Research Article
BibTex RIS Cite

Flow Structures Around Tandem Cylinders Near Wall

Year 2024, Volume: 29 Issue: 2, 601 - 610, 31.08.2024
https://doi.org/10.53433/yyufbed.1425502

Abstract

In this study, a comparative study of the flow structure formed by changing the distance between two consecutively placed circular cross-section cylinders and the base was investigated experimentally using the Particle Imaging Velocimetry Technique (PIV). Experiments were carried out for three different height ratios in the water channel: h/D = 0, 0.5 and 1. The height ratio is defined as the ratio of the cavity height (between the bottom surface of the circular cylinder and the wall surface). The distance between consecutively placed cylinders was defined as the G/D gap ratio, and it was kept constant throughout the experiments as G/D = 1. Depending on the cylinder diameter, D is determined as the Reynolds number, Re = 2100, and the thickness of the boundary layer is δ/D = 0.4. Experimental results were evaluated by taking into account time-averaged streamlines <ψ>, time-averaged vortex contour lines, <ω>, and Reynolds stresses. The findings showed that the void ratio, G/D and height ratio have a significant impact on the flow structures around H/D cylinders. As can be seen from the flow data obtained from the experiment, it has been observed that the separation point on the cylinder and the dead flow zone behind the cylinder vary at different cylinder heights. In addition, it was determined that the vortex sizes, <ω>, and Reynolds shear stress values formed in the dead flow region differ depending on the cylinder height. It has been determined that the flow around a pair of cylinders has a more complex, unstable, and highly variable structure than that of a single cylinder.

References

  • Akilli, H., Akar, A., & Karakus, C. (2004). Flow characteristics of circular cylinders arranged side-by-side in shallow water. Flow Measurement and Instrumentation, 15(4), 187-197. https://doi.org/10.1016/j.flowmeasinst.2004.04.003
  • Alam, M. M., Elhimer, M., Wang, L., Jacono, D. L., & Wong, C. W. (2018). Vortex shedding from tandem cylinders. Experiments in Fluids, 59(3), 60. https://doi.org/10.1007/s00348-018-2501-8
  • Alam, M. M., Meyer, J. P., & Thompson, M. C. (2013). Global aerodynamic instability of twin cylinders in cross-flow. Journal of Fluids and Structures, 41, 135-145. https://doi.org/10.1016/j.jfluidstructs.2013.03.007
  • Alam, M. M., Moriya, M., & Sakamoto, H. (2003). Aerodynamic characteristics of two side-by-side circular cylinders and application of wavelet analysis on the switching phenomenon. Journal of Fluids and Structures, 18(3-4), 325-346. https://doi.org/10.1016/j.jfluidstructs.2003.07.005
  • Alam, M. M., & Zhou, Y. (2007a). Flow around two side-by-side closely spaced circular cylinders. Journal of Fluids and Structures, 23(5), 799-805. https://doi.org/10.1016/j.jfluidstructs.2006.12.002
  • Alam, M. M., & Zhou, Y. (2007b). Phase lag between vortex shedding from two tandem bluffbodies. Journal of Fluids and Structures, 23(2), 339-347. https://doi.org/10.1016/j.jfluidstructs.2006.11.003
  • Balachandar, S., Mittal, R., & Najjar, F. M. (1997). Properties of the mean recirculation region in the wakes of two-dimensional bluff bodies. Journal of Fluid Mechanics, 351, 167-199. https://doi.org/10.1017/S0022112097007179
  • Bloor, M. S., & Gerrard, J. H. (1966). Measurements on turbulent vortices in a cylinder wake. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 294, 319-342. https://doi.org/10.1098/rspa.1966.0210
  • Borazjani, I., & Sotiropoulos, F. (2009). Vortex-induced vibrations of two cylinders in tandem arrangement in the proximity - wake interference region. Journal of Fluid Mechanics, 621, 321-364. https://doi.org/10.1017/S0022112008004850
  • Caliskan, M., Tantekin, A., Tumen Ozdil, N. F., & Akilli, H. (2021). Investigation of flow characteristics for triangular grooved shape cylinder at different heights in shallow water. Ocean Engineering, 225, 108788. https://doi.org/10.1016/j.oceaneng.2021.108788
  • Huera-Huarte, F. J., & Jiménez-González, J. I. (2019). Effect of diameter ratio on the flow-induced vibrations of two rigidly coupled circular cylinders in tandem. Journal of Fluids and Structures, 89, 96-107. https://doi.org/10.1016/j.jfluidstructs.2019.04.006
  • Kim, S., Alam, M. M., Sakamoto, H., & Zhou, Y. (2009). Flow-induced vibrations of two circular cylinders in tandem arrangement. Part 1: Characteristics of vibration. Journal of Wind Engineering and Industrial Aerodynamics, 97(5-6), 304-311. https://doi.org/10.1016/j.jweia.2009.07.004
  • Lin, J. -C., Towfighi, J., & Rockwell, D. (1995). Instantaneous structure of near-wake of a cylinder: on the effect of Reynolds number. Journal of Fluids and Structures, 9(4), 409-418. https://doi.org/10.1006/jfls.1995.1023
  • Ozgoren, M. (2006). Flow structure in the downstream of square and circular cylinders. Flow Measurement and Instrumentation, 17(4), 225-235. https://doi.org/10.1016/j.flowmeasinst.2005.11.005
  • Ozgoren, M., Okbaz, A., Dogan, S., Sahin, B., & Akilli, H. (2013). Investigation of flow characteristics around a sphere placed in a boundary layer over a flat plate. Experimental Thermal and Fluid Science, 44, 62-74. https://doi.org/10.1016/j.expthermflusci.2012.05.014
  • Papaioannou, G. V., Yue, D. K. P., Triantafyllou, M. S., & Karniadakis, G. E. (2008). On the effect of spacing on the vortex-induced vibrations of two tandem cylinders. Journal of Fluids and Structures, 24(6), 833-854. https://doi.org/10.1016/j.jfluidstructs.2007.11.006
  • Qin, B., Alam, M. M., & Zhou, Y. (2017). Two tandem cylinders of different diameters in cross-flow: flow-induced vibration. Journal of Fluid Mechanics, 829, 621-658. https://doi.org/10.1017/jfm.2017.510
  • Qin, B., Alam, M. M., & Zhou, Y. (2019). Free vibrations of two tandem elastically mounted cylinders in crossflow. Journal of Fluid Mechanics, 861, 349-381. https://doi.org/10.1017/jfm.2018.913
  • Sahin, B., & Ozturk, N. A. (2009). Behaviour of flow at the junction of cylinder and base plate in deep water. Measurement, 42(2), 225-240. https://doi.org/10.1016/j.measurement.2008.06.003
  • Sarpkaya, T. (2004). A critical review of the intrinsic nature of vortex-induced vibrations. Journal of Fluids and Structures, 19(4), 389-447. https://doi.org/10.1016/j.jfluidstructs.2004.02.005
  • Tantekin, A., Tumen Ozdil, N. F., Akilli, H., & Caliskan, M. (2021). Flow investigation of circular cylinder having different cavities in shallow water. International Journal of Heat and Fluid Flow, 92, 108832. https://doi.org/10.1016/j.ijheatfluidflow.2021.108832
  • Wang, L., Alam, M. M., & Zhou, Y. (2018). Two tandem cylinders of different diameters in cross-flow: effect of an upstream cylinder on wake dynamics. Journal of Fluid Mechanics, 836, 5-42. https://doi.org/10.1017/jfm.2017.735
  • Williamson, C. H. K., & Govardhan, R. (2004). Vortex-induced vibrations. Annual Review of Fluid Mechanics, 36, 413-455. https://doi.org/10.1146/annurev.fluid.36.050802.122128
  • Williamson, C. H. K., & Roshko, A. (1988). Vortex formation in the wake of an oscillating cylinder. Journal of Fluids and Structures, 2(4), 355-381. https://doi.org/10.1016/S0889-9746(88)90058-8
  • Zdravkovich, M. M. (1988). Review of interference-induced oscillations in flow past two parallel circular cylinders in various arrangements. Journal of Wind Engineering and Industrial Aerodynamics, 28(1-3), 183-199. https://doi.org/10.1016/0167-6105(88)90115-8
  • Zhou, Y., & Alam, M. M. (2016). Wake of two interacting circular cylinders: a review. International Journal of Heat and Fluid Flow, 62, 510-537. https://doi.org/10.1016/j.ijheatfluidflow.2016.08.008

Duvara Yakın Tandem Silindirler Etrafındaki Akış Yapıları

Year 2024, Volume: 29 Issue: 2, 601 - 610, 31.08.2024
https://doi.org/10.53433/yyufbed.1425502

Abstract

Bu çalışmada, ard arda yerleştirilmiş dairesel kesitli iki silindirin tabanla aralarındaki mesafenin değiştirilmesi ile oluşan akış yapısının karşılaştırmalı bir çalışması Parçacık Görüntülemeli Hız Ölçme Tekniği (PIV) kullanılarak deneysel olarak araştırıldı. Su kanalında h/D = 0. 0.5 ve 1 olmak üzere üç farklı yükseklik oranı için deneyler yapılmıştır. Yükseklik oranı, boşluk yüksekliğinin (dairesel silindirin alt yüzeyi ile duvar yüzeyi arasındaki) silindir çapına oranı olarak tanımlanmaktadır. Ard arda yerleştirilen silindirler arasındaki mesafe G/D boşluk oranı olarak tanımlanmış olup, G/D = 1 olarak deneyler süresince sabit tutulmuştur. Silindir çapına bağlı, D, Reynolds sayısı, Re = 2100 ve sınır tabakasının kalınlığı δ/D = 0.4 olarak belirlenmiştir. Deney sonuçları zaman ortalamalı akım çizgileri <ψ>, zaman ortalamalı girdap eş düzey eğrileri, <ω>, ve Reynolds gerilmeleri, dikkate alınarak değerlendirilmiştir. Bulgular, yükseklik oranın, h/D silindirler etrafındaki akış yapıları üzerinde önemli bir etkiye sahip olduğunu göstermiştir. Deneyden elde edilen akış verilerinden de anlaşılacağı üzere, silindir üzerindeki ayrılma noktasının ve silindir arkasındaki ard izi bölgesinin farklı silindir yüksekliklerinde değişim gösterdiği gözlemlenmiştir. Bunun yanı sıra, ölü akış bölgesinde oluşan vorteks büyüklüklerinin ve Reynolds kayma gerilmesi değerlerinin de silindir yüksekliğine bağlı olarak farklılıklar gösterdiği belirlenmiştir. Silindir çiftinin etrafındaki akışın tek silindire göre daha karmaşık, kararsız ve çok değişken bir yapıya sahip olduğu belirlenmiştir.

Ethical Statement

YOK

Supporting Institution

Koluman Otomotiv Endüstri A.Ş, 33450, Mersin/Türkiye

Thanks

Koluman Otomotiv Endüstri A.Ş, 33450, Mersin/Türkiye

References

  • Akilli, H., Akar, A., & Karakus, C. (2004). Flow characteristics of circular cylinders arranged side-by-side in shallow water. Flow Measurement and Instrumentation, 15(4), 187-197. https://doi.org/10.1016/j.flowmeasinst.2004.04.003
  • Alam, M. M., Elhimer, M., Wang, L., Jacono, D. L., & Wong, C. W. (2018). Vortex shedding from tandem cylinders. Experiments in Fluids, 59(3), 60. https://doi.org/10.1007/s00348-018-2501-8
  • Alam, M. M., Meyer, J. P., & Thompson, M. C. (2013). Global aerodynamic instability of twin cylinders in cross-flow. Journal of Fluids and Structures, 41, 135-145. https://doi.org/10.1016/j.jfluidstructs.2013.03.007
  • Alam, M. M., Moriya, M., & Sakamoto, H. (2003). Aerodynamic characteristics of two side-by-side circular cylinders and application of wavelet analysis on the switching phenomenon. Journal of Fluids and Structures, 18(3-4), 325-346. https://doi.org/10.1016/j.jfluidstructs.2003.07.005
  • Alam, M. M., & Zhou, Y. (2007a). Flow around two side-by-side closely spaced circular cylinders. Journal of Fluids and Structures, 23(5), 799-805. https://doi.org/10.1016/j.jfluidstructs.2006.12.002
  • Alam, M. M., & Zhou, Y. (2007b). Phase lag between vortex shedding from two tandem bluffbodies. Journal of Fluids and Structures, 23(2), 339-347. https://doi.org/10.1016/j.jfluidstructs.2006.11.003
  • Balachandar, S., Mittal, R., & Najjar, F. M. (1997). Properties of the mean recirculation region in the wakes of two-dimensional bluff bodies. Journal of Fluid Mechanics, 351, 167-199. https://doi.org/10.1017/S0022112097007179
  • Bloor, M. S., & Gerrard, J. H. (1966). Measurements on turbulent vortices in a cylinder wake. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 294, 319-342. https://doi.org/10.1098/rspa.1966.0210
  • Borazjani, I., & Sotiropoulos, F. (2009). Vortex-induced vibrations of two cylinders in tandem arrangement in the proximity - wake interference region. Journal of Fluid Mechanics, 621, 321-364. https://doi.org/10.1017/S0022112008004850
  • Caliskan, M., Tantekin, A., Tumen Ozdil, N. F., & Akilli, H. (2021). Investigation of flow characteristics for triangular grooved shape cylinder at different heights in shallow water. Ocean Engineering, 225, 108788. https://doi.org/10.1016/j.oceaneng.2021.108788
  • Huera-Huarte, F. J., & Jiménez-González, J. I. (2019). Effect of diameter ratio on the flow-induced vibrations of two rigidly coupled circular cylinders in tandem. Journal of Fluids and Structures, 89, 96-107. https://doi.org/10.1016/j.jfluidstructs.2019.04.006
  • Kim, S., Alam, M. M., Sakamoto, H., & Zhou, Y. (2009). Flow-induced vibrations of two circular cylinders in tandem arrangement. Part 1: Characteristics of vibration. Journal of Wind Engineering and Industrial Aerodynamics, 97(5-6), 304-311. https://doi.org/10.1016/j.jweia.2009.07.004
  • Lin, J. -C., Towfighi, J., & Rockwell, D. (1995). Instantaneous structure of near-wake of a cylinder: on the effect of Reynolds number. Journal of Fluids and Structures, 9(4), 409-418. https://doi.org/10.1006/jfls.1995.1023
  • Ozgoren, M. (2006). Flow structure in the downstream of square and circular cylinders. Flow Measurement and Instrumentation, 17(4), 225-235. https://doi.org/10.1016/j.flowmeasinst.2005.11.005
  • Ozgoren, M., Okbaz, A., Dogan, S., Sahin, B., & Akilli, H. (2013). Investigation of flow characteristics around a sphere placed in a boundary layer over a flat plate. Experimental Thermal and Fluid Science, 44, 62-74. https://doi.org/10.1016/j.expthermflusci.2012.05.014
  • Papaioannou, G. V., Yue, D. K. P., Triantafyllou, M. S., & Karniadakis, G. E. (2008). On the effect of spacing on the vortex-induced vibrations of two tandem cylinders. Journal of Fluids and Structures, 24(6), 833-854. https://doi.org/10.1016/j.jfluidstructs.2007.11.006
  • Qin, B., Alam, M. M., & Zhou, Y. (2017). Two tandem cylinders of different diameters in cross-flow: flow-induced vibration. Journal of Fluid Mechanics, 829, 621-658. https://doi.org/10.1017/jfm.2017.510
  • Qin, B., Alam, M. M., & Zhou, Y. (2019). Free vibrations of two tandem elastically mounted cylinders in crossflow. Journal of Fluid Mechanics, 861, 349-381. https://doi.org/10.1017/jfm.2018.913
  • Sahin, B., & Ozturk, N. A. (2009). Behaviour of flow at the junction of cylinder and base plate in deep water. Measurement, 42(2), 225-240. https://doi.org/10.1016/j.measurement.2008.06.003
  • Sarpkaya, T. (2004). A critical review of the intrinsic nature of vortex-induced vibrations. Journal of Fluids and Structures, 19(4), 389-447. https://doi.org/10.1016/j.jfluidstructs.2004.02.005
  • Tantekin, A., Tumen Ozdil, N. F., Akilli, H., & Caliskan, M. (2021). Flow investigation of circular cylinder having different cavities in shallow water. International Journal of Heat and Fluid Flow, 92, 108832. https://doi.org/10.1016/j.ijheatfluidflow.2021.108832
  • Wang, L., Alam, M. M., & Zhou, Y. (2018). Two tandem cylinders of different diameters in cross-flow: effect of an upstream cylinder on wake dynamics. Journal of Fluid Mechanics, 836, 5-42. https://doi.org/10.1017/jfm.2017.735
  • Williamson, C. H. K., & Govardhan, R. (2004). Vortex-induced vibrations. Annual Review of Fluid Mechanics, 36, 413-455. https://doi.org/10.1146/annurev.fluid.36.050802.122128
  • Williamson, C. H. K., & Roshko, A. (1988). Vortex formation in the wake of an oscillating cylinder. Journal of Fluids and Structures, 2(4), 355-381. https://doi.org/10.1016/S0889-9746(88)90058-8
  • Zdravkovich, M. M. (1988). Review of interference-induced oscillations in flow past two parallel circular cylinders in various arrangements. Journal of Wind Engineering and Industrial Aerodynamics, 28(1-3), 183-199. https://doi.org/10.1016/0167-6105(88)90115-8
  • Zhou, Y., & Alam, M. M. (2016). Wake of two interacting circular cylinders: a review. International Journal of Heat and Fluid Flow, 62, 510-537. https://doi.org/10.1016/j.ijheatfluidflow.2016.08.008
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Fluid-Structure Interaction and Aeroacoustics
Journal Section Engineering and Architecture / Mühendislik ve Mimarlık
Authors

Engin Pınar 0000-0002-7484-8616

Gökhan Yaşar This is me 0009-0007-6611-363X

Publication Date August 31, 2024
Submission Date January 25, 2024
Acceptance Date March 20, 2024
Published in Issue Year 2024 Volume: 29 Issue: 2

Cite

APA Pınar, E., & Yaşar, G. (2024). Duvara Yakın Tandem Silindirler Etrafındaki Akış Yapıları. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 29(2), 601-610. https://doi.org/10.53433/yyufbed.1425502