Research Article
BibTex RIS Cite

Piezoelektrik Zr3GeO8 Kristalinin Fiziksel Özellikleri

Year 2023, Volume: 28 Issue: 3, 848 - 856, 29.12.2023
https://doi.org/10.53433/yyufbed.1212067

Abstract

Yoğunluk fonksiyonel teorisine ve ilk temel hesaplamalara dayanarak, Zr3GeO8 kristalinin temel durum için fiziksel özellikleri hesaplanmıştır. Yapılan tüm hesaplamalarda Yoğunluk fonksiyonel teorisi tabanlı çalışan ABINIT paket programı kullanılmıştır. İncelemeler yerel yoğunluk yaklaşımı altında yapılmıştır. Zr3GeO8 kristalinin geometrik optimizasyonu, valans elektronlarının durum yoğunluğu, kristalin iletkenlik karakterini anlamak için elektronik bant yapısı, malzemenin elektromanyetik dalgaya tepkisini görmek için doğrusal optik özellikleri hesaplanmıştır. Ayrıca Zr3GeO8 kristali için dinamik-termodinamik özellikleri hesaplanmıştır. Hesaplanan yapısal optimizasyon ve elektronik bant yapısına göre Zr3GeO8 kristalinin bant aralığı 4.4663 eV olup dolaylı bir bant aralığına sahip olduğu elde edilmiştir. Zr3GeO8 kristali için temel durumdaki lineer optik özellikler ve lineer optik özelliklere bağlı olarak enerji kaybı fonksiyonları, yansıtma ve absorpsiyon katsayısı gibi bazı sabitler hesaplanır. Zr3GeO8 kristalinin fonon dağılımı, durum yoğunluğu ve her bir atomun durum yoğunluğuna katkısı hesaplandı. Son olarak Zr3GeO8 kristali için serbest enerji, iç enerji, entropi ve ısı kapasitesi hesaplanmıştır.

References

  • Curie, J., & Curie, P. (1880). Développement par compression de l'électricité polaire dans les cristaux hémièdres à faces inclinées. Bulletin de Minéralogie, 3(4), 90-93. doi:10.3406/bulmi.1880
  • Dineva, P., Gross, D., Müller, R., & Rangelov, T. (2014). Piezoelectric materials. In Dynamic Fracture of Piezoelectric Materials (pp. 7-32). Springer, Cham. doi:10.1007/978-3-319-03961-9_2
  • Ennaciri, A., Michel, D., y Jorba, M. P., & Pannetier, J. (1984). Neutron diffraction determination of the structure of an ordered scheelite-type: Zr3GeO8. Materials Research Bulletin, 19(6), 793-799. doi:10.1016/0025-5408(84)90037-0
  • Erzen, M., & Akkus, H. (2018). Effect of pressure on physical properties of LuAsO4 crystal. Materials Research Express, 5(11), 116204. doi:10.1088/2053-1591/aade2c
  • Fuchs, M., & Scheffler, M. (1999). Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory. Computer Physics Communications, 119(1), 67-98. doi:10.1016/S0010-4655(98)00201-X
  • Gurin, V. S., Alexeenko, A. A., Kasparov, K. N., & Tyavlovskaya, E. A. (2005). Incorporation of zirconia and germania and ternary compounds of ZrO2–GeO2 into silica sol-gel matrices. Materials Science-Poland, 23(1), 49-60.
  • Gonze, X., Beuken, J. M., Caracas, R., Detraux, F., Fuchs, M., Rignanese, G. M., … & Allan, D. C. (2002). First-principles computation of material properties: the ABINIT software project. Computational Materials Science, 25(3), 478-492. doi:10.1016/S0927-0256(02)00325-7
  • Jain, A., Ong, S. P., Hautier, G., Chen, W., Richards, W. D., Dacek, S., … & Persson, K. A. (2013). The Materials Project: A materials genome approach to accelerating materials innovation. APL Materials, 1(1), 011002. doi:10.1063/1.4812323
  • Momma, K., & Izumi, F. (2011). VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44(6), 1272-1276. doi:10.1107/S0021889811038970 Monkhorst, H. J., & Pack, J. D. (1976). Special points for Brillouin-zone integrations. Physical Review B, 13(12), 5188. doi:10.1103/PhysRevB.13.5188
  • Troullier, N., & Martins, J. L. (1991). Efficient pseudopotentials for plane-wave calculations. Physical Review B, 43(3), 1993. doi:10.1103/PhysRevB.43.1993
  • Utkin, A. V., Bulina, N. V., Belen’kaya, I. V., & Baklanova, N. I. (2012). Phase analysis of the ZrO2-GeO2 system. Inorganic Materials, 48(6), 601-606. doi:10.1134/S0020168512060209
  • Utkin, A., Baklanova, N., & Vasilieva, I. (2013). Zirconium germanates: Synthesis, stoichiometry and thermal behavior. 14th European Conference on Solid State Chemistry, Bordeaux, France. doi:10.13140/2.1.4851.7444

Physical Properties of Piezoelectric Zr3GeO8 Crystal

Year 2023, Volume: 28 Issue: 3, 848 - 856, 29.12.2023
https://doi.org/10.53433/yyufbed.1212067

Abstract

Based on the density functional theory and first-principal calculations, the physical properties of the Zr3GeO8 crystal for the ground state were calculated. In all calculations, the Density functional theory based ABINIT package program was used. Investigations were made under the local density approximation. The geometric optimization of the Zr3GeO8 crystal, the state density of the valence electrons, the electronic band structure to understand the conductivity character of the crystal, and the linear optical properties to see the response of the material to the electromagnetic wave were calculated. In addition, dynamic-thermodynamic properties were calculated for the Zr3GeO8 crystal. According to the calculated structural optimization and electronic band structure, the band gap of the Zr3GeO8 crystal is 4.4663 eV and it has been obtained that it has an indirect band gap. For the Zr3GeO8 crystal, some constants such as energy loss functions, reflectivity, and absorption coefficient are calculated depending on the ground state linear optical properties and linear optical properties. The phonon distribution, state density and contribution of each atom to the density of state the Zr3GeO8 crystal were calculated. Finally, free energy, internal energy, entropy, and heat capacity were calculated for the Zr3GeO8 crystal.

References

  • Curie, J., & Curie, P. (1880). Développement par compression de l'électricité polaire dans les cristaux hémièdres à faces inclinées. Bulletin de Minéralogie, 3(4), 90-93. doi:10.3406/bulmi.1880
  • Dineva, P., Gross, D., Müller, R., & Rangelov, T. (2014). Piezoelectric materials. In Dynamic Fracture of Piezoelectric Materials (pp. 7-32). Springer, Cham. doi:10.1007/978-3-319-03961-9_2
  • Ennaciri, A., Michel, D., y Jorba, M. P., & Pannetier, J. (1984). Neutron diffraction determination of the structure of an ordered scheelite-type: Zr3GeO8. Materials Research Bulletin, 19(6), 793-799. doi:10.1016/0025-5408(84)90037-0
  • Erzen, M., & Akkus, H. (2018). Effect of pressure on physical properties of LuAsO4 crystal. Materials Research Express, 5(11), 116204. doi:10.1088/2053-1591/aade2c
  • Fuchs, M., & Scheffler, M. (1999). Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory. Computer Physics Communications, 119(1), 67-98. doi:10.1016/S0010-4655(98)00201-X
  • Gurin, V. S., Alexeenko, A. A., Kasparov, K. N., & Tyavlovskaya, E. A. (2005). Incorporation of zirconia and germania and ternary compounds of ZrO2–GeO2 into silica sol-gel matrices. Materials Science-Poland, 23(1), 49-60.
  • Gonze, X., Beuken, J. M., Caracas, R., Detraux, F., Fuchs, M., Rignanese, G. M., … & Allan, D. C. (2002). First-principles computation of material properties: the ABINIT software project. Computational Materials Science, 25(3), 478-492. doi:10.1016/S0927-0256(02)00325-7
  • Jain, A., Ong, S. P., Hautier, G., Chen, W., Richards, W. D., Dacek, S., … & Persson, K. A. (2013). The Materials Project: A materials genome approach to accelerating materials innovation. APL Materials, 1(1), 011002. doi:10.1063/1.4812323
  • Momma, K., & Izumi, F. (2011). VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44(6), 1272-1276. doi:10.1107/S0021889811038970 Monkhorst, H. J., & Pack, J. D. (1976). Special points for Brillouin-zone integrations. Physical Review B, 13(12), 5188. doi:10.1103/PhysRevB.13.5188
  • Troullier, N., & Martins, J. L. (1991). Efficient pseudopotentials for plane-wave calculations. Physical Review B, 43(3), 1993. doi:10.1103/PhysRevB.43.1993
  • Utkin, A. V., Bulina, N. V., Belen’kaya, I. V., & Baklanova, N. I. (2012). Phase analysis of the ZrO2-GeO2 system. Inorganic Materials, 48(6), 601-606. doi:10.1134/S0020168512060209
  • Utkin, A., Baklanova, N., & Vasilieva, I. (2013). Zirconium germanates: Synthesis, stoichiometry and thermal behavior. 14th European Conference on Solid State Chemistry, Bordeaux, France. doi:10.13140/2.1.4851.7444
There are 12 citations in total.

Details

Primary Language English
Subjects Condensed Matter Physics (Other)
Journal Section Natural Sciences and Mathematics / Fen Bilimleri ve Matematik
Authors

Mehmet Erzen 0000-0002-7716-8608

Publication Date December 29, 2023
Submission Date November 30, 2022
Published in Issue Year 2023 Volume: 28 Issue: 3

Cite

APA Erzen, M. (2023). Physical Properties of Piezoelectric Zr3GeO8 Crystal. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28(3), 848-856. https://doi.org/10.53433/yyufbed.1212067