Research Article
BibTex RIS Cite

Pyrolysis of Crambe Orientalis Plant in the Presence of Metal Supported MCM-41 Catalyst: The Effect of Catalyst Ratio on Liquid Product Composition

Year 2023, Volume: 28 Issue: 3, 883 - 897, 29.12.2023
https://doi.org/10.53433/yyufbed.1284921

Abstract

Pyrolysis is a thermal decomposition event that occurs as a result of heating organic materials in an oxygen-free environment. Biomass is converted into liquid products with high energy value by the catalytic pyrolysis process. Metal supported/unsupported MCM-41 catalysts were used as catalysts. Hydrothermal method was used for catalyst synthesis. For this purpose, in this study, crambe orientalis plant was pyrolyzed at 400 oC in the presence of 5% and 25% by mass MCM-41, MCM-41/Al, MCM-41/Fe catalysts. The highest upper calorific value for 5% and 25% by mass was obtained as 23.87 and 23.95 in the presence of MCM-41 catalyst, respectively. The catalysts were characterized by X-Ray diffraction (XRD), Scanning electron microscopy (SEM) with energy dispersive x-ray analysis (EDX) and energy dispersive spectroscopy (EDS) methods. The liquid products obtained were analyzed by gas chromatography- mass spectrometry (GC-MS), elemental and fouirer transform ınfrared spektrofotometre (FT-IR) analysis methods. According to the results obtained, Crambe orientalis plant has the potential to be used as a biomass source. Catalysts are effective on product composition.

Project Number

FDK-2020-9219

References

  • Adam, J., Antonakou, E., Lappas, A., Stöcker, M., Nilsen, M. H., Bouzga, A., … & Øye, G. (2006). In situ catalytic upgrading of biomass derived fast pyrolysis vapours in a fixed bed reactor using mesoporous materials. Microporous and Mesoporous Materials, 96(1), 93-101. doi:10.1016/j.micromeso.2006.06.021
  • Ateş, F., & Işıkdağ, M. A. (2009). Influence of temperature and alumina catalyst on pyrolysis of corncob. Fuel, 88(10), 1991-1997. doi:10.1016/j.fuel.2009.03.008
  • Aysu, T., & Durak, H. (2016). Bio-oil production via catalytic supercritical liquefaction of Syrian mesquite (Prosopis farcta). The Journal of Supercritical Fluids, 109, 26-34. doi:10.1016/J.SUPFLU.2015.11.002
  • Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., … & Schlenker, J. L. (1992). A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society, 114(27), 10834-10843. doi:10.1021/ja00053a020
  • Bridgwater, A. V. (1994). Catalysis in thermal biomass conversion. Applied Catalysis A: General, 116(1), 5-47. doi:10.1016/0926-860X(94)80278-5
  • Chen, M., Wang, J., Zhang, M., Chen, M., Zhu, X., Min, F., & Tan, Z. (2008). Catalytic effects of eight inorganic additives on pyrolysis of pine wood sawdust by microwave heating. Journal of Analytical and Applied Pyrolysis, 82(1), 145-150. doi:10.1016/j.jaap.2008.03.001
  • Chi, Y., Xue, J., Zhuo, J., Zhang, D., Liu, M., & Yao, Q. (2018). Catalytic co-pyrolysis of cellulose and polypropylene over all-silica mesoporous catalyst MCM-41 and Al-MCM-41. Science of The Total Environment, 633, 1105-1113. doi:10.1016/j.scitotenv.2018.03.239
  • Corma, A. (1997). From microporous to mesoporous molecular sieve materials and their use in catalysis. Chemical Reviews, 97(6), 2373-2420. doi:10.1021/cr960406n
  • Dhal, J. P., Dash, T., & Hota, G. (2020). Iron oxide impregnated mesoporous MCM-41: synthesis, characterization and adsorption studies. Journal of Porous Materials, 27(1), 205-216. doi:10.1007/s10934-019-00803-0
  • Dobrzynski, P., Fabbri, D., Torri, C., Kasperczyk, J., Kaczmarczyk, B., & Pastusiak, M. (2009). A novel hydroxy functionalized polyester obtained by ring opening copolymerization of L-lactide with a pyrolysis product of cellulose. Journal of Polymer Science Part A: Polymer Chemistry, 47(1), 247-257. doi:10.1002/pola.23149
  • Durak, H. (2016). Pyrolysis of Xanthium strumarium in a fixed bed reactor: Effects of boron catalysts and pyrolysis parameters on product yields and character. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38(10), 1400-1409. doi:10.1080/15567036.2014.947446
  • Genel, S. (2022). Biyokütlenin piroliz ve hidrotermal yöntemle farklı katalizör sistemleri kullanılarak sıvılaştırılması, elde edilen ürünlerin karakterizasyonu. (Doktora tezi), Van Yüzüncü Yıl Üniversitesi, Fen Bilimleri Enstitüsü, Van, Türkiye.
  • Gedikli, Ü. (2017). Metal destekli/desteksiz mcm-41 katalizörlerinin sentezi ve karakterizasyonu. (Doktora tezi), Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, Türkiye.
  • Iliopoulou, E. F., Antonakou, E. V, Karakoulia, S. A., Vasalos, I. A., Lappas, A. A., & Triantafyllidis, K. S. (2007). Catalytic conversion of biomass pyrolysis products by mesoporous materials: Effect of steam stability and acidity of Al-MCM-41 catalysts. Chemical Engineering Journal, 134(1), 51-57. doi:10.1016/j.cej.2007.03.066
  • Islam, M. N., Islam, M. N., & Beg, M. R. A. (2004). The fuel properties of pyrolysis liquid derived from urban solid wastes in Bangladesh. Bioresource Technology, 92(2), 181-186. doi:10.1016/j.biortech.2003.08.009
  • Kawale, H. D., & Kishore, N. (2021). Comprehensive study on thermochemical putrefaction of Delonix Regia in non-catalytic, catalytic and hydro-catalytic pyrolysis atmospheres. Renewable Energy, 173, 223-236. doi:10.1016/j.renene.2021.03.139
  • Kıncay, O., Utlu, Z., Ağustos, H., Akbulut, U., & Açıkgöz, Ö. (2009). Combining trend of renewable energy sources. Sigma, 27, 60-82.
  • Li, A. M., Li, X. D., Li, S. Q., Ren, Y., Chi, Y., Yan, J. H., & Cen, K. F. (1999). Pyrolysis of solid waste in a rotary kiln: influence of final pyrolysis temperature on the pyrolysis products. Journal of Analytical and Applied Pyrolysis, 50(2), 149–162. doi:10.1016/S0165-2370(99)00025-X
  • Ozbay, N., Yargic, A. S., Yarbay Sahin, R. Z., & Yaman, E. (2019). Valorization of banana peel waste via in-situ catalytic pyrolysis using Al-Modified SBA-15. Renewable Energy, 140, 633-646. doi:10.1016/j.renene.2019.03.071
  • Park, H. J., Heo, H. S., Jeon, J.-K., Kim, J., Ryoo, R., Jeong, K.-E., & Park, Y.-K. (2010). Highly valuable chemicals production from catalytic upgrading of radiata pine sawdust-derived pyrolytic vapors over mesoporous MFI zeolites. Applied Catalysis B: Environmental, 95(3), 365-373. doi:10.1016/j.apcatb.2010.01.015
  • Park, Y.-K., Jun, B. R., Park, S. H., Jeon, J.-K., Lee, S. H., Kim, S.-S., & Jeong, K.-E. (2014). Catalytic conversion of cellulose over mesoporous Y zeolite. Journal of Nanoscience and Nanotechnology, 14(7), 5120-5123. doi:10.1166/jnn.2014.8406
  • Ratnasari, D. K., Yang, W., Jönsson, P. G. (2020). Catalytic pyrolysis of lignocellulosic biomass: The influence of the catalyst regeneration sequence on the composition of upgraded pyrolysis oils over a H-ZSM-5/Al-MCM-41 catalyst mixture. ACS omega, 5(45), 28992-29001. doi:10.1021/acsomega.0c03272
  • Torri, C., Lesci, I. G., & Fabbri, D. (2009). Analytical study on the pyrolytic behaviour of cellulose in the presence of MCM-41 mesoporous materials. Journal of Analytical and Applied Pyrolysis, 85(1), 192-196. doi:10.1016/j.jaap.2008.11.024
  • Williams, P. T., & Horne, P. A. (1995). The influence of catalyst type on the composition of upgraded biomass pyrolysis oils. Journal of Analytical and Applied Pyrolysis, 31, 39-61. doi:10.1016/0165-2370(94)00847-T
  • Xue, J., Zhuo, J., Liu, M., Chi, Y., Zhang, D., & Yao, Q. (2017). Synergetic effect of Co-pyrolysis of cellulose and polypropylene over an all-silica mesoporous catalyst MCM-41 using thermogravimetry–fourier transform infrared spectroscopy and pyrolysis–gas chromatography–mass spectrometry. Energy & Fuels, 31(9), 9576-9584. doi:10.1021/acs.energyfuels.7b01651
  • Yu, F., Ji, D., Nie, Y., Luo, Y., Huang, C., & Ji, J. (2012). Study on the pyrolysis of cellulose for bio-oil with mesoporous molecular sieve catalysts. Applied Biochemistry and Biotechnology, 168(1), 174-182. doi:10.1007/s12010-011-9398-5

Crambe Orientalis Bitkisinin Metal Destekli MCM-41 Katalizörü Varlığında Pirolizi: Sıvı Ürün Bileşimine Katalizör Oranının Etkisi

Year 2023, Volume: 28 Issue: 3, 883 - 897, 29.12.2023
https://doi.org/10.53433/yyufbed.1284921

Abstract

Piroliz, organik maddelerin oksijensiz ortamda ısıtılması neticesinde meydana gelen ısıl parçalanma olayıdır. Biyokütle katalitik piroliz prosesi ile enerji değeri yüksek sıvı ürünlere dönüştürülmektedir. Katalizör olarak metal destekli/desteksiz MCM-41 katalizörleri kullanılmıştır. Katalizör sentezinde hidrotermal yöntem kullanılmıştır. Bu amaçla bu çalışmada crambe orientalis bitkisi 400 oC sıcaklıkta ve kütlece %5 ve %25'lik MCM-41, MCM-41/Al, MCM-41/Fe katalizörleri varlığında piroliz edilmiştir. Kütlece %5 ve %25 oranları için en yüksek üst ısıl değeri MCM-41 katalizörü varlığında sırasıyla 23.87, 23.95 olarak elde edilmiştir. Katalizörler X-Ray diffraction (XRD), Scanning electron microscopy (sem) with energy dispersive x-ray analysis (EDX) ve energy dispersive spectroscopy (EDS) yöntemleri ile karakterize edilmiştir. Elde edilen sıvı ürünler gas chromatography- mass spectrometry (GC-MS), Elementel ve fouirer transform ınfrared spektrofotometre (FT-IR) analiz yöntemleri ile incelenmiştir. Elde edilen sonuçlara göre Crambe orientalis bitkisi biyokütle kaynağı olarak kullanım potansiyeline sahiptir. Katalizörler ürün bileşimi üzerine etkilidir.

Supporting Institution

Van Yüzüncü Yıl Üniversitesi

Project Number

FDK-2020-9219

References

  • Adam, J., Antonakou, E., Lappas, A., Stöcker, M., Nilsen, M. H., Bouzga, A., … & Øye, G. (2006). In situ catalytic upgrading of biomass derived fast pyrolysis vapours in a fixed bed reactor using mesoporous materials. Microporous and Mesoporous Materials, 96(1), 93-101. doi:10.1016/j.micromeso.2006.06.021
  • Ateş, F., & Işıkdağ, M. A. (2009). Influence of temperature and alumina catalyst on pyrolysis of corncob. Fuel, 88(10), 1991-1997. doi:10.1016/j.fuel.2009.03.008
  • Aysu, T., & Durak, H. (2016). Bio-oil production via catalytic supercritical liquefaction of Syrian mesquite (Prosopis farcta). The Journal of Supercritical Fluids, 109, 26-34. doi:10.1016/J.SUPFLU.2015.11.002
  • Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., … & Schlenker, J. L. (1992). A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society, 114(27), 10834-10843. doi:10.1021/ja00053a020
  • Bridgwater, A. V. (1994). Catalysis in thermal biomass conversion. Applied Catalysis A: General, 116(1), 5-47. doi:10.1016/0926-860X(94)80278-5
  • Chen, M., Wang, J., Zhang, M., Chen, M., Zhu, X., Min, F., & Tan, Z. (2008). Catalytic effects of eight inorganic additives on pyrolysis of pine wood sawdust by microwave heating. Journal of Analytical and Applied Pyrolysis, 82(1), 145-150. doi:10.1016/j.jaap.2008.03.001
  • Chi, Y., Xue, J., Zhuo, J., Zhang, D., Liu, M., & Yao, Q. (2018). Catalytic co-pyrolysis of cellulose and polypropylene over all-silica mesoporous catalyst MCM-41 and Al-MCM-41. Science of The Total Environment, 633, 1105-1113. doi:10.1016/j.scitotenv.2018.03.239
  • Corma, A. (1997). From microporous to mesoporous molecular sieve materials and their use in catalysis. Chemical Reviews, 97(6), 2373-2420. doi:10.1021/cr960406n
  • Dhal, J. P., Dash, T., & Hota, G. (2020). Iron oxide impregnated mesoporous MCM-41: synthesis, characterization and adsorption studies. Journal of Porous Materials, 27(1), 205-216. doi:10.1007/s10934-019-00803-0
  • Dobrzynski, P., Fabbri, D., Torri, C., Kasperczyk, J., Kaczmarczyk, B., & Pastusiak, M. (2009). A novel hydroxy functionalized polyester obtained by ring opening copolymerization of L-lactide with a pyrolysis product of cellulose. Journal of Polymer Science Part A: Polymer Chemistry, 47(1), 247-257. doi:10.1002/pola.23149
  • Durak, H. (2016). Pyrolysis of Xanthium strumarium in a fixed bed reactor: Effects of boron catalysts and pyrolysis parameters on product yields and character. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38(10), 1400-1409. doi:10.1080/15567036.2014.947446
  • Genel, S. (2022). Biyokütlenin piroliz ve hidrotermal yöntemle farklı katalizör sistemleri kullanılarak sıvılaştırılması, elde edilen ürünlerin karakterizasyonu. (Doktora tezi), Van Yüzüncü Yıl Üniversitesi, Fen Bilimleri Enstitüsü, Van, Türkiye.
  • Gedikli, Ü. (2017). Metal destekli/desteksiz mcm-41 katalizörlerinin sentezi ve karakterizasyonu. (Doktora tezi), Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, Türkiye.
  • Iliopoulou, E. F., Antonakou, E. V, Karakoulia, S. A., Vasalos, I. A., Lappas, A. A., & Triantafyllidis, K. S. (2007). Catalytic conversion of biomass pyrolysis products by mesoporous materials: Effect of steam stability and acidity of Al-MCM-41 catalysts. Chemical Engineering Journal, 134(1), 51-57. doi:10.1016/j.cej.2007.03.066
  • Islam, M. N., Islam, M. N., & Beg, M. R. A. (2004). The fuel properties of pyrolysis liquid derived from urban solid wastes in Bangladesh. Bioresource Technology, 92(2), 181-186. doi:10.1016/j.biortech.2003.08.009
  • Kawale, H. D., & Kishore, N. (2021). Comprehensive study on thermochemical putrefaction of Delonix Regia in non-catalytic, catalytic and hydro-catalytic pyrolysis atmospheres. Renewable Energy, 173, 223-236. doi:10.1016/j.renene.2021.03.139
  • Kıncay, O., Utlu, Z., Ağustos, H., Akbulut, U., & Açıkgöz, Ö. (2009). Combining trend of renewable energy sources. Sigma, 27, 60-82.
  • Li, A. M., Li, X. D., Li, S. Q., Ren, Y., Chi, Y., Yan, J. H., & Cen, K. F. (1999). Pyrolysis of solid waste in a rotary kiln: influence of final pyrolysis temperature on the pyrolysis products. Journal of Analytical and Applied Pyrolysis, 50(2), 149–162. doi:10.1016/S0165-2370(99)00025-X
  • Ozbay, N., Yargic, A. S., Yarbay Sahin, R. Z., & Yaman, E. (2019). Valorization of banana peel waste via in-situ catalytic pyrolysis using Al-Modified SBA-15. Renewable Energy, 140, 633-646. doi:10.1016/j.renene.2019.03.071
  • Park, H. J., Heo, H. S., Jeon, J.-K., Kim, J., Ryoo, R., Jeong, K.-E., & Park, Y.-K. (2010). Highly valuable chemicals production from catalytic upgrading of radiata pine sawdust-derived pyrolytic vapors over mesoporous MFI zeolites. Applied Catalysis B: Environmental, 95(3), 365-373. doi:10.1016/j.apcatb.2010.01.015
  • Park, Y.-K., Jun, B. R., Park, S. H., Jeon, J.-K., Lee, S. H., Kim, S.-S., & Jeong, K.-E. (2014). Catalytic conversion of cellulose over mesoporous Y zeolite. Journal of Nanoscience and Nanotechnology, 14(7), 5120-5123. doi:10.1166/jnn.2014.8406
  • Ratnasari, D. K., Yang, W., Jönsson, P. G. (2020). Catalytic pyrolysis of lignocellulosic biomass: The influence of the catalyst regeneration sequence on the composition of upgraded pyrolysis oils over a H-ZSM-5/Al-MCM-41 catalyst mixture. ACS omega, 5(45), 28992-29001. doi:10.1021/acsomega.0c03272
  • Torri, C., Lesci, I. G., & Fabbri, D. (2009). Analytical study on the pyrolytic behaviour of cellulose in the presence of MCM-41 mesoporous materials. Journal of Analytical and Applied Pyrolysis, 85(1), 192-196. doi:10.1016/j.jaap.2008.11.024
  • Williams, P. T., & Horne, P. A. (1995). The influence of catalyst type on the composition of upgraded biomass pyrolysis oils. Journal of Analytical and Applied Pyrolysis, 31, 39-61. doi:10.1016/0165-2370(94)00847-T
  • Xue, J., Zhuo, J., Liu, M., Chi, Y., Zhang, D., & Yao, Q. (2017). Synergetic effect of Co-pyrolysis of cellulose and polypropylene over an all-silica mesoporous catalyst MCM-41 using thermogravimetry–fourier transform infrared spectroscopy and pyrolysis–gas chromatography–mass spectrometry. Energy & Fuels, 31(9), 9576-9584. doi:10.1021/acs.energyfuels.7b01651
  • Yu, F., Ji, D., Nie, Y., Luo, Y., Huang, C., & Ji, J. (2012). Study on the pyrolysis of cellulose for bio-oil with mesoporous molecular sieve catalysts. Applied Biochemistry and Biotechnology, 168(1), 174-182. doi:10.1007/s12010-011-9398-5
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Natural Products and Bioactive Compounds
Journal Section Natural Sciences and Mathematics / Fen Bilimleri ve Matematik
Authors

Salih Genel 0000-0003-4279-9976

Halil Durak 0000-0003-3052-6751

Project Number FDK-2020-9219
Publication Date December 29, 2023
Submission Date April 18, 2023
Published in Issue Year 2023 Volume: 28 Issue: 3

Cite

APA Genel, S., & Durak, H. (2023). Crambe Orientalis Bitkisinin Metal Destekli MCM-41 Katalizörü Varlığında Pirolizi: Sıvı Ürün Bileşimine Katalizör Oranının Etkisi. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28(3), 883-897. https://doi.org/10.53433/yyufbed.1284921