollution with marked emission reductions during the COVID-19 outbreak in China. Science, 369, 702–706. doi: 10.1126/science.abb741
  • Mayer, H. (1999). Air pollution in cities. Atmospheric environment, 33(24-25), 4029-4037. doi: 10.1016/S1352-2310(99)00144-2
  • Mesas-Carrascosa, F., Porras, F. P., Triviño-Tarradas, P., García-Ferrer, A., & Meroño, J. (2020). Effect of lockdown measures on atmospheric nitrogen dioxide during SARS-CoV-2 in Spain. Remote Sensing, 12, 2210. doi: 10.3390/rs12142210
  • Muhammad, S., Long, X., & Salman, M. (2020). COVID-19 pandemic and environmental pollution: A blessing in disguise? Science of The Total Environment, 728, 138820. doi: 10.1016/j.scitotenv.2020.138820
  • Nacef, L., Bachari, N. E. İ., Bouda, A., & Boubnia, R. (2016). Variability and decadal evolution of temperature and salinity in the Mediterranean sea surface. International Journal of Engineering and Geosciences, 1(1), 20-29. doi: 10.26833/ijeg.285222
  • Nicola, M., Alsafi, Z., Sohrabi, C., Kerwan, A., Al-Jabir, A., Iosifidis, C., Agha, M., & Agha, R. (2020). The socio-economic implications of the coronavirus pandemic (COVID-19): A review. International Journal of Surgery, 78, 185–193. doi: 10.1016/j.ijsu.2020.04.018
  • Ogen, Y. (2020). Assessing nitrogen dioxide (NO2) levels as a contributing factor to coronavirus (COVID-19) fatality. Science of The Total Environment, 726, 138605. doi: 10.1016/j.scitotenv.2020.138605
  • Paudel, J. (2021). Short-run environmental effects of COVID-19: Evidence from forest fires. World Development, 137, 105120. doi: 10.1016/j.worlddev.2020.105120
  • Sekmoudi, I., Khomsi, K., Faieq, S., & Idrissi, L. (2022). COVID-19 lockdown improves air quality in Morocco. Environmental Engineering Research, 27(5), 210197. doi: 10.4491/eer.2021.197
  • Shehzad, K., Sarfraz, M., & Shah, S. G. M. (2020). The impact of COVID-19 as a necessary evil on air pollution in India during the lockdown. Environment Pollution, 266, 115080. doi: 10.1016/j.envpol.2020.115080
  • Siciliano, B., Carvalho, G., Da Silva, C. M., & Arbilla, G. (2020). The impact of COVID-19 partial lockdown on primary pollutant concentrations in the atmosphere of Rio de Janeiro and São Paulo megacities (Brazil). Bulletin of Environmental Contamination and Toxicology, 105, 2–8. doi: 10.1007/s00128-020-02907-9
  • Stratoulias, D., & Nuthammachot, N. (2020). Air quality development during the COVID-19 pandemic over a medium-sized urban area in Thailand. Science of The Total Environment, 746, 141320. doi: 10.1016/j.scitotenv.2020.141320
  • Sünsüli, M., Kalkan, K., (2022). Sentinel-5P uydu görüntüleri ile azot dioksit (NO2) kirliliğinin izlenmesi. Türkiye Uzaktan Algılama Dergisi, 4(1), 01-06. doi: 10.51489/tuzal.1056261
  • THEP. (2020). Adana ili temiz hava eylem planı (THEP) 2020-2024. Çevre ve Şehircilik Bakanlığı, Adana Çevre ve Şehircilik İl Müdürlüğü. https://webdosya.csb.gov.tr/db/adana/icerikler/adana-thep-20202024-20200304123809.pdf Erişim tarihi:10.04.2022 Theys, N., Hedelt, P., De Smedt, I., Lerot, C., Yu, H., Vlietinck, J., Pedergnana, M., Arellano, S., Galle, B., & Fernandez, D. (2019). Global monitoring of volcanic SO2 degassing with unprecedented resolution from TROPOMI onboard Sentinel-5 Precursor. Scientific reports 9(1), 2643. doi: 10.1038/s41598-019-39279-y
  • Türkçe Ansiklopedi. (2022). Türkiye'de COVID-19 pandemisi, https://tr.wikipedia.org/wiki/Türkiye%27de_COVID-19_pandemisi Erişim tarihi: 10.04.2022.
  • Vîrghileanu, M., Săvulescu, I., Mihai, B. A., Nistor, C., & Dobre, R. (2020). Nitrogen Dioxide (NO2) pollution monitoring with Sentinel-5P satellite imagery over Europe during the coronavirus pandemic outbreak. Remote Sensing, 12(21), 3575. doi: 10.3390/rs12213575

Troposferik Nitrojen Dioksitin (NO2) COVID-19 Pandemisinde Mekânsal ve Zamansal Analizi: Adana-Mersin Bölgesi

Year 2022, Volume: 27 Issue: 3, 581 - 594, 25.12.2022
https://doi.org/10.53433/yyufbed.1119418

Abstract

Şehirlerin sürdürülebilirliği ve halk sağlığı için hayati sorunlardan birisi olan hava kirliliği COVID-19 pandemisi ile insan/endüstriyel faaliyetlerindeki değişimin gözlemlenebilmesini sağlamıştır. Bu doğrultuda çalışmada Adana-Mersin kentlerinde COVID-19 dönemini kapsayan yüksek çözünürlüklü uydu görüntüleri aracılığı ile yerel hava kalitesi/hava kirliliğinin yersel/zamansal ilişkisinin incelenmesi amaçlanmıştır. Bu amaçla Ocak 2019’dan Ocak 2022'ye kadar olan hava kalitesinde etkili olan troposferik nitrojen dioksit (NO2) konsantrasyonuna ilişkin 4 x 7 km yersel çözünürlükteki veriler Sentinel-5P uydusundan elde edilmiştir. Çalışma sonucunda endüstriyel ve ticari birimlerin en yüksek NO2 konsantrasyonuna sahip olduğu görülürken, sürekli şehir yapısı,karayolları ve ilgili alanlarda konsantrasyon değerlerinin yüksek olduğu tespit edilmiştir. Ayrıca şehir yapılarına ait sınıflarda NO2 konsantrasyonu 2020 yılında en düşük değerlere sahip iken, 2021 yılında süreksiz şehir yapısı ve karayolları sınıfları en yüksek konsantrasyona sahiptir. Bu çalışma Sentinel-5P TROPOMI verilerinin yerel alanlarda hava kalitesi ve hava kirliliğinin izlenmesinde kullanılma kapasitesini göstermiştir. Sonuçlar NO2 kirliliğinin izlenmesi ve düzenlenmesinde karar vericilerin çevresel kalite ve nüfus sağlık durumunun iyileştirilmesinde çözüm geliştirmeleri için gereklidir.

References

  • Bauwens, M., Compernolle, S., Stavrakou, T., Müller, J., Van Gent, J., Eskes, H., Levelt, P. F., Van Der A, R., Veefkind, J. P., & Vlietinck, J. (2020). Impact of coronavirus outbreak on NO2 pollution assessed using TROPOMI and OMI observations. Geophysical Research Letter, 47, 2020GL087978, 1-9. doi: 10.1029/2020GL087978
  • Bechle, M. J., Millet, D. B., & Marshall, J. D. (2013). Remote sensing of exposure to NO2: Satellite versus ground-based measurement in a large urban area. Atmospheric Environment, 69, 345-353. doi: 10.1016/j.atmosenv.2012.11.046
  • Beck, M. J., Hensher, D. A., & Wei, E. (2020). Slowly coming out of COVID-19 restrictions in Australia: Implications for working from home and commuting trips by car and public transport. Journal of Transport Geography, 88, 102846. doi: 10.1016/j.jtrangeo.2020.102846
  • Bonaccorsi, G., Pierri, F., Cinelli, M., Flori, A., Galeazzi, A., Porcelli, F., Schmidt, A. L., Valensise, C. M., Scala, A., & Quattrociocchi, W. (2020). Economic and social consequences of human mobility restrictions under COVID-19. Proceedings of the National Academy of Sciences, 117(20), 15530-15535. doi: 10.1073/pnas.2007658117
  • Brickell, K., Picchioni, F., Natarajan, N., Guermond, V., Parsons, L., Zanello, G., & Bateman, M. (2020). Compounding crises of social reproduction: Microfinance, over-indebtedness and the COVID-19 pandemic. World Development, 136, 105087. doi: 10.1016/j.worlddev.2021.105396
  • Burrows, J. P., Weber, M., Buchwitz, M., Rozanov, V., Ladstätter-Weißenmayer, A., Richter, A., DeBeek, R., Hoogen, R., Bramstedt, K., & Eichmann, K. (1999). The global ozone monitoring experiment (GOME): Mission concept and first scientific results. Journal of the Atmospheric Sciences, 56(2), 151-175. doi: 10.1175/1520-0469(1999)056<0151:TGOMEG>2.0.CO;2
  • Cameletti, M. (2020). The effect of Corona virus lockdown on air pollution: evidence from the city of Brescia in Lombardia region (Italy). Atmospheric Environment, 239, 117794. doi: 10.1016/j.atmosenv.2020.117794
  • Chen, T. M., Kuschner, W. G., Gokhale, J., & Shofer, S. (2007). Outdoor air pollution: nitrogen dioxide, sulfur dioxide, and carbon monoxide health effects. The American Journal of The Medical Sciences, 333(4), 249-256. doi: 10.1097/MAJ.0b013e31803b900f
  • Çukurova Kalkınma Ajansı. (2015). 2014-2023 Çukurova Bölge Planı Raporu. https://www.cka.org.tr/uploads/pages_v/2014--2023-cukurova-bolge-plani.pdf Erişim tarihi:10.04.2022.
  • Conticini, E., Frediani, B., & Caro, D. (2020). Can atmospheric pollution be considered a co-factor in extremely high level of SARS-CoV-2 lethality in Northern Italy? Environmental Pollution, 261, 114465. doi: 10.1016/j.envpol.2020.114465
  • Copernicus. (2018). Sentinel-5P TROPOMI Level 2 Nitrogen dioxide total column products. Version 01. European Space Agency Sentinel 5P. doi:10.5270/S5P-s4ljg54
  • Copernicus. (2022). Copernicus Open Access Hub. https://scihub.copernicus.eu/ Erişim tarihi: 10.05.2022.
  • Dutheil, F., Baker, J. S., & Navel, V. (2020). COVID-19 as a factor influencing air pollution? Environmental Pollution, 263, 114466. doi: 10.1016/j.envpol.2020.114466
  • Avrupa Çevre Ajansı. (2018). Air quality in Europe - 2018 report. European Environment Agency Report No 12/2018. Luxembourg (Copenhagen, Denmark): Publications Office of the European Union, 2018. doi: 10.2800/777411
  • ESA. (2020). COVID-19: nitrogen dioxide over China. https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-5P/COVID-19_nitrogen_dioxide_over_China Erişim tarihi: 18.05.2022.
  • Filippini, T., Rothman, K. J., Goffi, A., Ferrari, F., Maffeis, G., Orsini, N., & Vinceti, M. (2020). Satellite-detected tropospheric nitrogen dioxide and spread of SARS-CoV-2 infection in Northern Italy. Science of the Total Environment, 739, 140278. doi: 10.1016/j.scitotenv.2020.140278
  • Ghasempour, F., Sekertekin, A., & Kutoglu, S. H. (2021). Google Earth Engine based spatio-temporal analysis of air pollutants before and during the first wave COVID-19 outbreak over Turkey via remote sensing. Journal of Cleaner Production, 319, 128599. doi: 10.1016/j.jclepro.2021.128599
  • Guo, L., Luo, J., Yuan, M., Huang, Y., Shen, H., & Li, T. (2019). The influence of urban planning factors on PM2. 5 pollution exposure and implications: A case study in China based on remote sensing, LBS, and GIS data. Science of the Total Environment, 659, 1585-1596. doi: 10.1016/j.scitotenv.2018.12.448
  • Hou, Y., Wang, L., Zhou, Y., Wang, S., Liu, W., & Zhu, J. (2019). Analysis of the tropospheric column nitrogen dioxide over China based on satellite observations during 2008–2017. Atmospheric Pollution Research, 10(2), 651-655. doi: 10.1016/j.apr.2018.11.003
  • Inness, A., Ribas, R., & Engelen, R. (2019). The use of Sentinel-5P air quality data by CAMS. Meteorology Section of ECMWF, 159 (Spring 2019), 25-30. doi: 10.21957/ko66ais8yp
  • Ji, J., & Chang, R. (2020). Air quality changes and Grey relational analysis of pollutants exceeding standards during the COVID-19 pandemic in Wuhan. Research Square, 1-30. doi: 10.21203/rs.3.rs-34041/v3
  • Kampa, M., & Castanas, E. (2008). Human health effects of air pollution. Environmental Pollution 151(2), 362-367. doi: 10.1016/j.envpol.2007.06.012
  • Kaplan, G., & Avdan, Z. Y. (2020). Space-borne air pollution observation from sentinel-5p TROPOMI: relationship between pollutants, geographical and demographic data. International Journal of Engineering and Geosciences (IJEG), 5(3), 130-137. doi: 10.26833/ijeg.644089
  • Khorrami, B., Gunduz, O., Patel, N., Ghouzlane, S., & Najjar, M. (2019). Land surface temperature anomalies in response to changes in forest cover. International Journal of Engineering and Geosciences, 4 (3), 149-156. doi: 10.26833/ijeg.549944
  • Le, T., Wang, Y., Liu, L., Yang, J., Yung, Y. L., Li, G., & Seinfeld, J. H. (2020). Unexpected air pollution with marked emission reductions during the COVID-19 outbreak in China. Science, 369, 702–706. doi: 10.1126/science.abb741
  • Mayer, H. (1999). Air pollution in cities. Atmospheric environment, 33(24-25), 4029-4037. doi: 10.1016/S1352-2310(99)00144-2
  • Mesas-Carrascosa, F., Porras, F. P., Triviño-Tarradas, P., García-Ferrer, A., & Meroño, J. (2020). Effect of lockdown measures on atmospheric nitrogen dioxide during SARS-CoV-2 in Spain. Remote Sensing, 12, 2210. doi: 10.3390/rs12142210
  • Muhammad, S., Long, X., & Salman, M. (2020). COVID-19 pandemic and environmental pollution: A blessing in disguise? Science of The Total Environment, 728, 138820. doi: 10.1016/j.scitotenv.2020.138820
  • Nacef, L., Bachari, N. E. İ., Bouda, A., & Boubnia, R. (2016). Variability and decadal evolution of temperature and salinity in the Mediterranean sea surface. International Journal of Engineering and Geosciences, 1(1), 20-29. doi: 10.26833/ijeg.285222
  • Nicola, M., Alsafi, Z., Sohrabi, C., Kerwan, A., Al-Jabir, A., Iosifidis, C., Agha, M., & Agha, R. (2020). The socio-economic implications of the coronavirus pandemic (COVID-19): A review. International Journal of Surgery, 78, 185–193. doi: 10.1016/j.ijsu.2020.04.018
  • Ogen, Y. (2020). Assessing nitrogen dioxide (NO2) levels as a contributing factor to coronavirus (COVID-19) fatality. Science of The Total Environment, 726, 138605. doi: 10.1016/j.scitotenv.2020.138605
  • Paudel, J. (2021). Short-run environmental effects of COVID-19: Evidence from forest fires. World Development, 137, 105120. doi: 10.1016/j.worlddev.2020.105120
  • Sekmoudi, I., Khomsi, K., Faieq, S., & Idrissi, L. (2022). COVID-19 lockdown improves air quality in Morocco. Environmental Engineering Research, 27(5), 210197. doi: 10.4491/eer.2021.197
  • Shehzad, K., Sarfraz, M., & Shah, S. G. M. (2020). The impact of COVID-19 as a necessary evil on air pollution in India during the lockdown. Environment Pollution, 266, 115080. doi: 10.1016/j.envpol.2020.115080
  • Siciliano, B., Carvalho, G., Da Silva, C. M., & Arbilla, G. (2020). The impact of COVID-19 partial lockdown on primary pollutant concentrations in the atmosphere of Rio de Janeiro and São Paulo megacities (Brazil). Bulletin of Environmental Contamination and Toxicology, 105, 2–8. doi: 10.1007/s00128-020-02907-9
  • Stratoulias, D., & Nuthammachot, N. (2020). Air quality development during the COVID-19 pandemic over a medium-sized urban area in Thailand. Science of The Total Environment, 746, 141320. doi: 10.1016/j.scitotenv.2020.141320
  • Sünsüli, M., Kalkan, K., (2022). Sentinel-5P uydu görüntüleri ile azot dioksit (NO2) kirliliğinin izlenmesi. Türkiye Uzaktan Algılama Dergisi, 4(1), 01-06. doi: 10.51489/tuzal.1056261
  • THEP. (2020). Adana ili temiz hava eylem planı (THEP) 2020-2024. Çevre ve Şehircilik Bakanlığı, Adana Çevre ve Şehircilik İl Müdürlüğü. https://webdosya.csb.gov.tr/db/adana/icerikler/adana-thep-20202024-20200304123809.pdf Erişim tarihi:10.04.2022 Theys, N., Hedelt, P., De Smedt, I., Lerot, C., Yu, H., Vlietinck, J., Pedergnana, M., Arellano, S., Galle, B., & Fernandez, D. (2019). Global monitoring of volcanic SO2 degassing with unprecedented resolution from TROPOMI onboard Sentinel-5 Precursor. Scientific reports 9(1), 2643. doi: 10.1038/s41598-019-39279-y
  • Türkçe Ansiklopedi. (2022). Türkiye'de COVID-19 pandemisi, https://tr.wikipedia.org/wiki/Türkiye%27de_COVID-19_pandemisi Erişim tarihi: 10.04.2022.
  • Vîrghileanu, M., Săvulescu, I., Mihai, B. A., Nistor, C., & Dobre, R. (2020). Nitrogen Dioxide (NO2) pollution monitoring with Sentinel-5P satellite imagery over Europe during the coronavirus pandemic outbreak. Remote Sensing, 12(21), 3575. doi: 10.3390/rs12213575
There are 40 citations in total.

Details

Primary Language Turkish
Subjects Agricultural, Veterinary and Food Sciences
Journal Section Articles
Authors

Müge Ünal Çilek 0000-0002-1147-9729

Early Pub Date December 25, 2022
Publication Date December 25, 2022
Submission Date May 21, 2022
Published in Issue Year 2022 Volume: 27 Issue: 3

Cite

APA Ünal Çilek, M. (2022). Troposferik Nitrojen Dioksitin (NO2) COVID-19 Pandemisinde Mekânsal ve Zamansal Analizi: Adana-Mersin Bölgesi. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 27(3), 581-594. https://doi.org/10.53433/yyufbed.1119418