Research Article
BibTex RIS Cite

Catalytic Use of Pd(II) Complex Bearing 2-(thiophen-2-yl)-1H-Benzimidazole Ligand for The Reduction / Degradation of Multiple Mixtures Containing 4-NP, RhB and MB Organic Pollutants

Year 2023, Volume: 28 Issue: 1, 271 - 284, 30.04.2023
https://doi.org/10.53433/yyufbed.1167004

Abstract

In this study, the catalytic use of [Pd(L1)2]Cl2 complex is aimed for the reduction / degradation reactions of organic pollutants in water sources which pose a threat to the environment. For this purpose, 2-(thiophen-2-yl)-1H-benzimidazole ligand (L1) and its Pd(II) complex (C1) were synthesized and characterized by FT-IR, 1H-NMR, 13C-NMR, ESI-MS spectroscopic techniques. The catalytic efficiency of the C1 complex on the reduction of 4-nitro phenol compound (4-NP) and the degradation of rhodamine B (RhB), methylene blue (MB) dyes was investigated in the presence of NaBH4 in aqueous medium. The catalytic performance was examined with single solutions of these substrates (4-NP and RhB, MB dyes) and at the end of 5 minutes, over 92% conversion was observed for all three substrates. In the catalytic trials with 4-NP + RhB + MB triple substrate mixture, 84, 94 and 93% conversion values were obtained, respectively, after 5 minutes. C1 complex catalyst is very effective in the simultaneous reduction / degradation of these toxic organic compounds from aqueous environments without any competition or selectivity.

References

  • Abdelaal, M. Y., & Mohamed, R. M. (2013). Novel Pd/TiO2 nanocomposite prepared by modified sol–gel method for photocatalytic degradation of methylene blue dye under visible light irradiation. Journal of Alloys and Compounds, 576, 201-207. doi:10.1016/j.jallcom.2013.04.112
  • Al-Buriahi, A. K., Al-Gheethi, A. A., Kumar, P. S., Mohamed, R. M. S. R., Yusof, H., Alshalif, A. F., & Khalifa, N. A. (2022). Elimination of rhodamine B from textile wastewater using nanoparticle photocatalysts: A review for sustainable approaches. Chemosphere, 287(2), 132162-132175. doi:10.1016/j.chemosphere.2021.132162
  • Alouani, M. E., Aleyhen, S., Achouri, M. E., & Taibi, M. (2018). Removal of cationic dye – methylene blue- from aqueous solution by adsorption on fly ash-based geopolymer. Journal of Materials and Environmental Science, 9(1), 32-46. doi:10.26872/jmes.2018.9.1.5
  • Ariannezhad, M., Pourmorteza, N., Yousefi, A., & Esperi, M. (2022). Catalytic reduction of nitroarenes and Suzuki-Miyaura reactions using Pd complex stabilized on the functionalized polymeric support. Chemical Physics Letters, 793, 139431-13945. doi:10.1016/j.cplett.2022.139431
  • Asadabadi, A. Z., Hoseini, S. J., Bahramia, M., & Nabavizadeh, S. M. (2019). Catalytic applications of b-cyclodextrin / palladium nanoparticle thin film obtained from oil/water interface in the reduction of toxic nitrophenol compounds and the degradation of azo dyes. New Journal of Chemistry, 43, 6513-6522. doi:10.1039/C8NJ06449K
  • Bhat, S. A., Rashid, N., Rather, M. A., Bhat, S. A., Ingole, P. P., & Bhat, M. A. (2020). Highly efficient catalytic reductive degradation of Rhodamine-B over Palladium-reduced graphene oxide nanocomposite. Chemical Physics Letters, 754, 137724-137731. doi:10.1016/j.cplett.2020.137724
  • Cuerva, C., Campo, J. A., Cano, M., & Schmidt, R. (2017). Nanostructured discotic Pd(II) metallomesogens as one-dimensional proton conductors. Dalton Transactions, 46, 96-105. doi:10.1039/C6DT03521C
  • Gao, S., Hu, S., Luo, G., Sun, S., & Zhang, X. (2022). 2,2′-bipyridine palladium(II) complexes derived N-doped carbon encapsulated palladium nanoparticles for formic acid oxidation. Electrochimica Acta, 413, 140179-140187. doi:10.1016/j.electacta.2022.140179
  • Hassani, R., Jabli, M., Kacem, Y., Marrot, J., Prim, D., & Hassine, B. B. (2015). New palladium–oxazoline complexes: Synthesis and evaluation of the optical properties and the catalytic power during the oxidation of textile dyes. Beilstein Journal of Organic Chemistry, 11, 1175-1186. doi:10.3762%2Fbjoc.11.132
  • Jabeen, S., Khan, M. S., Khattak, R., Zekker, I., Burlakovs, J., Rubin, S. S., Ghangrekar, M. M., Kallistova, A., Pimenov, N., Zahoor, M., & Khan, G. S. (2021). Palladium-supported Zirconia-based catalytic degradation of rhodamine-B dye from wastewater. Water, 13(11), 1522-1534. doi:10.3390/w13111522
  • Joseph, A., Vellayan, K., González, B., Vicente, M. A., & Gil, A. (2019). Effective degradation of methylene blue in aqueous solution using Pd supported Cu-doped Ti-pillared montmorillonite catalyst. Applied Clay Science, 168, 7-10. doi:10.1016/j.clay.2018.10.009
  • Kidambi, S., Dai, J., Li, J., & Bruening, M. L. (2004). Selective hydrogenation by Pd nanoparticles embedded in polyelectrolyte multilayers. Journal of American Chemical Society, 126(9), 2658- 2659. doi:10.1021/ja038804c
  • Kim, J., Lee, S., Kim, S., Jung, M., Lee, H., & Han, M. S. (2020). Development of a fluorescent chemosensor for chloride ion detection in sweat using Ag+ benzimidazole complexes. Dyes and Pigments, 177, 108291-108296. doi:10.1016/j.dyepig.2020.108291
  • Kumar, A. P., Bilehal, D., Tadesse, A., Kumar, D. (2021). Photocatalytic degradation of organic dyes: Pd-g-Al2O3 and PdO-g-Al2O3 as potential photocatalysts. Royal Society of Chemistry Advances, 11, 6396–6406. doi:10.1039/D0RA10290C
  • Lee, S. J., Jung, H. J., Koutavarapu, R., Lee, S. H., Arumugam, M., Kim, J. H., & Choi, M. Y. (2019). ZnO supported Au/Pd bimetallic nanocomposites for plasmon improved photocatalytic activity for methylene blue degradation under visible light irradiation. Applied Surface Science, 496, 143665-143674. doi:10.1016/j.apsusc.2019.143665
  • Mejia, Y. R., & Bogireddy, N. K. R. (2022). Reduction of 4-nitrophenol using green-fabricated metal nanoparticles. Royal Society of Chemistry Advances, 12, 18661–18675. doi:10.1039/D2RA02663E
  • Mokhtar, M. (2017). Application of synthetic layered sodium silicate magadiite nanosheets for environmental remediation of methylene blue dye in water. Materials, 10(7), 760-773. doi:10.3390/ma10070760
  • Nadagouda, M. N., Desai, I., Cruz, C., & Yang, D. J. (2012). Novel Pd based catalyst for the removal of organic and emerging contaminants. Royal Society of Chemistry Advances, 2, 7540–7548. doi:10.1039/C2RA20562A
  • Naraginti, S., Stephen, F. B., Radhakrishnan, A., & Sivakumar, A. (2015). Zirconium and silver co-doped TiO2 nanoparticles as visible light catalyst for reduction of 4-nitrophenol, degradation of methyl orange and methylene blue. Spectrochimica Acta A: Molecular and Biomolecular Spectroscopy, 135, 814-819. doi:10.1016/j.saa.2014.07.070
  • Nasrollahzadeh, M., Issaabadi, Z., & Safari, R. (2019). Synthesis, characterization and application of Fe3O4@SiO2 nanoparticles supported palladium(II) complex as a magnetically catalyst for the reduction of 2,4-dinitrophenylhydrazine, 4-nitrophenol and chromium(VI): A combined theoretical (DFT) and experimental study. Separation and Purification Technology, 209, 136-144. doi:10.1016/j.seppur.2018.07.022
  • Nguyen, C. H., Fu, C. C., & Juang, R. S. (2018). Degradation of methylene blue and methyl orange by palladiumdoped TiO2 photocatalysis for water reuse: Efficiency and degradation pathways. Journal of Cleaner Production, 202, 413-427. doi:10.1016/j.jclepro.2018.08.110
  • Olagunju, M. O., Zahran, E. M., Reed, J. M., Zeynaloo E., Shukla, D., Cohn, J. L., Surnar, B., Dhar, S., Bachas, L. G., & Knecht M. R. (2021). Halide effects in BiVO4/BiOX heterostructures decorated with Pd nanoparticles for photocatalytic degradation of rhodamine B as a model organic pollutant. American Chemical Society Applied Nano Materials, 4(3), 3262-3272. doi:10.1021/acsanm.1c00481
  • Rafatullah, M., Sulaiman, O., Hashim, R., & Ahmad, A. (2010). Adsorption of methylene blue on low-cost adsorbents: A review. Journal of Hazardous Materials, 177(1-3), 70-80. doi:10.1016/j.jhazmat.2009.12.047
  • Rafiee, F., & Rezaee, M. (2022). Catalytic reduction of nitroarenes and degradation of dyes at room temperature by an efficient NNN pincer palladium catalyst based on the magnetic amino-triazole-modified chitosan. Reactive and Functional Polymers, 172, 105208-105220. doi:10.1016/j.reactfunctpolym.2022.105208
  • Rahman, Q. I., Ahmad, M., Misra, S. K., & Lohani, M. (2013). Effective photocatalytic degradation of rhodamine B dye by ZnO nanoparticles. Materials Letters, 91, 170–174. doi:10.1016/j.matlet.2012.09.044
  • Ramadan, R. M., El-Medani, S. M., Ali, O. A. M., & Mohamed H. A. (2004). Spectroscopic and thermal studies of some palladium complexes with certain heterocyclic nitrogen ligands. Journal of Coordination Chemistry, 57(5), 373-379. doi:10.1080/00958970410001680363
  • Robinson, T., McMullan, G., Marchant, R., & Nigam, P. (2001). Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource Technology, 77(3), 247-255. doi:10.1016/S0960-8524(00)00080-8
  • Sahiner, N., Sagbas, S., & Aktas, N. (2015). Very fast catalytic reduction of 4-nitrophenol, methylene blue and eosin Y in natural waters using green chemistry: p(Tannic acid)–Cu ionic liquid composites. The Royal Society of Chemistry, 5, 18183-18195. doi:10.1039/C5RA00126A
  • Saputra, E., Prawiranegara, B. A., Sugesti, H., Fadli, A., Heltina, D., Utama, P. S., Azis, Y., Manawan, M., Wang, S., & Oh, W. D. (2022). High performance magnetic carbonaceous materials as a photo Fenton-like catalyst for organic pollutant removal. Journal of Water Process Engineering, 47, 102849-102859. doi:10.1016/j.jwpe.2022.102849
  • Selim, A., Kaur, S., Dar, A. H., Sartaliya, S., & Jayamurugan, G. (2020). Synergistic effects of carbon dots and palladium nanoparticles enhance the sonocatalytic performance for rhodamine B degradation in the absence of light. American Chemical Society Omega, 5, 22603−22613. doi:10.1021/acsomega.0c03312
  • Selvi, G., Tercan, M., Ozdemir, N., & Dayan, O. (2020). The preparation of new palladium(II) complexes with Schiff base type ligands and its impregnated Al2O3 materials: As the catalysts for degradation/reduction of organic dyes. Applied Organometallic Chemistry, 34(12), 6009-6019. doi:10.1002/aoc.6009
  • Shu, F., Wu, J., Jiang, G., Qiao, Y., Wang, Y., Wu, D., Zhong, Y., Zhang, T., Song, J., Jin, Y., Jiang, B., & Xiao, H. (2022). A hierarchically porous and hygroscopic carbon-based catalyst from natural wood for efficient catalytic reduction of industrial high-concentration 4-nitrophenol. Separation and Purification Technology, 300, 121823 - 121923. doi:10.1016/j.seppur.2022.121823
  • Singh, K., & Arora, S. (2011). Removal of synthetic textile dyes from wastewaters: A critical review on present treatment technologies. Critical Reviews in Environmental Science and Technology, 4(9), 807-878. doi:10.1080/10643380903218376
  • Singh, J., Kumari, P., & Basu, S. (2019). Degradation of toxic industrial dyes using SnO2/g-C3N4 nanocomposites: Role of mass ratio on photocatalytic activity. Journal of Photochemistry and Photobiology A: Chemistry, 371, 136-143. doi:10.1016/j.jphotochem.2018.11.014
  • Tadokoro, M., & Nakasuji, K. (2000). Hydrogen bonded 2,2′-biimidazolate transition metal complexes as a tool of crystal engineering. Coordination Chemistry Reviews, 198(1), 205-218. doi:10.1016/S0010-8545(99)00223-4
  • Thabet, M. S., & Ismaiel, A. M. (2014). Sol-Gel γ-Al2O3 nanoparticles assessment of the removal of eosin Yellow using: adsorption, kinetic and thermodynamic parameters. Journal of Encapsulation and Adsorption Science, 6(3), 71-90. doi:10.4236/jeas.2016.63007
  • Wang, Y., Zhang, Y., Zhao, G., Wu, M., Li, M., Li, D., Zhang, Y., & Zhang, Y. (2013). Electrosorptive photocatalytic degradation of highly concentrated p-nitroaniline with TiO2 nanorod-clusters / carbon aerogel electrode under visible light. Seperation and Purification Technology, 104, 229-237. doi:10.1016/j.seppur.2012.11.009
  • Wang, Z., Zhang, H., Li, L., Miao, S., Wu, S., Hao, X., Zhang, W., & Jia, M. (2018). Polyacrylonitrile beads supported Pd-based nanoparticles as superior catalysts for dehydrogenation of formic acid and reduction of organic dyes. Catalysis Communications, 114, 51-55. doi:10.1016/j.catcom.2018.06.004
  • Wang, W., Dai, G., Yang, H., Liu, X., Chen, X., Meng, Z., & He, Q. (2021). Highly efficient catalytic reduction of 4-nitrophenol and organic dyes by ultrafine palladium nanoparticles anchored on CeO2 nanorods. Environmental Science and Pollution Research, 29, 8242-8252. doi:10.1007/s11356-021-16276-1
  • Zhou, P., Dai, Z., Lu, T., Ru, X., Ofori, M. A., Yang, W., Hou, J., & Jin, H. (2022). Degradation of rhodamine B in wastewater by Iron-loaded attapulgite particle heterogeneous fenton catalyst. Catalysts, 12(6), 669-688. doi:10.3390/catal12060669

2-(tiyofen-2-il)-1H-Benzimidazol Ligandı Taşıyan Pd Kompleksinin 4-NP, RhB ve MB Organik Kirleticileri İçeren Çoklu Karışımların İndirgenmesi / Bozunmasında Katalitik Kullanımı

Year 2023, Volume: 28 Issue: 1, 271 - 284, 30.04.2023
https://doi.org/10.53433/yyufbed.1167004

Abstract

Bu çalışmada, çevre için tehdit oluşturan organik kirleticilerin indirgeme / bozunma reaksiyonları ile su kaynaklarından uzaklaştırılması için [Pd(L1)2]Cl2 kompleksinin katalitik kullanımı amaçlanmıştır. Bu amaçla 2-(thiophen-2-yl)-1H-benzimidazole ligandı (L1) ve onun Pd(II) kompleksi (C1) sentezlenmiş ve FT-IR, 1H-NMR, 13C-NMR, ESI-MS spectroscopic teknikleri ile karakterize edilmiştir. C1 kompleksinin rhodamine B (RhB) ve methylene blue (MB) boyalarının bozunmasındaki ve 4-nitro phenol (4-NP) bileşiğinin indirgenmesindeki katalitik etkinliği NaBH4 varlığında, sulu ortamda incelenmiştir. Bu substratların (4-NP ve RhB, MB boyaları) tekli çözeltileri ile katalitik performans incelenmiş ve 5 dakikanın sonunda her üç substrat için de 92% üzerinde dönüşüm gözlenmiştir. 4-NP + RhB + MB üçlü substrat karışımı ile yapılan katalitik denemelerde 5 dakikanın sonunda sırasıyla 84, 94 ve 93% dönüşüm değerleri elde edilmiştir. Çevre için oldukça toksik bu organik bileşikleri çoklu olarak içeren sulu ortamlardan bu bileşiklerin aynı anda ayrılmasında C1 kompleks katalizörü oldukça etkindir.

References

  • Abdelaal, M. Y., & Mohamed, R. M. (2013). Novel Pd/TiO2 nanocomposite prepared by modified sol–gel method for photocatalytic degradation of methylene blue dye under visible light irradiation. Journal of Alloys and Compounds, 576, 201-207. doi:10.1016/j.jallcom.2013.04.112
  • Al-Buriahi, A. K., Al-Gheethi, A. A., Kumar, P. S., Mohamed, R. M. S. R., Yusof, H., Alshalif, A. F., & Khalifa, N. A. (2022). Elimination of rhodamine B from textile wastewater using nanoparticle photocatalysts: A review for sustainable approaches. Chemosphere, 287(2), 132162-132175. doi:10.1016/j.chemosphere.2021.132162
  • Alouani, M. E., Aleyhen, S., Achouri, M. E., & Taibi, M. (2018). Removal of cationic dye – methylene blue- from aqueous solution by adsorption on fly ash-based geopolymer. Journal of Materials and Environmental Science, 9(1), 32-46. doi:10.26872/jmes.2018.9.1.5
  • Ariannezhad, M., Pourmorteza, N., Yousefi, A., & Esperi, M. (2022). Catalytic reduction of nitroarenes and Suzuki-Miyaura reactions using Pd complex stabilized on the functionalized polymeric support. Chemical Physics Letters, 793, 139431-13945. doi:10.1016/j.cplett.2022.139431
  • Asadabadi, A. Z., Hoseini, S. J., Bahramia, M., & Nabavizadeh, S. M. (2019). Catalytic applications of b-cyclodextrin / palladium nanoparticle thin film obtained from oil/water interface in the reduction of toxic nitrophenol compounds and the degradation of azo dyes. New Journal of Chemistry, 43, 6513-6522. doi:10.1039/C8NJ06449K
  • Bhat, S. A., Rashid, N., Rather, M. A., Bhat, S. A., Ingole, P. P., & Bhat, M. A. (2020). Highly efficient catalytic reductive degradation of Rhodamine-B over Palladium-reduced graphene oxide nanocomposite. Chemical Physics Letters, 754, 137724-137731. doi:10.1016/j.cplett.2020.137724
  • Cuerva, C., Campo, J. A., Cano, M., & Schmidt, R. (2017). Nanostructured discotic Pd(II) metallomesogens as one-dimensional proton conductors. Dalton Transactions, 46, 96-105. doi:10.1039/C6DT03521C
  • Gao, S., Hu, S., Luo, G., Sun, S., & Zhang, X. (2022). 2,2′-bipyridine palladium(II) complexes derived N-doped carbon encapsulated palladium nanoparticles for formic acid oxidation. Electrochimica Acta, 413, 140179-140187. doi:10.1016/j.electacta.2022.140179
  • Hassani, R., Jabli, M., Kacem, Y., Marrot, J., Prim, D., & Hassine, B. B. (2015). New palladium–oxazoline complexes: Synthesis and evaluation of the optical properties and the catalytic power during the oxidation of textile dyes. Beilstein Journal of Organic Chemistry, 11, 1175-1186. doi:10.3762%2Fbjoc.11.132
  • Jabeen, S., Khan, M. S., Khattak, R., Zekker, I., Burlakovs, J., Rubin, S. S., Ghangrekar, M. M., Kallistova, A., Pimenov, N., Zahoor, M., & Khan, G. S. (2021). Palladium-supported Zirconia-based catalytic degradation of rhodamine-B dye from wastewater. Water, 13(11), 1522-1534. doi:10.3390/w13111522
  • Joseph, A., Vellayan, K., González, B., Vicente, M. A., & Gil, A. (2019). Effective degradation of methylene blue in aqueous solution using Pd supported Cu-doped Ti-pillared montmorillonite catalyst. Applied Clay Science, 168, 7-10. doi:10.1016/j.clay.2018.10.009
  • Kidambi, S., Dai, J., Li, J., & Bruening, M. L. (2004). Selective hydrogenation by Pd nanoparticles embedded in polyelectrolyte multilayers. Journal of American Chemical Society, 126(9), 2658- 2659. doi:10.1021/ja038804c
  • Kim, J., Lee, S., Kim, S., Jung, M., Lee, H., & Han, M. S. (2020). Development of a fluorescent chemosensor for chloride ion detection in sweat using Ag+ benzimidazole complexes. Dyes and Pigments, 177, 108291-108296. doi:10.1016/j.dyepig.2020.108291
  • Kumar, A. P., Bilehal, D., Tadesse, A., Kumar, D. (2021). Photocatalytic degradation of organic dyes: Pd-g-Al2O3 and PdO-g-Al2O3 as potential photocatalysts. Royal Society of Chemistry Advances, 11, 6396–6406. doi:10.1039/D0RA10290C
  • Lee, S. J., Jung, H. J., Koutavarapu, R., Lee, S. H., Arumugam, M., Kim, J. H., & Choi, M. Y. (2019). ZnO supported Au/Pd bimetallic nanocomposites for plasmon improved photocatalytic activity for methylene blue degradation under visible light irradiation. Applied Surface Science, 496, 143665-143674. doi:10.1016/j.apsusc.2019.143665
  • Mejia, Y. R., & Bogireddy, N. K. R. (2022). Reduction of 4-nitrophenol using green-fabricated metal nanoparticles. Royal Society of Chemistry Advances, 12, 18661–18675. doi:10.1039/D2RA02663E
  • Mokhtar, M. (2017). Application of synthetic layered sodium silicate magadiite nanosheets for environmental remediation of methylene blue dye in water. Materials, 10(7), 760-773. doi:10.3390/ma10070760
  • Nadagouda, M. N., Desai, I., Cruz, C., & Yang, D. J. (2012). Novel Pd based catalyst for the removal of organic and emerging contaminants. Royal Society of Chemistry Advances, 2, 7540–7548. doi:10.1039/C2RA20562A
  • Naraginti, S., Stephen, F. B., Radhakrishnan, A., & Sivakumar, A. (2015). Zirconium and silver co-doped TiO2 nanoparticles as visible light catalyst for reduction of 4-nitrophenol, degradation of methyl orange and methylene blue. Spectrochimica Acta A: Molecular and Biomolecular Spectroscopy, 135, 814-819. doi:10.1016/j.saa.2014.07.070
  • Nasrollahzadeh, M., Issaabadi, Z., & Safari, R. (2019). Synthesis, characterization and application of Fe3O4@SiO2 nanoparticles supported palladium(II) complex as a magnetically catalyst for the reduction of 2,4-dinitrophenylhydrazine, 4-nitrophenol and chromium(VI): A combined theoretical (DFT) and experimental study. Separation and Purification Technology, 209, 136-144. doi:10.1016/j.seppur.2018.07.022
  • Nguyen, C. H., Fu, C. C., & Juang, R. S. (2018). Degradation of methylene blue and methyl orange by palladiumdoped TiO2 photocatalysis for water reuse: Efficiency and degradation pathways. Journal of Cleaner Production, 202, 413-427. doi:10.1016/j.jclepro.2018.08.110
  • Olagunju, M. O., Zahran, E. M., Reed, J. M., Zeynaloo E., Shukla, D., Cohn, J. L., Surnar, B., Dhar, S., Bachas, L. G., & Knecht M. R. (2021). Halide effects in BiVO4/BiOX heterostructures decorated with Pd nanoparticles for photocatalytic degradation of rhodamine B as a model organic pollutant. American Chemical Society Applied Nano Materials, 4(3), 3262-3272. doi:10.1021/acsanm.1c00481
  • Rafatullah, M., Sulaiman, O., Hashim, R., & Ahmad, A. (2010). Adsorption of methylene blue on low-cost adsorbents: A review. Journal of Hazardous Materials, 177(1-3), 70-80. doi:10.1016/j.jhazmat.2009.12.047
  • Rafiee, F., & Rezaee, M. (2022). Catalytic reduction of nitroarenes and degradation of dyes at room temperature by an efficient NNN pincer palladium catalyst based on the magnetic amino-triazole-modified chitosan. Reactive and Functional Polymers, 172, 105208-105220. doi:10.1016/j.reactfunctpolym.2022.105208
  • Rahman, Q. I., Ahmad, M., Misra, S. K., & Lohani, M. (2013). Effective photocatalytic degradation of rhodamine B dye by ZnO nanoparticles. Materials Letters, 91, 170–174. doi:10.1016/j.matlet.2012.09.044
  • Ramadan, R. M., El-Medani, S. M., Ali, O. A. M., & Mohamed H. A. (2004). Spectroscopic and thermal studies of some palladium complexes with certain heterocyclic nitrogen ligands. Journal of Coordination Chemistry, 57(5), 373-379. doi:10.1080/00958970410001680363
  • Robinson, T., McMullan, G., Marchant, R., & Nigam, P. (2001). Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource Technology, 77(3), 247-255. doi:10.1016/S0960-8524(00)00080-8
  • Sahiner, N., Sagbas, S., & Aktas, N. (2015). Very fast catalytic reduction of 4-nitrophenol, methylene blue and eosin Y in natural waters using green chemistry: p(Tannic acid)–Cu ionic liquid composites. The Royal Society of Chemistry, 5, 18183-18195. doi:10.1039/C5RA00126A
  • Saputra, E., Prawiranegara, B. A., Sugesti, H., Fadli, A., Heltina, D., Utama, P. S., Azis, Y., Manawan, M., Wang, S., & Oh, W. D. (2022). High performance magnetic carbonaceous materials as a photo Fenton-like catalyst for organic pollutant removal. Journal of Water Process Engineering, 47, 102849-102859. doi:10.1016/j.jwpe.2022.102849
  • Selim, A., Kaur, S., Dar, A. H., Sartaliya, S., & Jayamurugan, G. (2020). Synergistic effects of carbon dots and palladium nanoparticles enhance the sonocatalytic performance for rhodamine B degradation in the absence of light. American Chemical Society Omega, 5, 22603−22613. doi:10.1021/acsomega.0c03312
  • Selvi, G., Tercan, M., Ozdemir, N., & Dayan, O. (2020). The preparation of new palladium(II) complexes with Schiff base type ligands and its impregnated Al2O3 materials: As the catalysts for degradation/reduction of organic dyes. Applied Organometallic Chemistry, 34(12), 6009-6019. doi:10.1002/aoc.6009
  • Shu, F., Wu, J., Jiang, G., Qiao, Y., Wang, Y., Wu, D., Zhong, Y., Zhang, T., Song, J., Jin, Y., Jiang, B., & Xiao, H. (2022). A hierarchically porous and hygroscopic carbon-based catalyst from natural wood for efficient catalytic reduction of industrial high-concentration 4-nitrophenol. Separation and Purification Technology, 300, 121823 - 121923. doi:10.1016/j.seppur.2022.121823
  • Singh, K., & Arora, S. (2011). Removal of synthetic textile dyes from wastewaters: A critical review on present treatment technologies. Critical Reviews in Environmental Science and Technology, 4(9), 807-878. doi:10.1080/10643380903218376
  • Singh, J., Kumari, P., & Basu, S. (2019). Degradation of toxic industrial dyes using SnO2/g-C3N4 nanocomposites: Role of mass ratio on photocatalytic activity. Journal of Photochemistry and Photobiology A: Chemistry, 371, 136-143. doi:10.1016/j.jphotochem.2018.11.014
  • Tadokoro, M., & Nakasuji, K. (2000). Hydrogen bonded 2,2′-biimidazolate transition metal complexes as a tool of crystal engineering. Coordination Chemistry Reviews, 198(1), 205-218. doi:10.1016/S0010-8545(99)00223-4
  • Thabet, M. S., & Ismaiel, A. M. (2014). Sol-Gel γ-Al2O3 nanoparticles assessment of the removal of eosin Yellow using: adsorption, kinetic and thermodynamic parameters. Journal of Encapsulation and Adsorption Science, 6(3), 71-90. doi:10.4236/jeas.2016.63007
  • Wang, Y., Zhang, Y., Zhao, G., Wu, M., Li, M., Li, D., Zhang, Y., & Zhang, Y. (2013). Electrosorptive photocatalytic degradation of highly concentrated p-nitroaniline with TiO2 nanorod-clusters / carbon aerogel electrode under visible light. Seperation and Purification Technology, 104, 229-237. doi:10.1016/j.seppur.2012.11.009
  • Wang, Z., Zhang, H., Li, L., Miao, S., Wu, S., Hao, X., Zhang, W., & Jia, M. (2018). Polyacrylonitrile beads supported Pd-based nanoparticles as superior catalysts for dehydrogenation of formic acid and reduction of organic dyes. Catalysis Communications, 114, 51-55. doi:10.1016/j.catcom.2018.06.004
  • Wang, W., Dai, G., Yang, H., Liu, X., Chen, X., Meng, Z., & He, Q. (2021). Highly efficient catalytic reduction of 4-nitrophenol and organic dyes by ultrafine palladium nanoparticles anchored on CeO2 nanorods. Environmental Science and Pollution Research, 29, 8242-8252. doi:10.1007/s11356-021-16276-1
  • Zhou, P., Dai, Z., Lu, T., Ru, X., Ofori, M. A., Yang, W., Hou, J., & Jin, H. (2022). Degradation of rhodamine B in wastewater by Iron-loaded attapulgite particle heterogeneous fenton catalyst. Catalysts, 12(6), 669-688. doi:10.3390/catal12060669
There are 40 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Melek Tercan 0000-0001-7330-6076

Early Pub Date April 29, 2023
Publication Date April 30, 2023
Submission Date August 25, 2022
Published in Issue Year 2023 Volume: 28 Issue: 1

Cite

APA Tercan, M. (2023). Catalytic Use of Pd(II) Complex Bearing 2-(thiophen-2-yl)-1H-Benzimidazole Ligand for The Reduction / Degradation of Multiple Mixtures Containing 4-NP, RhB and MB Organic Pollutants. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28(1), 271-284. https://doi.org/10.53433/yyufbed.1167004