Research Article
BibTex RIS Cite

Analysis of Spectral Effects of Solar Spectrum for Different Regions in Türkiye

Year 2024, Volume: 29 Issue: 3, 868 - 881, 31.12.2024
https://doi.org/10.53433/yyufbed.1509398

Abstract

Photovoltaic (PV) modules are affected by the spectral distribution of the sun falling on them. In this study, different provinces were selected and the direct solar radiation spectrum for different times was obtained using the SPCTRL2 program. Using these spectra, the average photon energy (APE) and useful fraction (UF) expressions were selected in accordance with the spectral response range of solar cells and calculated and compared in the range of 300-1200 nm. The obtained APE values were compared with the AM 1.5D spectrum. For the cities examined on the same latitude (Mugla, Sanliurfa, Istanbul and Trabzon), it was seen that the APE and UF parameters were larger in the cities located in the west. When we compared the cities examined on the same longitude (Mugla, Sanliurfa, Istanbul and Trabzon), it was seen that the cities located in the south had larger APE and UF parameters. There is a relationship between the forbidden energy range of the semiconductor from which the PV module technology is made and the UF parameter, and as the forbidden energy range increases, the UF parameter decreases. Solar cell technologies with low UF parameters are more sensitive to spectral effects.

References

  • Ahmad, M. J., & Tiwari, G. N. (2008). Study of Models for Predicting the Mean Hourly Global Radiation from Daily Summations. Open Environmental Sciences, 2(1), 6–14. https://doi.org/10.2174/1876325100802010006
  • Alonso-Abella, M., Chenlo, F., Nofuentes, G., & Torres-Ramírez, M. (2014). Analysis of spectral effects on the energy yield of different PV (photovoltaic) technologies: The case of four specific sites. Energy, 67, 435–443. https://doi.org/10.1016/j.energy.2014.01.024
  • Andrade, R. C., Tiba, C., Fraidenraich, N., & Souza, J. L. (2013). Estımação do ıuv máxımo mensal no semı-árıdo do nordeste do brasıl-estudo de caso água branca-al. Avances en Energías Renovables y Medio Ambiente, 17, 11.83-11.90.
  • Anonim (2024). T.C. Milli savunma bakanlığı harita genel müdürlüğü. Erişim tarihi: 30.07.2024. https://www.harita.gov.tr/urunler/indirilebilir-urunler/14#
  • Bird, R. E., & Riordan, C. (1986). American Meteorological Society Simple Solar Spectral Model for Direct and Diffuse Irradiance on Horizontal and Tilted Planes at the Earth’s Surface for Cloudless Atmospheres. In Source: Journal of Climate and Applied Meteorology (Vol. 25, Issue 1).
  • Chantana, J., Imai, Y., Kawano, Y., Hishikawa, Y., Nishioka, K., & Minemoto, T. (2020). Impact of average photon energy on spectral gain and loss of various-type PV technologies at different locations. Renewable Energy, 145, 1317–1324. https://doi.org/10.1016/j.renene.2019.06.139
  • Cornaro, C., & Andreotti, A. (2013). Influence of Average Photon Energy index on solar irradiance characteristics and outdoor performance of photovoltaic modules. Progress in Photovoltaics: Research and Applications, 21(5), 996–1003. https://doi.org/10.1002/pip.2194
  • Daxini, R., & Wu, Y. (2023). Review of methods to account for the solar spectral influence on photovoltaic device performance. Energy, 129461. https://doi.org/10.1016/j.energy.2023.129461
  • Du, H., Li, J., Zhu, W., Qu, Z., Zhang, L., & Lv, M. (2019). Flight performance simulation and station-keeping endurance analysis for stratospheric super-pressure balloon in real wind field. Aerospace Science and Technology, 86, 1–10. https://doi.org/10.1016/j.ast.2019.01.001
  • Eke, R., & Betts, T. R. (2017). Spectral irradiance effects on the outdoor performance of photovoltaic modules. Renewable and Sustainable Energy Reviews, 69, 429-434. https://doi.org/10.1016/j.rser.2016.10.062
  • Gottschalg, R., Infield, D. G., & Kearney, M. J. (2003). Experimental study of variations of the solar spectrum of relevance to thin film solar cells. Solar Energy Materials and Solar Cells, 79(4), 527–537. https://doi.org/10.1016/S0927-0248(03)00106-5
  • Gueymard, C. A. (2023). Assessment of the global applicability of three leading indices that characterize the spectral distribution of solar irradiance impacting various photovoltaic technologies. Energy Conversion and Management, 295, 117602. https://doi.org/10.1016/j.enconman.2023.117602
  • Honsberg C.B. & Bowden, S.G. (2019). “Photovoltaics Education Website,” www.pveducation.org.
  • Irvine, S. J. C. (2012). Photovoltaic (PV) thin-films for solar cells. Functional Materials for Sustainable Energy Applications, 22–41. https://doi.org/10.1533/9780857096371.1.22
  • Katsumata, N., Nakada, Y., Minemoto, T., & Takakura, H. (2011). Estimation of irradiance and outdoor performance of photovoltaic modules by meteorological data. Solar Energy Materials and Solar Cells, 95(1), 199–202. https://doi.org/10.1016/j.solmat.2010.01.019
  • Keshuov, S., & Moldybayeva, N. (2024). Selection of optimal structure of an energy-supply system for objects in an agro-industrial complex based on renewable-energy sources. Renewable Energy Focus , 48. https://doi.org/10.1016/j.ref.2023.100533
  • Myers, D. R. (2012). Direct beam and hemispherical terrestrial solar spectral distributions derived from broadband hourly solar radiation data. Solar Energy, 86(9), 2771–2782. https://doi.org/10.1016/j.solener.2012.06.014
  • Myers, D. R., Kurtz, S. R., Emery, K., Whitaker, C., & Townsend, T. (n.d.). (2000) Outdoor meteorological broadband and spectral conditions for evaluating photovoltaic modules. Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference (Cat. No.00CH37036). https://doi.org/10.1109/PVSC.2000.916104
  • Nofuentes, G., García-Domingo, B., Muñoz, J. v., & Chenlo, F. (2014). Analysis of the dependence of the spectral factor of some PV technologies on the solar spectrum distribution. Applied Energy, 113, 302–309. https://doi.org/10.1016/j.apenergy.2013.07.044
  • Roy, J. N., Gariki, G. R., & Nagalakhsmi, V. (2010). Reference module selection criteria for accurate testing of photovoltaic (PV) panels. Solar Energy, 84(1), 32–36. https://doi.org/10.1016/j.solener.2009.09.007
  • Satpathy, R., & Pamuru, V. (2021). Rooftop and BIPV solar PV systems. In Solar PV Power (pp. 317–364). Elsevier. http://dx.doi.org/10.1016/B978-0-12-817626-9.00008-3
  • Shahsavari, A., & Akbari, M. (2018). Potential of solar energy in developing countries for reducing energy-related emissions. Renewable and Sustainable Energy Reviews, 90, 275-291.https://doi.org/10.1016/j.rser.2018.03.065
  • Utrillas, M. P., Boscá, J. V., Martı́nez-Lozano, J. A., Cañada, J., Tena, F., & Pinazo, J. M. (1998). A comparative study of SPCTRAL2 and SMARTS2 parameterised models based on spectral irradiance measurements at Valencia, Spain. Solar Energy, 63(3), 161–171. https://doi.org/10.1016/S0038-092X(98)00058-9
  • Wang, S., Peng, J., Wang, M., Xue, P., Luo, Y., Ma, T., & Zhao, Y. (2023). Evaluation of the energy conversion performance of different photovoltaic materials with measured solar spectral irradiance. Renewable Energy, 219. https://doi.org/10.1016/j.renene.2023.119431
  • Wang, L., & Yu, J. (2023). Principles of photocatalysis. In Interface Science and Technology (Vol. 35, pp. 1–52). Elsevier B.V. https://doi.org/10.1016/B978-0-443-18786-5.00002-0
  • Wilberforce, T., Olabi, A. G., Sayed, E. T., Mahmoud, M., Alami, A. H., & Abdelkareem, M. A. (2024). The state of renewable energy source envelopes in urban areas. International Journal of Thermofluids, 21. https://doi.org/10.1016/j.ijft.2024.100581

Güneş Spektrumun Türkiye'deki Farklı Bölgeler için Spektral Etkilerin İncelenmesi

Year 2024, Volume: 29 Issue: 3, 868 - 881, 31.12.2024
https://doi.org/10.53433/yyufbed.1509398

Abstract

Fotovoltaik (PV) modüller üzerine düşen güneşin spektral dağılımından etkilenmektedir. Bu çalışmada farklı iller seçilmiş ve SPCTRL2 programı kullanılarak faklı zamanlar için gelen doğrudan güneş ışınımı spektrumu elde edilmiştir. Bu spektrumlar kullanılarak ortalama foton enerjisi (APE) ve yararlı kesir (UF) ifadeleri güneş gözelerinin spektral tepki aralığına uyumlu olarak seçilmiş ve 300-1200 nm aralığında hesaplanmıştır ve karşılaştırılmıştır. Elde edilen APE değerleri AM 1.5D spektrum ile karşılaştırılmıştır. Aynı enlem üzerindeki incelenen şehirler için (Muğla, Şanlıurfa, İstanbul ve Trabzon) APE ve UF parametreleri batıda bulunan şehirlerde daha büyük olduğu görülmüştür. Aynı boylam üzerindeki incelenen şehirleri (Muğla, Şanlıurfa, İstanbul ve Trabzon) karşılaştırdığımızda güneyde bulunan şehirler daha büyük APE ve UF parametrelerine sahip olduğu görülmüştür. PV modül teknolojisinin yapıldığı yarıiletkenin yasak enerji aralığı ile UF parametresi arasında ilişki vardır ve yasak enerji aralığı arttıkça UF parametresi azalmaktadır. UF parametresinin düşük olduğu güneş gözesi teknolojileri spektral etkiye karşı daha hassas davranmaktadır.

References

  • Ahmad, M. J., & Tiwari, G. N. (2008). Study of Models for Predicting the Mean Hourly Global Radiation from Daily Summations. Open Environmental Sciences, 2(1), 6–14. https://doi.org/10.2174/1876325100802010006
  • Alonso-Abella, M., Chenlo, F., Nofuentes, G., & Torres-Ramírez, M. (2014). Analysis of spectral effects on the energy yield of different PV (photovoltaic) technologies: The case of four specific sites. Energy, 67, 435–443. https://doi.org/10.1016/j.energy.2014.01.024
  • Andrade, R. C., Tiba, C., Fraidenraich, N., & Souza, J. L. (2013). Estımação do ıuv máxımo mensal no semı-árıdo do nordeste do brasıl-estudo de caso água branca-al. Avances en Energías Renovables y Medio Ambiente, 17, 11.83-11.90.
  • Anonim (2024). T.C. Milli savunma bakanlığı harita genel müdürlüğü. Erişim tarihi: 30.07.2024. https://www.harita.gov.tr/urunler/indirilebilir-urunler/14#
  • Bird, R. E., & Riordan, C. (1986). American Meteorological Society Simple Solar Spectral Model for Direct and Diffuse Irradiance on Horizontal and Tilted Planes at the Earth’s Surface for Cloudless Atmospheres. In Source: Journal of Climate and Applied Meteorology (Vol. 25, Issue 1).
  • Chantana, J., Imai, Y., Kawano, Y., Hishikawa, Y., Nishioka, K., & Minemoto, T. (2020). Impact of average photon energy on spectral gain and loss of various-type PV technologies at different locations. Renewable Energy, 145, 1317–1324. https://doi.org/10.1016/j.renene.2019.06.139
  • Cornaro, C., & Andreotti, A. (2013). Influence of Average Photon Energy index on solar irradiance characteristics and outdoor performance of photovoltaic modules. Progress in Photovoltaics: Research and Applications, 21(5), 996–1003. https://doi.org/10.1002/pip.2194
  • Daxini, R., & Wu, Y. (2023). Review of methods to account for the solar spectral influence on photovoltaic device performance. Energy, 129461. https://doi.org/10.1016/j.energy.2023.129461
  • Du, H., Li, J., Zhu, W., Qu, Z., Zhang, L., & Lv, M. (2019). Flight performance simulation and station-keeping endurance analysis for stratospheric super-pressure balloon in real wind field. Aerospace Science and Technology, 86, 1–10. https://doi.org/10.1016/j.ast.2019.01.001
  • Eke, R., & Betts, T. R. (2017). Spectral irradiance effects on the outdoor performance of photovoltaic modules. Renewable and Sustainable Energy Reviews, 69, 429-434. https://doi.org/10.1016/j.rser.2016.10.062
  • Gottschalg, R., Infield, D. G., & Kearney, M. J. (2003). Experimental study of variations of the solar spectrum of relevance to thin film solar cells. Solar Energy Materials and Solar Cells, 79(4), 527–537. https://doi.org/10.1016/S0927-0248(03)00106-5
  • Gueymard, C. A. (2023). Assessment of the global applicability of three leading indices that characterize the spectral distribution of solar irradiance impacting various photovoltaic technologies. Energy Conversion and Management, 295, 117602. https://doi.org/10.1016/j.enconman.2023.117602
  • Honsberg C.B. & Bowden, S.G. (2019). “Photovoltaics Education Website,” www.pveducation.org.
  • Irvine, S. J. C. (2012). Photovoltaic (PV) thin-films for solar cells. Functional Materials for Sustainable Energy Applications, 22–41. https://doi.org/10.1533/9780857096371.1.22
  • Katsumata, N., Nakada, Y., Minemoto, T., & Takakura, H. (2011). Estimation of irradiance and outdoor performance of photovoltaic modules by meteorological data. Solar Energy Materials and Solar Cells, 95(1), 199–202. https://doi.org/10.1016/j.solmat.2010.01.019
  • Keshuov, S., & Moldybayeva, N. (2024). Selection of optimal structure of an energy-supply system for objects in an agro-industrial complex based on renewable-energy sources. Renewable Energy Focus , 48. https://doi.org/10.1016/j.ref.2023.100533
  • Myers, D. R. (2012). Direct beam and hemispherical terrestrial solar spectral distributions derived from broadband hourly solar radiation data. Solar Energy, 86(9), 2771–2782. https://doi.org/10.1016/j.solener.2012.06.014
  • Myers, D. R., Kurtz, S. R., Emery, K., Whitaker, C., & Townsend, T. (n.d.). (2000) Outdoor meteorological broadband and spectral conditions for evaluating photovoltaic modules. Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference (Cat. No.00CH37036). https://doi.org/10.1109/PVSC.2000.916104
  • Nofuentes, G., García-Domingo, B., Muñoz, J. v., & Chenlo, F. (2014). Analysis of the dependence of the spectral factor of some PV technologies on the solar spectrum distribution. Applied Energy, 113, 302–309. https://doi.org/10.1016/j.apenergy.2013.07.044
  • Roy, J. N., Gariki, G. R., & Nagalakhsmi, V. (2010). Reference module selection criteria for accurate testing of photovoltaic (PV) panels. Solar Energy, 84(1), 32–36. https://doi.org/10.1016/j.solener.2009.09.007
  • Satpathy, R., & Pamuru, V. (2021). Rooftop and BIPV solar PV systems. In Solar PV Power (pp. 317–364). Elsevier. http://dx.doi.org/10.1016/B978-0-12-817626-9.00008-3
  • Shahsavari, A., & Akbari, M. (2018). Potential of solar energy in developing countries for reducing energy-related emissions. Renewable and Sustainable Energy Reviews, 90, 275-291.https://doi.org/10.1016/j.rser.2018.03.065
  • Utrillas, M. P., Boscá, J. V., Martı́nez-Lozano, J. A., Cañada, J., Tena, F., & Pinazo, J. M. (1998). A comparative study of SPCTRAL2 and SMARTS2 parameterised models based on spectral irradiance measurements at Valencia, Spain. Solar Energy, 63(3), 161–171. https://doi.org/10.1016/S0038-092X(98)00058-9
  • Wang, S., Peng, J., Wang, M., Xue, P., Luo, Y., Ma, T., & Zhao, Y. (2023). Evaluation of the energy conversion performance of different photovoltaic materials with measured solar spectral irradiance. Renewable Energy, 219. https://doi.org/10.1016/j.renene.2023.119431
  • Wang, L., & Yu, J. (2023). Principles of photocatalysis. In Interface Science and Technology (Vol. 35, pp. 1–52). Elsevier B.V. https://doi.org/10.1016/B978-0-443-18786-5.00002-0
  • Wilberforce, T., Olabi, A. G., Sayed, E. T., Mahmoud, M., Alami, A. H., & Abdelkareem, M. A. (2024). The state of renewable energy source envelopes in urban areas. International Journal of Thermofluids, 21. https://doi.org/10.1016/j.ijft.2024.100581
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Metrology, Applied and Industrial Physics
Journal Section Natural Sciences and Mathematics / Fen Bilimleri ve Matematik
Authors

Gencer Sarıoğlu 0000-0002-7753-7813

Rüştü Eke 0000-0002-9260-6143

Publication Date December 31, 2024
Submission Date July 2, 2024
Acceptance Date September 6, 2024
Published in Issue Year 2024 Volume: 29 Issue: 3

Cite

APA Sarıoğlu, G., & Eke, R. (2024). Güneş Spektrumun Türkiye’deki Farklı Bölgeler için Spektral Etkilerin İncelenmesi. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 29(3), 868-881. https://doi.org/10.53433/yyufbed.1509398