Research Article
BibTex RIS Cite

Kars (Türkiye) Polifloral Arı Poleninin Botanik Kökeni, Antibakteriyel ve Antioksidan Özellikleri: Analitik Bir Çalışma

Year 2024, Volume: 29 Issue: 3, 842 - 853, 31.12.2024
https://doi.org/10.53433/yyufbed.1465191

Abstract

Bu çalışmanın amacı, Türkiye’nin kuzey-doğusunda yer alan Kars’ta bulunan polifloral arı poleninin otanik kökeni, antibakteriyel ve antioksidan aktivitelerinin yanı sıra toplam fenolik içeriği ve toplam flavonoid içeriğini araştırmaktır. Polenin, Cistaceae, Boraginaceae, Brassicaceae, Fabaceae, Papaveraceae, Asteraceae, Polygonaceae, Rosaceae, Lamiaceae ve Plantaginaceae dahil olmak üzere on takson içerdiği bulundu. Test edilen mikroorganizmalara karşı minimum inhibitör konsantrasyon (MİK) değerleri 2.5 ile 5 mg/mL arasında değişmektedir. Toplam fenolik içeriğin belirlenmesinde Folin-Ciocalteu yöntemi kullanılmış ve bu miktarın 23.65 mg gallik asit eşdeğeri (GAE)/g olduğu belirlenmiştir. Arı poleni etanolik ekstraktındaki toplam flavonoid içerik değeri 14.56 mg kuersetin eşdeğeri (KE)/g olarak belirlenmiştir. Arı poleni etanolik ekstraktının antioksidan kapasitesi, 1,1-Difenil-2-pikrilhidrazil (DPPH), bakır iyon azaltıcı antioksidan kapasitesi (CUPRAC) ve 2,2'-Azino-bis-3-etilbenztiyazolin-6- sülfonik asit (ABTS) yöntemleri kullanılarak değerlendirilmiş, sırasıyla 16.18 mg Trolox eşdeğeri (TE)/g, 54. mg TE/g ve 91.9 mg TE/g sonuçları elde edilmiştir. Yağ asidi bileşimleri, gaz kromatografisi/kütle spektrometrisi (GC/MS) kullanılarak belirlenmiştir. Baskın yağ asidinin α -linolenik asit (%20.46) olduğu, bunu sırasıyla linoleik asit (%16.68), palmitik asit (%12.94) ve araşidonik asitin (%9.65) takip ettiği tespit edilmiştir. Bu çalışmada, Kars'tan temin edilen polifloral arı poleninin botanik çeşitliliği, antibakteriyel ve antioksidan özellikleri ile kimyasal içeriği hakkında kapsamlı bir değerlendirme sunmaktadır.

Thanks

Analizler sırasında sağladıkları teknik destek için Sinop Üniversitesi Merkezi Araştırma Laboratuvarı personeline teşekkür ederiz.

References

  • Aličić, D., Flanjak, I., Ačkar, Đ., Jašić, M., Babić, J., & Šubarić, D. (2020). Physicochemical properties and antioxidant capacity of bee pollen collected in Tuzla Canton (B&H). Journal of Central European Agriculture, 21(1), 42-50. https://doi.org/10.5513/jcea01/21.1.2533
  • Altinöz, M., & Özpınar, A. (2019). PPAR-δ and erucic acid in multiple sclerosis and Alzheimer's disease. Likely benefits in terms of immunity and metabolism. International Immunopharmacology, 69, 245-256. https://doi.org/10.1016/j.intimp.2019.01.057
  • Apak, R., Güçlü, K., Özyürek, M., & Karademir, S. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural and Food Chemistry, 52(26), 7970-7981. https://doi.org/10.1021/jf048741x
  • Barth, O., Freitas, A., Oliveira, É., Silva, R. A., Maester, F. M., Andrella, R. R. S., & Cardozo, M. B. Q. G. (2010). Evaluation of the botanical origin of commercial dry bee pollen load batches using pollen analysis: a proposal for technical standardization. Anais Da Academia Brasileira De Ciências, 82(4), 893-902. https://doi.org/10.1590/s0001-37652010000400011
  • Bersuder, P., Hole, M., & Smith, G. (1998). Antioxidants from a heated histidine-glucose model system. I: Investigation of the antioxidant role of histidine and isolation of antioxidants by high-performance liquid chromatography. Journal of the American Oil Chemists Society, 75(2), 181-187. https://doi.org/10.1007/s11746-998-0030-y
  • Bleha, R., Shevtsova, T., Kruzik, V., Brindza, J., & Sinica, A. (2019). Morphology, physicochemical properties and antioxidant capacity of bee pollens. Czech Journal of Food Sciences, 37(1), 1-8. https://doi.org/10.17221/139/2018-cjfs
  • Capanoglu, E., De Vos, R. C., Hall, R. D., Boyacioglu, D., & Beekwilder, J. (2013). Changes in polyphenol content during production of grape juice concentrate. Food Chemistry, 139(1-4), 521-526. https://doi.org/10.1016/j.foodchem.2013.01.023
  • Carpes, S. T., Begnini, R., Alencar, S., & Masson, M. (2007). Study of preparations of bee pollen extracts, antioxidant and antibacterial activity. Ciência E Agrotecnologia, 31(6), 1818-1825. https://doi.org/10.1590/s1413-70542007000600032
  • Carpes, S. T., Mourão, G., Alencar, S., & Masson, M. (2009). Chemical composition and free radical scavenging activity of Apis mellifera bee pollen from Southern Brazil. Brazilian Journal of Food Technology, 12(03), 220-229.
  • Čeksterytė, V., Navakauskienė, R., Treigyte, G., Jansen, E., Kurtinaitienė, B., Dabkevičienė, G., & Balžekas, J. (2016). Fatty acid profiles of monofloral clover beebread and pollen and proteomics of red clover (Trifolium pratense) pollen. Bioscience Biotechnology and Biochemistry, 80(11), 2100-2108. https://doi.org/10.1080/09168451.2016.1204218
  • Denisow, B., & Denisow-Pietrzyk, M. (2016). Biological and therapeutic properties of bee pollen: a review. Journal of the Science of Food and Agriculture, 96(13), 4303-4309. https://doi.org/10.1002/jsfa.7729
  • Dudonné, S., Vitrac, X., Coutière, P., Woillez, M., & Mérillon, J. (2009). Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. Journal of Agricultural and Food Chemistry, 57(5), 1768-1774. https://doi.org/10.1021/jf803011r
  • Dulger Altıner, D., Sandikci Altunatmaz, S., Sabuncu, M., Aksu, F., & Sahan, Y. (2020). In-vitro bioaccessibility of antioxidant properties of bee pollen in Turkey. Food Science and Technology, 41(1), 133-141. https://doi.org/10.1590/fst.10220
  • El Ghouizi, A., Bakour, M., Laaroussi, H., Ousaaid, D., El Menyiy, N., Hano, C., & Lyoussi, B. (2023). Bee pollen as functional food: Insights into its composition and therapeutic properties. Antioxidants, 12(3), 557. https://doi.org/10.3390/antiox12030557
  • Erkmen, O., & Özcan, M. (2008). Antimicrobial effects of Turkish propolis, pollen, and laurel on spoilage and pathogenic food-related microorganisms. Journal of Medicinal Food, 11(3), 587-592. https://doi.org/10.1089/jmf.2007.0038
  • Estevinho, L., Rodrigues, S., Pereira, A., & Feás, X. (2011). Portuguese bee pollen: palynological study, nutritional and microbiological evaluation. International Journal of Food Science & Technology, 47(2), 429-435. https://doi.org/10.1111/j.1365-2621.2011.02859.x
  • Fatrcová-Šramková, K., Nôžková, J., Kačániová, M., Mariassyova, M., Rovná, K., & Stričík, M. (2013). Antioxidant and antimicrobial properties of monofloral bee pollen. Journal of Environmental Science and Health Part B, 48(2), 133-138. https://doi.org/10.1080/03601234.2013.727664
  • Feás, X., Vázquez-Tato, M., Estevinho, L., Seijas, J., & Iglesias, A. (2012). Organic bee pollen: botanical origin, nutritional value, bioactive compounds, antioxidant activity and microbiological quality. Molecules, 17(7), 8359-8377. https://doi.org/10.3390/molecules17078359
  • Gardana, C., Del Bò, C., Quicazán, M., Corrrea, A., & Simonetti, P. (2018). Nutrients, phytochemicals and botanical origin of commercial bee pollen from different geographical areas. Journal of Food Composition and Analysis, 73, 29-38. https://doi.org/10.1016/j.jfca.2018.07.009
  • Gercek, Y. C., Celik, S., & Bayram, S. (2022). Screening of plant pollen sources, polyphenolic compounds, fatty acids and antioxidant/antimicrobial activity from bee pollen. Molecules, 27(1), 117. https://doi.org/10.3390/molecules27010117
  • Graikou, K., Kapeta, S., Aligiannis, N., Sotiroudis, G., Chondrogianni, N., Gonos, E., & Chinou, I. (2011). Chemical analysis of Greek pollen-Antioxidant, antimicrobial and proteasome activation properties. Chemistry Central Journal, 5(1), 33. https://doi.org/10.1186/1752-153x-5-33
  • Karadal, F., Onmaz, N. E., Abay, S., Yildirim, Y., Al, S., Tatyuz, I., & Akcay, A. (2018). A study of antibacterial and antioxidant activities of bee products: Propolis, pollen and honey samples. Ethiopian Journal of Health Development, 32(2).
  • Karkar, B., Şahin, S., & Ertan Güneş, M. (2020). Evaluation of antioxidant properties and determination of phenolic and carotenoid profiles of chestnut bee pollen collected from Turkey. Journal of Apicultural Research, 60(5), 765-774. https://doi.org/10.1080/00218839.2020.1844462
  • Keskin, M., & Özkök, A. (2020). Effects of drying techniques on chemical composition and volatile constituents of bee pollen. Czech Journal of Food Sciences, 38(4), 203-208. https://doi.org/10.17221/79/2020-cjfs
  • Makhlouf-Gafsi, I., Krichen, F., Mansour, R., Mokni, A., Sila, A., Bougatef, A., Blecker, C., Attia, H., & Besbes, S. (2018). Ultrafiltration and thermal processing effects on Maillard reaction products and biological properties of date palm sap syrups (Phoenix dactylifera L.). Food Chemistry, 256, 397-404. https://doi.org/10.1016/j.foodchem.2018.02.145
  • Mayda, N., Özkök, A., Bayram, N., Gerçek, Y., & Sorkun, K. (2020). Bee bread and bee pollen of different plant sources: Determination of phenolic content, antioxidant activity, fatty acid and element profiles. Journal of Food Measurement & Characterization, 14(4), 1795-1809. https://doi.org/10.1007/s11694-020-00427-y
  • Mischenko, O., Lytvynenko, O., Afara, K., & Kryvoruchko, D. (2020). Influence of nest structure and age of the bee queen on preparation of protein feed by bees. Visnyk Agrarnoi Nauky, 98(10), 27-32. https://doi.org/10.31073/agrovisnyk202010-04
  • Mosić, M. D., Trifković, J. Đ., Ristivojević, P. M., & Milojković‐Opsenica, D. M. (2023). Quality assessment of bee pollen‐honey mixtures using thin‐layer chromatography in combination with chemometrics. Chemistry & Biodiversity, 20(3), e202201141. https://doi.org/10.1002/cbdv.202201141
  • Official Methods of Analysis (2000). 17th Ed., AOAC INTERNATIONAL, Official Method 920.39, Gaithersburg, MD, USA.
  • Ozenirler, C., Bayram, N. E., Celemli, O. G., Celikbicak, O., & Sorkun, K. (2018). Chemical characterization of Kars honey. Fresenius Environmental Bulletin, 27(3), 1889-1895.
  • Özcan, M. M., Aljuhaimi, F., Babiker, E. E., Uslu, N., Ceylan, D. A., Ghafoor, K., ... & Alsawmahi, O. N. (2019). Determination of antioxidant activity, phenolic compound, mineral contents and fatty acid compositions of bee pollen grains collected from different locations. Journal of Apicultural Science, 63(1), 69-79. https://doi.org/10.2478/jas-2019-0004
  • Özkök, A., Koru, Ö., Bedir, O., Çetinkaya, S., Gençay Çelemli, Ö., Özenirler, Ç., Mayda N., & Sorkun, K. (2021). Total bioactive compounds and antimicrobial capacities of bee pollen with different botanical origins. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca Food Science and Technology, 78(1), 57. https://doi.org/10.15835/buasvmcn-fst:2020.0061
  • Pascoal, A., Rodrigues, S., Teixeira, A., Feás, X., & Estevinho, L. (2014). Biological activities of commercial bee pollens: Antimicrobial, antimutagenic, antioxidant and anti-inflammatory. Food and Chemical Toxicology, 63, 233-239. https://doi.org/10.1016/j.fct.2013.11.010
  • Prđun, S., Svečnjak, L., Valentić, M., Marijanović, Z., & Jerković, I. (2021). Characterization of bee pollen: physico-chemical properties, headspace composition and FTIR spectral profiles. Foods, 10(9), 2103. https://doi.org/10.3390/foods10092103
  • Rajs, B. B., Primorac, L., Gal, K., Bubalo, D., Prđun, S., Flanjak, I. (2022). Influence of botanical origin on phenolic content and antioxidant capacity of monofloral bee pollen. Acta Scientiarum Polonorum Technologia Alimentaria, 21(2), 213-222. https://doi.org/10.17306/j.afs.1024
  • Rocchetti, G., Castiglioni, S., Maldarizzi, G., Carloni, P., & Lucini, L. (2018). UHPLC‐ESI‐QTOF‐MS phenolic profiling and antioxidant capacity of bee pollen from different botanical origin. International Journal of Food Science & Technology, 54(2), 335-346. https://doi.org/10.1111/ijfs.13941
  • Sawicki, T., Starowicz, M., Kłębukowska, L., & Hanus, P. (2022). The profile of polyphenolic compounds, contents of total phenolics and flavonoids, and antioxidant and antimicrobial properties of bee products. Molecules, 27(4), 1301. https://doi.org/10.3390/molecules27041301
  • Türk Patent ve Marka Kurumu. (2018). Erişim tarihi: 23 Aralık 2024. https://kars.tarimorman.gov.tr/Belgeler/Kars%20Bal%C4%B1%20Co%C4%9Frafi%20%C4%B0%C5%9Fareti.pdf
  • Wodehouse, R. P. (1936). Evolution of pollen grains. Botanical Review, 2(2), 67-84.
  • Yesiltas, B., Capanoglu, E., Firatligil-Durmus, E., Sunay, A., Samanci, T., & Boyacioglu, D. (2014). Investigating the in-vitro bioaccessibility of propolis and pollen using a simulated gastrointestinal digestion System. Journal of Apicultural Research, 53(1), 101-108. https://doi.org/10.3896/ibra.1.53.1.10
  • Yıldız, O., Can, Z., Saral, Ö., Yuluğ, E., Öztürk, F., Aliyazıcıoğlu, R., Canpolat, S., & Kolaylı, S. (2013). Hepatoprotective potential of chestnut bee pollen on carbon tetrachloride-induced hepatic damages in rats. Evidence-Based Complementary and Alternative Medicine, 2013, 1-9. https://doi.org/10.1155/2013/461478
  • Zhang, H., Liu, R., & Lu, Q. (2020). Separation and characterization of phenolamines and flavonoids from rape bee pollen, and comparison of their antioxidant activities and protective effects against oxidative stress. Molecules, 25(6), 1264. https://doi.org/10.3390/molecules25061264
  • Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555-559. https://doi.org/10.1016/s0308-8146(98)00102-2
  • Zhou, J., Qi, Y., Ritho, J., Zhang, Y., Zheng, X., Wu, L., Li, Y., & Sun, L. (2015). Flavonoid glycosides as floral origin markers to discriminate of unifloral bee pollen by LC–MS/MS. Food Control, 57, 54-61. https://doi.org/10.1016/j.foodcont.2015.03.035

Botanical Origin, Antibacterial, and Antioxidant Properties of Polyfloral Bee Pollen from Kars (Türkiye): An Analytical Study

Year 2024, Volume: 29 Issue: 3, 842 - 853, 31.12.2024
https://doi.org/10.53433/yyufbed.1465191

Abstract

The aim of the present study is to investigate the botanical origin, antibacterial and antioxidant activities, as well as the total phenolic content and total flavonoid content of polyfloral bee pollen from Kars in the north-eastern region of Turkey. The pollen load was found to contain ten taxa, including Cistaceae, Boraginaceae, Brassicaceae, Fabaceae, Papaveraceae, Asteraceae, Polygonaceae, Rosaceae, Lamiaceae, and Plantaginaceae. The minimal inhibitory concentration (MIC) values against tested microorganisms ranged from 2.5 to 5 mg mL-1. The Folin-Ciocalteu method was used to determine the total phenolic content, which was found to be 23.65 mg gallic acid equivalent (GAE) g-1. The TFC value in the bee pollen ethanolic extract was determined to be 14.56 mg quercetin equivalent (QE) g-1. The antioxidant capacity of the bee pollen ethanolic extract was evaluated using the 1,1‐Diphenyl‐2‐picrylhydrazyl (DPPH), cupric ion reducing antioxidant capacity (CUPRAC), and 2,2′‐Azino‐bis‐3‐ethylbenzthiazoline‐6‐sulphonic acid (ABTS) methods, which yielded results of 16.18 mg Trolox equivalent (TE) g-1, 54.23 mg TE g-1, and 91.9 mg TE g-1, respectively. The fatty acid compositions were identified using gas chromatography/mass spectrometry (GC/MS). The predominant fatty acid was found to be α-linolenic acid (20.46 %), followed sequentially by linoleic acid (16.68 %), palmitic acid (12.94 %), and arachidonic acid (9.65 %). This study provides a comprehensive assessment of the botanical diversity, antibacterial and antioxidant properties, and chemical composition of polyfloral bee pollen from Kars.

References

  • Aličić, D., Flanjak, I., Ačkar, Đ., Jašić, M., Babić, J., & Šubarić, D. (2020). Physicochemical properties and antioxidant capacity of bee pollen collected in Tuzla Canton (B&H). Journal of Central European Agriculture, 21(1), 42-50. https://doi.org/10.5513/jcea01/21.1.2533
  • Altinöz, M., & Özpınar, A. (2019). PPAR-δ and erucic acid in multiple sclerosis and Alzheimer's disease. Likely benefits in terms of immunity and metabolism. International Immunopharmacology, 69, 245-256. https://doi.org/10.1016/j.intimp.2019.01.057
  • Apak, R., Güçlü, K., Özyürek, M., & Karademir, S. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural and Food Chemistry, 52(26), 7970-7981. https://doi.org/10.1021/jf048741x
  • Barth, O., Freitas, A., Oliveira, É., Silva, R. A., Maester, F. M., Andrella, R. R. S., & Cardozo, M. B. Q. G. (2010). Evaluation of the botanical origin of commercial dry bee pollen load batches using pollen analysis: a proposal for technical standardization. Anais Da Academia Brasileira De Ciências, 82(4), 893-902. https://doi.org/10.1590/s0001-37652010000400011
  • Bersuder, P., Hole, M., & Smith, G. (1998). Antioxidants from a heated histidine-glucose model system. I: Investigation of the antioxidant role of histidine and isolation of antioxidants by high-performance liquid chromatography. Journal of the American Oil Chemists Society, 75(2), 181-187. https://doi.org/10.1007/s11746-998-0030-y
  • Bleha, R., Shevtsova, T., Kruzik, V., Brindza, J., & Sinica, A. (2019). Morphology, physicochemical properties and antioxidant capacity of bee pollens. Czech Journal of Food Sciences, 37(1), 1-8. https://doi.org/10.17221/139/2018-cjfs
  • Capanoglu, E., De Vos, R. C., Hall, R. D., Boyacioglu, D., & Beekwilder, J. (2013). Changes in polyphenol content during production of grape juice concentrate. Food Chemistry, 139(1-4), 521-526. https://doi.org/10.1016/j.foodchem.2013.01.023
  • Carpes, S. T., Begnini, R., Alencar, S., & Masson, M. (2007). Study of preparations of bee pollen extracts, antioxidant and antibacterial activity. Ciência E Agrotecnologia, 31(6), 1818-1825. https://doi.org/10.1590/s1413-70542007000600032
  • Carpes, S. T., Mourão, G., Alencar, S., & Masson, M. (2009). Chemical composition and free radical scavenging activity of Apis mellifera bee pollen from Southern Brazil. Brazilian Journal of Food Technology, 12(03), 220-229.
  • Čeksterytė, V., Navakauskienė, R., Treigyte, G., Jansen, E., Kurtinaitienė, B., Dabkevičienė, G., & Balžekas, J. (2016). Fatty acid profiles of monofloral clover beebread and pollen and proteomics of red clover (Trifolium pratense) pollen. Bioscience Biotechnology and Biochemistry, 80(11), 2100-2108. https://doi.org/10.1080/09168451.2016.1204218
  • Denisow, B., & Denisow-Pietrzyk, M. (2016). Biological and therapeutic properties of bee pollen: a review. Journal of the Science of Food and Agriculture, 96(13), 4303-4309. https://doi.org/10.1002/jsfa.7729
  • Dudonné, S., Vitrac, X., Coutière, P., Woillez, M., & Mérillon, J. (2009). Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. Journal of Agricultural and Food Chemistry, 57(5), 1768-1774. https://doi.org/10.1021/jf803011r
  • Dulger Altıner, D., Sandikci Altunatmaz, S., Sabuncu, M., Aksu, F., & Sahan, Y. (2020). In-vitro bioaccessibility of antioxidant properties of bee pollen in Turkey. Food Science and Technology, 41(1), 133-141. https://doi.org/10.1590/fst.10220
  • El Ghouizi, A., Bakour, M., Laaroussi, H., Ousaaid, D., El Menyiy, N., Hano, C., & Lyoussi, B. (2023). Bee pollen as functional food: Insights into its composition and therapeutic properties. Antioxidants, 12(3), 557. https://doi.org/10.3390/antiox12030557
  • Erkmen, O., & Özcan, M. (2008). Antimicrobial effects of Turkish propolis, pollen, and laurel on spoilage and pathogenic food-related microorganisms. Journal of Medicinal Food, 11(3), 587-592. https://doi.org/10.1089/jmf.2007.0038
  • Estevinho, L., Rodrigues, S., Pereira, A., & Feás, X. (2011). Portuguese bee pollen: palynological study, nutritional and microbiological evaluation. International Journal of Food Science & Technology, 47(2), 429-435. https://doi.org/10.1111/j.1365-2621.2011.02859.x
  • Fatrcová-Šramková, K., Nôžková, J., Kačániová, M., Mariassyova, M., Rovná, K., & Stričík, M. (2013). Antioxidant and antimicrobial properties of monofloral bee pollen. Journal of Environmental Science and Health Part B, 48(2), 133-138. https://doi.org/10.1080/03601234.2013.727664
  • Feás, X., Vázquez-Tato, M., Estevinho, L., Seijas, J., & Iglesias, A. (2012). Organic bee pollen: botanical origin, nutritional value, bioactive compounds, antioxidant activity and microbiological quality. Molecules, 17(7), 8359-8377. https://doi.org/10.3390/molecules17078359
  • Gardana, C., Del Bò, C., Quicazán, M., Corrrea, A., & Simonetti, P. (2018). Nutrients, phytochemicals and botanical origin of commercial bee pollen from different geographical areas. Journal of Food Composition and Analysis, 73, 29-38. https://doi.org/10.1016/j.jfca.2018.07.009
  • Gercek, Y. C., Celik, S., & Bayram, S. (2022). Screening of plant pollen sources, polyphenolic compounds, fatty acids and antioxidant/antimicrobial activity from bee pollen. Molecules, 27(1), 117. https://doi.org/10.3390/molecules27010117
  • Graikou, K., Kapeta, S., Aligiannis, N., Sotiroudis, G., Chondrogianni, N., Gonos, E., & Chinou, I. (2011). Chemical analysis of Greek pollen-Antioxidant, antimicrobial and proteasome activation properties. Chemistry Central Journal, 5(1), 33. https://doi.org/10.1186/1752-153x-5-33
  • Karadal, F., Onmaz, N. E., Abay, S., Yildirim, Y., Al, S., Tatyuz, I., & Akcay, A. (2018). A study of antibacterial and antioxidant activities of bee products: Propolis, pollen and honey samples. Ethiopian Journal of Health Development, 32(2).
  • Karkar, B., Şahin, S., & Ertan Güneş, M. (2020). Evaluation of antioxidant properties and determination of phenolic and carotenoid profiles of chestnut bee pollen collected from Turkey. Journal of Apicultural Research, 60(5), 765-774. https://doi.org/10.1080/00218839.2020.1844462
  • Keskin, M., & Özkök, A. (2020). Effects of drying techniques on chemical composition and volatile constituents of bee pollen. Czech Journal of Food Sciences, 38(4), 203-208. https://doi.org/10.17221/79/2020-cjfs
  • Makhlouf-Gafsi, I., Krichen, F., Mansour, R., Mokni, A., Sila, A., Bougatef, A., Blecker, C., Attia, H., & Besbes, S. (2018). Ultrafiltration and thermal processing effects on Maillard reaction products and biological properties of date palm sap syrups (Phoenix dactylifera L.). Food Chemistry, 256, 397-404. https://doi.org/10.1016/j.foodchem.2018.02.145
  • Mayda, N., Özkök, A., Bayram, N., Gerçek, Y., & Sorkun, K. (2020). Bee bread and bee pollen of different plant sources: Determination of phenolic content, antioxidant activity, fatty acid and element profiles. Journal of Food Measurement & Characterization, 14(4), 1795-1809. https://doi.org/10.1007/s11694-020-00427-y
  • Mischenko, O., Lytvynenko, O., Afara, K., & Kryvoruchko, D. (2020). Influence of nest structure and age of the bee queen on preparation of protein feed by bees. Visnyk Agrarnoi Nauky, 98(10), 27-32. https://doi.org/10.31073/agrovisnyk202010-04
  • Mosić, M. D., Trifković, J. Đ., Ristivojević, P. M., & Milojković‐Opsenica, D. M. (2023). Quality assessment of bee pollen‐honey mixtures using thin‐layer chromatography in combination with chemometrics. Chemistry & Biodiversity, 20(3), e202201141. https://doi.org/10.1002/cbdv.202201141
  • Official Methods of Analysis (2000). 17th Ed., AOAC INTERNATIONAL, Official Method 920.39, Gaithersburg, MD, USA.
  • Ozenirler, C., Bayram, N. E., Celemli, O. G., Celikbicak, O., & Sorkun, K. (2018). Chemical characterization of Kars honey. Fresenius Environmental Bulletin, 27(3), 1889-1895.
  • Özcan, M. M., Aljuhaimi, F., Babiker, E. E., Uslu, N., Ceylan, D. A., Ghafoor, K., ... & Alsawmahi, O. N. (2019). Determination of antioxidant activity, phenolic compound, mineral contents and fatty acid compositions of bee pollen grains collected from different locations. Journal of Apicultural Science, 63(1), 69-79. https://doi.org/10.2478/jas-2019-0004
  • Özkök, A., Koru, Ö., Bedir, O., Çetinkaya, S., Gençay Çelemli, Ö., Özenirler, Ç., Mayda N., & Sorkun, K. (2021). Total bioactive compounds and antimicrobial capacities of bee pollen with different botanical origins. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca Food Science and Technology, 78(1), 57. https://doi.org/10.15835/buasvmcn-fst:2020.0061
  • Pascoal, A., Rodrigues, S., Teixeira, A., Feás, X., & Estevinho, L. (2014). Biological activities of commercial bee pollens: Antimicrobial, antimutagenic, antioxidant and anti-inflammatory. Food and Chemical Toxicology, 63, 233-239. https://doi.org/10.1016/j.fct.2013.11.010
  • Prđun, S., Svečnjak, L., Valentić, M., Marijanović, Z., & Jerković, I. (2021). Characterization of bee pollen: physico-chemical properties, headspace composition and FTIR spectral profiles. Foods, 10(9), 2103. https://doi.org/10.3390/foods10092103
  • Rajs, B. B., Primorac, L., Gal, K., Bubalo, D., Prđun, S., Flanjak, I. (2022). Influence of botanical origin on phenolic content and antioxidant capacity of monofloral bee pollen. Acta Scientiarum Polonorum Technologia Alimentaria, 21(2), 213-222. https://doi.org/10.17306/j.afs.1024
  • Rocchetti, G., Castiglioni, S., Maldarizzi, G., Carloni, P., & Lucini, L. (2018). UHPLC‐ESI‐QTOF‐MS phenolic profiling and antioxidant capacity of bee pollen from different botanical origin. International Journal of Food Science & Technology, 54(2), 335-346. https://doi.org/10.1111/ijfs.13941
  • Sawicki, T., Starowicz, M., Kłębukowska, L., & Hanus, P. (2022). The profile of polyphenolic compounds, contents of total phenolics and flavonoids, and antioxidant and antimicrobial properties of bee products. Molecules, 27(4), 1301. https://doi.org/10.3390/molecules27041301
  • Türk Patent ve Marka Kurumu. (2018). Erişim tarihi: 23 Aralık 2024. https://kars.tarimorman.gov.tr/Belgeler/Kars%20Bal%C4%B1%20Co%C4%9Frafi%20%C4%B0%C5%9Fareti.pdf
  • Wodehouse, R. P. (1936). Evolution of pollen grains. Botanical Review, 2(2), 67-84.
  • Yesiltas, B., Capanoglu, E., Firatligil-Durmus, E., Sunay, A., Samanci, T., & Boyacioglu, D. (2014). Investigating the in-vitro bioaccessibility of propolis and pollen using a simulated gastrointestinal digestion System. Journal of Apicultural Research, 53(1), 101-108. https://doi.org/10.3896/ibra.1.53.1.10
  • Yıldız, O., Can, Z., Saral, Ö., Yuluğ, E., Öztürk, F., Aliyazıcıoğlu, R., Canpolat, S., & Kolaylı, S. (2013). Hepatoprotective potential of chestnut bee pollen on carbon tetrachloride-induced hepatic damages in rats. Evidence-Based Complementary and Alternative Medicine, 2013, 1-9. https://doi.org/10.1155/2013/461478
  • Zhang, H., Liu, R., & Lu, Q. (2020). Separation and characterization of phenolamines and flavonoids from rape bee pollen, and comparison of their antioxidant activities and protective effects against oxidative stress. Molecules, 25(6), 1264. https://doi.org/10.3390/molecules25061264
  • Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555-559. https://doi.org/10.1016/s0308-8146(98)00102-2
  • Zhou, J., Qi, Y., Ritho, J., Zhang, Y., Zheng, X., Wu, L., Li, Y., & Sun, L. (2015). Flavonoid glycosides as floral origin markers to discriminate of unifloral bee pollen by LC–MS/MS. Food Control, 57, 54-61. https://doi.org/10.1016/j.foodcont.2015.03.035
There are 44 citations in total.

Details

Primary Language Turkish
Subjects Plant Morphology and Anatomy, Bacteriology
Journal Section Natural Sciences and Mathematics / Fen Bilimleri ve Matematik
Authors

Neslihan Mutlu 0000-0002-1339-3267

Gül Esma Akdoğan Karadağ 0000-0001-7959-2130

Salih Akpınar 0000-0003-2435-7373

Publication Date December 31, 2024
Submission Date April 4, 2024
Acceptance Date September 27, 2024
Published in Issue Year 2024 Volume: 29 Issue: 3

Cite

APA Mutlu, N., Akdoğan Karadağ, G. E., & Akpınar, S. (2024). Kars (Türkiye) Polifloral Arı Poleninin Botanik Kökeni, Antibakteriyel ve Antioksidan Özellikleri: Analitik Bir Çalışma. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 29(3), 842-853. https://doi.org/10.53433/yyufbed.1465191