Tek Bir Kanaldan Kaotik Maskelenmiş Ses Sinyalinin İletilmesi
Year 2023,
Volume: 28 Issue: 1, 60 - 75, 30.04.2023
Ali Can Çabuker
,
Mehmet Nuri Almalı
,
İshak Parlar
Abstract
Veri güvenliği iletişim sistemleri için çok önemlidir. Güvenliği sağlamak için şifreleme yöntemleri sıklıkla kullanılmaktadır. Kaotik osilatörler, kendilerini tekrar etmeyen sinyaller ürettikleri için verilerin şifrelenmesi için kullanılır. Şifreleme ve şifre çözme işlemlerinin sağlıklı bir şekilde yapılabilmesi için aynı kaotik osilatörler kullanılmalı ve birbirleri ile senkronize edilmelidir. Bu çalışmada, iki kaotik osilatör arasındaki senkronizasyonu gerçekleştirmek için frekans bölmeli çoğullama (FBÇ) yöntemi kullanılarak şifrelenmiş veri ve senkronizasyon sinyali alıcı tarafına iletilmiştir. Verici tarafında şifrelenecek sinyalin şifreleme kalitesini artırmak için yüksek frekanslı anahtarlama kullanılır. Oransal-İntegral-Türevsel (OIT) kontrol, iki kaotik osilatör arasında senkronizasyon sağlamak için kullanılır. Orijinal sinyal ile şifre çözme sinyali arasındaki doğruluk ilişkisini belirlemek için korelasyon testi, tepe sinyali gürültü oranı (TSGO), ortalama kare hatası (OKH) ve spektral entropi kullanıldı. Sonuç olarak oluşturulan sistemin şifreleme başarısı ve güvenilirliği simülasyon programları ve sayısal analizler ile doğrulanmıştır.
References
- Almalı, M. N., & Dikici, Z. (2016). The simulation of sound signal masking with different chaotic oscillations and its circuit application. Turkish Journal of Electrical Engineering & Computer Sciences, 24(5), 4284-4293. doi:10.3906/elk-1504-264
- Almeida, D. I. R., Alvarez, J., & Barajas, J. G. (2006). Robust synchronization of Sprott circuits using sliding mode control. Chaos, Solitons & Fractals, 30(1), 11-18. doi:10.1016/j.chaos.2005.09.011
- Ameen, M. J. M., & Hreshee, S. S. H. (2022). Hyperchaotic modulo operator encryption technique for massive multiple input multiple output generalized frequency division multiplexing system. International Journal on Electrical Engineering and Informatics, 14(2), 311-329. doi:10.15676/ijeei.2022.14.2.4
- Andrew, H. J. (1976). Stochastic Processes and Filtering Theory. Newyork, USA: Academic Press
- Atan, Ö. (2016). Synchronisation and circuit model of fractional-order chaotic systems with time-delay. IFAC-PapersOnLine, 49(29), 68-72. doi:10.1016/j.ifacol.2016.11.097
- Chen, C. H., Chang, C. F., Yan, J. J., & Liao, T. H. (2008). EP-based PID control design for chaotic synchronization with application in secure communication. Expert Systems with Applications 34(2), 1169-1177. doi:10.1016/j.eswa.2006.12.023
- Chen, M., Xu, W., Wang, D., & Wang, L. (2019). Multi‐carrier chaotic communication scheme for underwater acoustic communications. IET Communications, 13(14), 2097-2105. doi:10.1049/iet-com.2018.5524
- Chua, L. O., Wu, C.W., Huang, A., & Zhong G.Q. (1993). A universal circuit, for studying and generating chaos. I. Routes to chaos. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 40(10), 732-744. doi:10.1109/81.246149
- Elkholy, M., El Hennawy, H. M., & Elkouny, A. (2016). Real time implementation of secure communication system based on synchronization of hyper chaotic systems. 2016 33rd National Radio Science Conference (NRSC), Aswan, Egypt. doi:10.1109/NRSC.2016.7450849
- El-Zoghdy, S. F., El-sayed, H. S., & Faragallah, O. S. (2020). Transmission of chaotic-based encrypted audio through OFDM. Wireless Personal Communications,113(1), 241-261. doi:10.1007/s11277-020-07187-4
- Feng, Y., Li, J., & Yu, X. (2010). Multi-dimensional signals transmission via single channel for chaos synchronization. IECON 2010-36th Annual Conference on IEEE Industrial Electronics Society, Glendale, AZ, USA. doi:10.1109/IECON.2010.5675531
- Han, F., Feng, Y., & Qi, C. (2013). Time division multiplexing based multiple synchronised chaotic signals transmission. Electronics Letters, 49(1), 42-44. doi:10.1049/el.2012.3950
- Hebbar, R. P., & Poddar, P. G. (2020). Generalized frequency division multiplexing–based acoustic communication for underwater systems. International Journal of Communication Systems, 33(10), e4292. doi:10.1002/dac.4292
- Huang, H., Yang, S., & Ye, R. (2019). Image encryption scheme combining a modified Gerchberg–Saxton algorithm with hyper-chaotic system. Soft Computing, 23, 7045-7053. doi:10.1007/s00500-018-3345-0
- Keuninckx, L., Soriano, M. C., Fischer, I., Mirasso, C. R., Nguimdo, R. M., & Van der Sande, G. (2017). Encryption key distribution via chaos synchronization. Scientific Reports, 7(1), 1-14. doi:10.1038/srep43428
- Kiani-B, A., Fallahi, K., Pariz, N., & Leug, H. (2009). A chaotic secure communication scheme using fractional chaotic systems based on an extended fractional Kalman filter. Communications in Nonlinear Science and Numerical Simulation, 14(3), 863-879. doi:10.1016/j.cnsns.2007.11.011
- Kumar, P., Kansal, L., Gaba, G. S., Mounir, M., Sharma, A., & Singh, P. K. (2021). Impact of peak to average power ratio reduction techniques on Generalized Frequency Division Multiplexing for 5th generation systems. Computers and Electrical Engineering, 95, 107386. doi:10.1016/j.compeleceng.2021.107386
- Lagmiri, S. N., Elalami, J., Sbiti, N., & Amghar, M. (2018). Hyperchaos for improving the security of medical data. International Journal of Engineering & Technology, 7(3), 1049-1055. doi:10.14419/ijet.v7i3.10572
- Lorenz, E. N. (1963). Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 20(2), 130-141. doi:10.1175/1520-0469(1963)020%3C0130:DNF%3E2.0.CO;2
- Mehallel, E., Abed, D., Boukaache, A., & Bouchemel, A. (2021). Enhancement of image transmission using chaotic interleaving with discrete wavelet transform‐based single‐carrier frequency division multiple access system. International Journal of Communication Systems, 34(7), e4728. doi:10.1002/dac.4728
- Pecora, L. M., & Carroll, T. L. (1990). Synchronization in chaotic systems. Physical Review Letters, 64(8), 821. doi:10.1103/PhysRevLett.64.821
- Pursley, M. B. (2005). Introduction to Digital Communications. USA: Pearson/Prentice Hall.
- Rao, R. P. (2018). Real time audio signal processing through DSB-SC using Simulink. International Journal of Scientific Development and Research (IJSDR), 3(6), 52-55.
- Rumsey, D. J. (2016). How to interpret a correlation coefficient r. Statistics for dummies, 26. http://mathaction.pbworks.com/w/file/fetch/133081815/3.CorrelationCoefficient.pdf Date of access: 10.05.2022.
- Sathiyamurthi, P., & Ramakrishnan, S. (2017). Speech encryption using chaotic shift keying for secured speech communication. EURASIP Journal on Audio, Speech, and Music Processing, 1-11. doi:10.1186/s13636-017-0118-0
- Sheu, L. J., Chen W. C., Chen, Y. C., & Weng, W. T. (2010). A two-channel secure communication using fractional chaotic systems. World Academy of Science, Engineering and Technology, 65, 1057-1061. doi:10.5281/zenodo.1079581
- Sofi, N., Bendimerad, F. T., & Debbat, F. (2017, May). Compromise between spectral efficiency and interference cancellation in OFDM system. In 2017 International Conference on Engineering & MIS (ICEMIS), 1-7. IEEE. doi:10.1109/ICEMIS.2017.8273009
- Sprott, J. C. (2000). A new class of chaotic circuit. Physics Letters A, 266(1), 19-23. doi:10.1016/S0375-9601(00)00026-8
- Thomos, N., Boulgouris, N. V., & Strintzis, M. G. (2005). Optimized transmission of JPEG2000 streams over wireless channels. IEEE Transactions on Image Processing, 15(1), 54-67. doi:10.1109/TIP.2005.860338
- Toh, A. M., Togneri, R., & Nordholm, S. (2005). Spectral entropy as speech features for speech recognition. Proceedings of PEECS, 1, 92.
- Vafamand, N., Khorshidi, S., & Khayatian, A. (2018). Secure communication for non-ideal channel via robust TS fuzzy observer-based hyperchaotic synchronization. Chaos, Solitons & Fractals, 112, 116-124. doi:10.1016/j.chaos.2018.04.035
- Vaidyanathan, S., Idowu, B. A., Azar, A. T. (2015). Backstepping Controller Design for the Global Chaos Synchronization of Sprott’s Jerk Systems. In A., Azar, & S., Vaidyanathan (Eds) Chaos Modeling and Control Systems Design. Studies in Computational Intelligence, (pp. 39-58). Springer, Cham. doi:10.1007/978-3-319-13132-0_3
- Wu, D. (2010, August). Application research on frequency-division multiplexing to chaos secret communication. 2010 International Conference of Information Science and Management Engineering, Shaanxi, China. doi:10.1109/ISME.2010.180
- Yau, H. T. (2008). Chaos synchronization of two uncertain chaotic nonlinear gyros using fuzzy sliding mode control. Mechanical Systems and Signal Processing, 22(2), 408-418. doi:10.1016/j.ymssp.2007.08.007
Transmitting the Chaotic Masked Audio Signal from a Single Channel
Year 2023,
Volume: 28 Issue: 1, 60 - 75, 30.04.2023
Ali Can Çabuker
,
Mehmet Nuri Almalı
,
İshak Parlar
Abstract
Data security is very crucial for communication systems. Encryption methods are frequently used to ensure security. Chaotic oscillators are used for the encryption of data because they produce signals that do not repeat themselves. Identical chaotic oscillators should be used and synchronized with each other in order to perform encryption and decryption processes healthily. In this study, the encrypted data and synchronization signal are transmitted to the receiver side using the frequency division multiplexing (FDM) method to realize the synchronization between two chaotic oscillators. High-frequency keying is used to increase the encryption quality of the signal to be encrypted on the transmitter side. Proportional-Integral-Derivative (PID) control is used to provide synchronization between two chaotic oscillators. The correlation test, peak signal to noise ratio (PSNR), mean square error (MSE) and spectral entropy were used to determine the accuracy relationship between the original signal and the decryption signal. As a result, simulation programs and numerical analysis verified the encryption success and reliability of the created system.
References
- Almalı, M. N., & Dikici, Z. (2016). The simulation of sound signal masking with different chaotic oscillations and its circuit application. Turkish Journal of Electrical Engineering & Computer Sciences, 24(5), 4284-4293. doi:10.3906/elk-1504-264
- Almeida, D. I. R., Alvarez, J., & Barajas, J. G. (2006). Robust synchronization of Sprott circuits using sliding mode control. Chaos, Solitons & Fractals, 30(1), 11-18. doi:10.1016/j.chaos.2005.09.011
- Ameen, M. J. M., & Hreshee, S. S. H. (2022). Hyperchaotic modulo operator encryption technique for massive multiple input multiple output generalized frequency division multiplexing system. International Journal on Electrical Engineering and Informatics, 14(2), 311-329. doi:10.15676/ijeei.2022.14.2.4
- Andrew, H. J. (1976). Stochastic Processes and Filtering Theory. Newyork, USA: Academic Press
- Atan, Ö. (2016). Synchronisation and circuit model of fractional-order chaotic systems with time-delay. IFAC-PapersOnLine, 49(29), 68-72. doi:10.1016/j.ifacol.2016.11.097
- Chen, C. H., Chang, C. F., Yan, J. J., & Liao, T. H. (2008). EP-based PID control design for chaotic synchronization with application in secure communication. Expert Systems with Applications 34(2), 1169-1177. doi:10.1016/j.eswa.2006.12.023
- Chen, M., Xu, W., Wang, D., & Wang, L. (2019). Multi‐carrier chaotic communication scheme for underwater acoustic communications. IET Communications, 13(14), 2097-2105. doi:10.1049/iet-com.2018.5524
- Chua, L. O., Wu, C.W., Huang, A., & Zhong G.Q. (1993). A universal circuit, for studying and generating chaos. I. Routes to chaos. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 40(10), 732-744. doi:10.1109/81.246149
- Elkholy, M., El Hennawy, H. M., & Elkouny, A. (2016). Real time implementation of secure communication system based on synchronization of hyper chaotic systems. 2016 33rd National Radio Science Conference (NRSC), Aswan, Egypt. doi:10.1109/NRSC.2016.7450849
- El-Zoghdy, S. F., El-sayed, H. S., & Faragallah, O. S. (2020). Transmission of chaotic-based encrypted audio through OFDM. Wireless Personal Communications,113(1), 241-261. doi:10.1007/s11277-020-07187-4
- Feng, Y., Li, J., & Yu, X. (2010). Multi-dimensional signals transmission via single channel for chaos synchronization. IECON 2010-36th Annual Conference on IEEE Industrial Electronics Society, Glendale, AZ, USA. doi:10.1109/IECON.2010.5675531
- Han, F., Feng, Y., & Qi, C. (2013). Time division multiplexing based multiple synchronised chaotic signals transmission. Electronics Letters, 49(1), 42-44. doi:10.1049/el.2012.3950
- Hebbar, R. P., & Poddar, P. G. (2020). Generalized frequency division multiplexing–based acoustic communication for underwater systems. International Journal of Communication Systems, 33(10), e4292. doi:10.1002/dac.4292
- Huang, H., Yang, S., & Ye, R. (2019). Image encryption scheme combining a modified Gerchberg–Saxton algorithm with hyper-chaotic system. Soft Computing, 23, 7045-7053. doi:10.1007/s00500-018-3345-0
- Keuninckx, L., Soriano, M. C., Fischer, I., Mirasso, C. R., Nguimdo, R. M., & Van der Sande, G. (2017). Encryption key distribution via chaos synchronization. Scientific Reports, 7(1), 1-14. doi:10.1038/srep43428
- Kiani-B, A., Fallahi, K., Pariz, N., & Leug, H. (2009). A chaotic secure communication scheme using fractional chaotic systems based on an extended fractional Kalman filter. Communications in Nonlinear Science and Numerical Simulation, 14(3), 863-879. doi:10.1016/j.cnsns.2007.11.011
- Kumar, P., Kansal, L., Gaba, G. S., Mounir, M., Sharma, A., & Singh, P. K. (2021). Impact of peak to average power ratio reduction techniques on Generalized Frequency Division Multiplexing for 5th generation systems. Computers and Electrical Engineering, 95, 107386. doi:10.1016/j.compeleceng.2021.107386
- Lagmiri, S. N., Elalami, J., Sbiti, N., & Amghar, M. (2018). Hyperchaos for improving the security of medical data. International Journal of Engineering & Technology, 7(3), 1049-1055. doi:10.14419/ijet.v7i3.10572
- Lorenz, E. N. (1963). Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 20(2), 130-141. doi:10.1175/1520-0469(1963)020%3C0130:DNF%3E2.0.CO;2
- Mehallel, E., Abed, D., Boukaache, A., & Bouchemel, A. (2021). Enhancement of image transmission using chaotic interleaving with discrete wavelet transform‐based single‐carrier frequency division multiple access system. International Journal of Communication Systems, 34(7), e4728. doi:10.1002/dac.4728
- Pecora, L. M., & Carroll, T. L. (1990). Synchronization in chaotic systems. Physical Review Letters, 64(8), 821. doi:10.1103/PhysRevLett.64.821
- Pursley, M. B. (2005). Introduction to Digital Communications. USA: Pearson/Prentice Hall.
- Rao, R. P. (2018). Real time audio signal processing through DSB-SC using Simulink. International Journal of Scientific Development and Research (IJSDR), 3(6), 52-55.
- Rumsey, D. J. (2016). How to interpret a correlation coefficient r. Statistics for dummies, 26. http://mathaction.pbworks.com/w/file/fetch/133081815/3.CorrelationCoefficient.pdf Date of access: 10.05.2022.
- Sathiyamurthi, P., & Ramakrishnan, S. (2017). Speech encryption using chaotic shift keying for secured speech communication. EURASIP Journal on Audio, Speech, and Music Processing, 1-11. doi:10.1186/s13636-017-0118-0
- Sheu, L. J., Chen W. C., Chen, Y. C., & Weng, W. T. (2010). A two-channel secure communication using fractional chaotic systems. World Academy of Science, Engineering and Technology, 65, 1057-1061. doi:10.5281/zenodo.1079581
- Sofi, N., Bendimerad, F. T., & Debbat, F. (2017, May). Compromise between spectral efficiency and interference cancellation in OFDM system. In 2017 International Conference on Engineering & MIS (ICEMIS), 1-7. IEEE. doi:10.1109/ICEMIS.2017.8273009
- Sprott, J. C. (2000). A new class of chaotic circuit. Physics Letters A, 266(1), 19-23. doi:10.1016/S0375-9601(00)00026-8
- Thomos, N., Boulgouris, N. V., & Strintzis, M. G. (2005). Optimized transmission of JPEG2000 streams over wireless channels. IEEE Transactions on Image Processing, 15(1), 54-67. doi:10.1109/TIP.2005.860338
- Toh, A. M., Togneri, R., & Nordholm, S. (2005). Spectral entropy as speech features for speech recognition. Proceedings of PEECS, 1, 92.
- Vafamand, N., Khorshidi, S., & Khayatian, A. (2018). Secure communication for non-ideal channel via robust TS fuzzy observer-based hyperchaotic synchronization. Chaos, Solitons & Fractals, 112, 116-124. doi:10.1016/j.chaos.2018.04.035
- Vaidyanathan, S., Idowu, B. A., Azar, A. T. (2015). Backstepping Controller Design for the Global Chaos Synchronization of Sprott’s Jerk Systems. In A., Azar, & S., Vaidyanathan (Eds) Chaos Modeling and Control Systems Design. Studies in Computational Intelligence, (pp. 39-58). Springer, Cham. doi:10.1007/978-3-319-13132-0_3
- Wu, D. (2010, August). Application research on frequency-division multiplexing to chaos secret communication. 2010 International Conference of Information Science and Management Engineering, Shaanxi, China. doi:10.1109/ISME.2010.180
- Yau, H. T. (2008). Chaos synchronization of two uncertain chaotic nonlinear gyros using fuzzy sliding mode control. Mechanical Systems and Signal Processing, 22(2), 408-418. doi:10.1016/j.ymssp.2007.08.007