Research Article
BibTex RIS Cite

Hydrogel Balls Developed for Use in the Detection of Heavy Metals in Wastewater

Year 2025, Volume: 30 Issue: 1, 156 - 171, 29.04.2025
https://doi.org/10.53433/yyufbed.1537452

Abstract

The study highlights the development of hydrogel beads for the detection of Nickel (Ni(II)) and Chromium (Cr(VI)) in industrial wastewater, providing an innovative solution to heavy metal pollution in a cost-effective and environmentally friendly manner. The beads change color when exposed to metals, making detection fast and simple. This technique makes a significant contribution to occupational health and safety by providing real-time detection of harmful heavy metals, thereby reducing the risk of exposure to workers. Additionally, the hydrogel beads aim to protect both worker health and surrounding ecosystems by helping industries meet environmental standards. Key findings include detection limits of 2.5 mg/mL for nickel and 1 mg/mL for chromium, and color changes stabilizing within 10 min. The hydrogels exhibited excellent swelling behavior with equilibrium swelling ratios of 72.65% for nickel and 64.18% for chromium, providing high efficiency in moisture absorption and retention. These features, combined with their ability to function without pretreatment or pH adjustment, offer an accessible and effective solution for managing metal pollution in industrial environments. Overall, the hydrogel beads demonstrated a success rate of 90.56% for nickel and 91.60% for chromium in detecting and measuring metal ions, providing an accessible and effective method for managing metal contamination in industrial environments while protecting both worker health and environmental integrity.

References

  • Adepu, S., & Ramakrishna, S. (2021). Controlled drug delivery systems: Current status and future directions. Molecules, 26(19), 5905. https://doi.org/10.3390/molecules26195905
  • Ali, Z., Ullah, R., Tuzen, M., Ullah, S., Rahim, A., & Saleh, T. A. (2023). Colorimetric sensing of heavy metals on metal-doped metal oxide nanocomposites: A review. Trends in Environmental Analytical Chemistry, 37, e00187. https://doi.org/10.1016/j.teac.2022.e00187
  • Arbona, V., Iglesias, D. J., Jacas, J., Primo-Millo, E., Talon, M., & Gómez-Cadenas, A. (2005). Hydrogel substrate amendment alleviates drought effects on young citrus plants. Plant and Soil, 270(1), 73–82. https://doi.org/10.1007/s11104-004-1160-0
  • Baralkiewicz, D., Gramowska, H., Hanc, A., & Krzyzaniak, I. (2007). A comparison of ICP-OES and ICP-MS in the determination of elements in lake water. Atomic Spectroscopy-Norwalk Connecticut, 28(5), 164.
  • Chen, M., Wang, W., Fang, J., Guo, P., Liu, X., Li, G., Li, Z., Wang, X., Li, J., & Lei, K. (2023). Environmentally adaptive polysaccharide-based hydrogels and their applications in extreme conditions: A review. International Journal of Biological Macromolecules, 241, 124496. https://doi.org/10.1016/j.ijbiomac.2023.124496
  • Dolbow, J., Fried, E., & Ji, H. (2004). Chemically induced swelling of hydrogels. Journal of the Mechanics and Physics of Solids, 52(1), 51–84. https://doi.org/10.1016/s0022-5096(03)00091-7
  • Douvris, C., Vaughan, T., Bussan, D., Bartzas, G., & Thomas, R. (2023). How ICP-OES changed the face of trace element analysis: Review of the global application landscape. Science of The Total Environment, 905, 167242. https://doi.org/10.1016/j.scitotenv.2023.167242
  • Idrees, H., Zaidi, S. Z. J., Sabir, A., Khan, R. U., Zhang, X., & Hassan, S. U. (2020). A review of biodegradable natural polymer-based nanoparticles for drug delivery applications. Nanomaterials, 10(10), 1970. https://doi.org/10.3390/nano10101970
  • Jayakumar, R., Prabaharan, M., Sudheesh Kumar, P. T., Nair, S. V., & Tamura, H. (2011). Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnology Advances, 29(3), 322-337. https://doi.org/10.1016/j.biotechadv.2011.01.005
  • Juang, R.-S., & Shiau, R.-C. (2000). Metal removal from aqueous solutions using chitosan-enhanced membrane filtration. Journal of Membrane Science, 165(2), 159-167. https://doi.org/10.1016/s0376-7388(99)00235-5
  • Kopecek, J. (2002). Polymer chemistry: Swell gals. Nature, 417(6888), 388-391. https://doi.org/10.1038/417388a
  • Laftah, W. A., Hashim, S., & Ibrahim, A. N. (2011). Polymer hydrogels: A review. Polymer-Plastics Technology and Engineering, 50(14), 1475-1486. https://doi.org/10.1080/03602559.2011.593082
  • Lee, K. Y., & Mooney, D. J. (2001). Hydrogels for tissue engineering. Chemical Reviews, 101(7), 1869-1880. https://doi.org/10.1021/cr000108x
  • Li, G., Du, Y., Tao, Y., Deng, H., Luo, X., & Yang, J. (2010). Iron(II) cross-linked chitin-based gel beads: Preparation, magnetic property, and adsorption of methyl orange. Carbohydrate Polymers, 82(3), 706-713. https://doi.org/10.1016/j.carbpol.2010.05.040
  • Li, C. P., Weng, M. C., & Huang, S. L. (2020). Preparation and characterization of pH-sensitive chitosan/3-glycidyloxypropyl trimethoxysilane (GPTMS) hydrogels by sol-gel method. Polymers, 12(6), 1326. https://doi.org/10.3390/polym12061326
  • Li, M., Yang, M., Liu, B., Guo, H., Wang, H., Li, X., Wang, L., & James, T. D. (2022). Self-assembling fluorescent hydrogel for highly efficient water purification and photothermal conversion. Chemical Engineering Journal, 431(3), 134245. https://doi.org/10.1016/j.cej.2021.134245
  • Peppas, N. A., Bures, P., Leobandung, W., & Ichikawa, H. (2000). Hydrogels in pharmaceutical formulations. European Journal of Pharmaceutics and Biopharmaceutics, 50(1), 27-46. https://doi.org/10.1016/S0939-6411(00)00090-4
  • Qiu, Y., & Park, K. (2012). Environment-sensitive hydrogels for drug delivery. Advanced Drug Delivery Reviews, 64(1), 49-60. https://doi.org/10.1016/j.addr.2012.09.024
  • Radoor, S., Karayil, J., Jayakumar, A., Kandel, D. R., Kim, J. T., Siengchin, S., & Lee, J. (2024). Recent advances in cellulose-and alginate-based hydrogels for water and wastewater treatment: A review. Carbohydrate Polymers, 323, 121339. https://doi.org/10.1016/j.carbpol.2023.121339
  • Shi, T., & Wang, Y. (2021). Heavy metals in indoor dust: Spatial distribution, influencing factors, and potential health risks. Science of The Total Environment, 755, 142367. https://doi.org/10.1016/j.scitotenv.2020.142367
  • Wysocka, I. (2021). Determination of rare earth elements concentrations in natural waters–A review of ICP-MS measurement approaches. Talanta, 221, 121636. https://doi.org/10.1016/j.talanta.2020.121636
  • Zou, Z., Zhang, B., Nie, X., Cheng, Y., Hu, Z., Liao, M., & Li, S. (2020). A sodium alginate-based sustained-release IPN hydrogel and its applications. RSC Advances, 10(65), 39722-39730. https://doi.org/10.1039/D0RA04316H
  • Zohuriaan‐Mehr, M. J., Pourjavadi, A., Salimi, H., & Kurdtabar, M. (2009). Protein‐and homo poly (amino acid)‐based hydrogels with super‐swelling properties. Polymers for Advanced Technologies, 20(8), 655-671. https://doi.org/10.1002/pat.1395

Atık Sularda Bulunan Ağır Metallerin Tespitinde Kullanılmak Üzere Geliştirilmiş Hidrojel Toplar

Year 2025, Volume: 30 Issue: 1, 156 - 171, 29.04.2025
https://doi.org/10.53433/yyufbed.1537452

Abstract

Çalışma, endüstriyel atık sularda Nikel (Ni(II)) ve Krom (Cr(VI)) tespiti için hidrojel boncuklarının geliştirilmesini vurgulayarak, ağır metal kirliliğine uygun maliyetli ve çevre dostu bir şekilde yenilikçi bir çözüm sunmaktadır. Boncuklar metallere maruz kaldığında renk değiştirerek tespiti hızlı ve basit hale getirmektedir. Bu teknik, zararlı ağır metallerin gerçek zamanlı tespitini sağlayarak iş sağlığı ve güvenliğine önemli bir katkı sağlamaktadır ve böylece çalışanların maruz kalma risklerini azaltmaktadır. Ek olarak, hidrojel toplar endüstrilerin çevre standartlarını karşılamasına yardımcı olarak hem çalışan sağlığını hem de çevre ekosistemlerini korumayı hedeflemektedir. Ana bulgular arasında nikel için 2,5 mg/mL ve krom için 1 mg/mL'lik tespit limitleri ve renk değişimlerinin 10 dakika içinde sabitlenmesi yer almaktadır. Hidrojeller, nikel için %72,65 ve krom için %64,18'lik denge şişme oranlarıyla mükemmel şişme davranışı göstererek nem emilimi ve tutulmasında yüksek verimlilik sağlamıştır.. Bu özellikler, ön işlem veya pH ayarlaması olmadan işlev görme yetenekleriyle birleştiğinde, endüstriyel ortamlarda metal kontaminasyonunu yönetmek için erişilebilir ve etkili bir çözüm sunmaktadır. Genel olarak hidrojel boncuklar, metal iyonlarını tespit etme ve ölçmede nikel için %90,56, krom için %91,60 başarı yüzdesi sergileyerek hem işçi sağlığını hem de çevresel bütünlüğü koruyarak endüstriyel ortamlarda metal kirliliğini yönetmek için erişilebilir ve etkili bir yöntem sunmaktadır.

Thanks

This research was supported by Quasis Research ARGE Biotechnology and Software Ltd. Co. We extend our sincere thanks to Quasis Research ARGE for their valuable contributions and support throughout this study.

References

  • Adepu, S., & Ramakrishna, S. (2021). Controlled drug delivery systems: Current status and future directions. Molecules, 26(19), 5905. https://doi.org/10.3390/molecules26195905
  • Ali, Z., Ullah, R., Tuzen, M., Ullah, S., Rahim, A., & Saleh, T. A. (2023). Colorimetric sensing of heavy metals on metal-doped metal oxide nanocomposites: A review. Trends in Environmental Analytical Chemistry, 37, e00187. https://doi.org/10.1016/j.teac.2022.e00187
  • Arbona, V., Iglesias, D. J., Jacas, J., Primo-Millo, E., Talon, M., & Gómez-Cadenas, A. (2005). Hydrogel substrate amendment alleviates drought effects on young citrus plants. Plant and Soil, 270(1), 73–82. https://doi.org/10.1007/s11104-004-1160-0
  • Baralkiewicz, D., Gramowska, H., Hanc, A., & Krzyzaniak, I. (2007). A comparison of ICP-OES and ICP-MS in the determination of elements in lake water. Atomic Spectroscopy-Norwalk Connecticut, 28(5), 164.
  • Chen, M., Wang, W., Fang, J., Guo, P., Liu, X., Li, G., Li, Z., Wang, X., Li, J., & Lei, K. (2023). Environmentally adaptive polysaccharide-based hydrogels and their applications in extreme conditions: A review. International Journal of Biological Macromolecules, 241, 124496. https://doi.org/10.1016/j.ijbiomac.2023.124496
  • Dolbow, J., Fried, E., & Ji, H. (2004). Chemically induced swelling of hydrogels. Journal of the Mechanics and Physics of Solids, 52(1), 51–84. https://doi.org/10.1016/s0022-5096(03)00091-7
  • Douvris, C., Vaughan, T., Bussan, D., Bartzas, G., & Thomas, R. (2023). How ICP-OES changed the face of trace element analysis: Review of the global application landscape. Science of The Total Environment, 905, 167242. https://doi.org/10.1016/j.scitotenv.2023.167242
  • Idrees, H., Zaidi, S. Z. J., Sabir, A., Khan, R. U., Zhang, X., & Hassan, S. U. (2020). A review of biodegradable natural polymer-based nanoparticles for drug delivery applications. Nanomaterials, 10(10), 1970. https://doi.org/10.3390/nano10101970
  • Jayakumar, R., Prabaharan, M., Sudheesh Kumar, P. T., Nair, S. V., & Tamura, H. (2011). Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnology Advances, 29(3), 322-337. https://doi.org/10.1016/j.biotechadv.2011.01.005
  • Juang, R.-S., & Shiau, R.-C. (2000). Metal removal from aqueous solutions using chitosan-enhanced membrane filtration. Journal of Membrane Science, 165(2), 159-167. https://doi.org/10.1016/s0376-7388(99)00235-5
  • Kopecek, J. (2002). Polymer chemistry: Swell gals. Nature, 417(6888), 388-391. https://doi.org/10.1038/417388a
  • Laftah, W. A., Hashim, S., & Ibrahim, A. N. (2011). Polymer hydrogels: A review. Polymer-Plastics Technology and Engineering, 50(14), 1475-1486. https://doi.org/10.1080/03602559.2011.593082
  • Lee, K. Y., & Mooney, D. J. (2001). Hydrogels for tissue engineering. Chemical Reviews, 101(7), 1869-1880. https://doi.org/10.1021/cr000108x
  • Li, G., Du, Y., Tao, Y., Deng, H., Luo, X., & Yang, J. (2010). Iron(II) cross-linked chitin-based gel beads: Preparation, magnetic property, and adsorption of methyl orange. Carbohydrate Polymers, 82(3), 706-713. https://doi.org/10.1016/j.carbpol.2010.05.040
  • Li, C. P., Weng, M. C., & Huang, S. L. (2020). Preparation and characterization of pH-sensitive chitosan/3-glycidyloxypropyl trimethoxysilane (GPTMS) hydrogels by sol-gel method. Polymers, 12(6), 1326. https://doi.org/10.3390/polym12061326
  • Li, M., Yang, M., Liu, B., Guo, H., Wang, H., Li, X., Wang, L., & James, T. D. (2022). Self-assembling fluorescent hydrogel for highly efficient water purification and photothermal conversion. Chemical Engineering Journal, 431(3), 134245. https://doi.org/10.1016/j.cej.2021.134245
  • Peppas, N. A., Bures, P., Leobandung, W., & Ichikawa, H. (2000). Hydrogels in pharmaceutical formulations. European Journal of Pharmaceutics and Biopharmaceutics, 50(1), 27-46. https://doi.org/10.1016/S0939-6411(00)00090-4
  • Qiu, Y., & Park, K. (2012). Environment-sensitive hydrogels for drug delivery. Advanced Drug Delivery Reviews, 64(1), 49-60. https://doi.org/10.1016/j.addr.2012.09.024
  • Radoor, S., Karayil, J., Jayakumar, A., Kandel, D. R., Kim, J. T., Siengchin, S., & Lee, J. (2024). Recent advances in cellulose-and alginate-based hydrogels for water and wastewater treatment: A review. Carbohydrate Polymers, 323, 121339. https://doi.org/10.1016/j.carbpol.2023.121339
  • Shi, T., & Wang, Y. (2021). Heavy metals in indoor dust: Spatial distribution, influencing factors, and potential health risks. Science of The Total Environment, 755, 142367. https://doi.org/10.1016/j.scitotenv.2020.142367
  • Wysocka, I. (2021). Determination of rare earth elements concentrations in natural waters–A review of ICP-MS measurement approaches. Talanta, 221, 121636. https://doi.org/10.1016/j.talanta.2020.121636
  • Zou, Z., Zhang, B., Nie, X., Cheng, Y., Hu, Z., Liao, M., & Li, S. (2020). A sodium alginate-based sustained-release IPN hydrogel and its applications. RSC Advances, 10(65), 39722-39730. https://doi.org/10.1039/D0RA04316H
  • Zohuriaan‐Mehr, M. J., Pourjavadi, A., Salimi, H., & Kurdtabar, M. (2009). Protein‐and homo poly (amino acid)‐based hydrogels with super‐swelling properties. Polymers for Advanced Technologies, 20(8), 655-671. https://doi.org/10.1002/pat.1395
There are 23 citations in total.

Details

Primary Language English
Subjects Biomaterial , Health and Ecological Risk Assessment, Environmental Engineering (Other)
Journal Section Engineering and Architecture / Mühendislik ve Mimarlık
Authors

Muhammed Ertuğrul Çapan 0000-0001-9398-7171

Ebru Cingöz 0000-0002-5296-0009

Publication Date April 29, 2025
Submission Date August 22, 2024
Acceptance Date November 11, 2024
Published in Issue Year 2025 Volume: 30 Issue: 1

Cite

APA Çapan, M. E., & Cingöz, E. (2025). Hydrogel Balls Developed for Use in the Detection of Heavy Metals in Wastewater. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 30(1), 156-171. https://doi.org/10.53433/yyufbed.1537452