Research Article
BibTex RIS Cite

Effects of Microcystis aeruginosa and Biochar Treatments on Some Enzymes and Basic Growth Characteristics in Wheat Rhizosphere

Year 2025, Volume: 30 Issue: 1, 303 - 314, 29.04.2025
https://doi.org/10.53433/yyufbed.1568023

Abstract

The effects of Microcystis aeruginosa and biochar treatments on some soil enzymes and basic plant growth characteristics in the rhizosphere of wheat were investigated. The experiment was conducted in the greenhouse according to the random factorial plots experimental design with 3 replications. Three doses of biochar (control, 1%, 2%) and 4 doses of M. aeruginosa (control, 0.5%, 1% and 1.5%) were used. Biochar was applied at sowing and M. aeruginosa was applied to the soil after germination. Harvesting was done 60 days after sowing. The treatments showed differences on the studied traits. While the highest green part weight was obtained from 2% biochar treatment, the highest root weight was determined in 2% biochar x 0.5% M. aeruginosa treatment. The highest plant height was obtained with 2% biochar x 1% M. aeruginosa and the highest root length was obtained with 2% biochar x 1.5% M. aeruginosa. The treatments increased the chlorophyll content of the leaves compared to the control. The highest β-glucosidase, alkaline phosphatase, dehydrogenase activities in the rhizosphere were determined in biochar 2% x M. aeruginosa 1.5% treatment.

References

  • Abo-Shady, A. M., Osman, M. E., Gaafar, R. M., Ismail, G. A., & El-Nagar, M. F. E. (2023). Cyanobacteria as a valuable natural resource for improved agriculture, environment, and plant protection. Water, Air, & Soil Pollution, 234(5), 313. https://doi.org/10.1007/s11270-023-06331-7
  • Albay, M., Köker, L., Oğuz, A., Zengin, Z., Gürevin, C., & Akçaalan, R. (2024). An emerging problem in Türki̇ye’s lake and drinking water reservoirs:“Cyanobacteria Blooms and Cyanotoxins”. In M. Albay, E. G. Özbayram, Z. Dorak, & R. A. Albay (Eds.), Freshwater researches: Fundamentals, trends and perspectives (pp. 81-96). Istanbul University Press.
  • Arnon, D. I. (1949). Copper enzymes in isolated chloroplast polyphenol oxidase in Beta vulgaris. Plant Physiology, 24(1), 1-15. https://doi.org/10.1104/pp.24.1.1
  • Ashour, M., Al-Souti, A. S., Hassan, S. M., Ammar, G. a. G., Goda, A. M. A., El-Shenody, R., Abomohra, A. E., El-Haroun, E., & Elshobary, M. E. (2022). Commercial seaweed liquid extract as strawberry biostimulants and bioethanol production. Life, 13(1), 85. https://doi.org/10.3390/life13010085
  • Bibi, S., Saadaoui, I., Bibi, A., Al-Ghouti, M., & Dieyeh, M. H. A. (2024). Applications, advancements, and challenges of cyanobacteria-based biofertilizers for sustainable agro and ecosystems in arid climates. Bioresource Technology Reports, 25, 101789. http://dx.doi.org/10.1016/j.biteb.2024.101789
  • Campos, A., Redouane, E. M., Freitas, M., Amaral, S., Azevedo, T., Loss, L., Máthé, C., Mohamed, Z. A., Oudra, B., & Vasconcelos, V. (2021). Impacts of microcystins on morphological and physiological parameters of agricultural plants: a review. Plants, 10(4), 639. https://doi.org/10.3390/plants10040639
  • Cao, Q., Rediske, R. R., Yao, L., & Xie, L. (2018). Effect of microcystins on root growth, oxidative response, and exudation of rice (Oryza sativa). Ecotoxicology and Environmental Safety, 149, 143-149. https://doi.org/10.1016/j.ecoenv.2017.11.020
  • Ceylan, B., & Sezen, G. (2024). Determination of biological activity of some macro/micro algae. Kastamonu University Journal of Engineering and Sciences, 10(1), 1-6. https://doi.org/10.55385/kastamonujes.1424276
  • Corbel, S., Bouaïcha, N., & Mougin, C. (2014). Dynamics of the toxic cyanobacterial microcystin-leucine-arginine peptide in agricultural soil. Environmental Chemistry Letters, 12, 535-541. https://doi.org/10.1007/s10311-014-0482-2
  • Dick, R. P. (1997). Soil enzyme activities as integrative indicators of soil health. In C. Pankhurst, B. M. Doube, V. V. S. R. Gupta (Eds.), Biological indicators of soil health (pp. 121-156). CABI Publishing, Wallingford, UK.
  • Elarroussi, H., Elmernissi, N., Benhima, R., Meftah El Kadmiri, I., Bendaou, N., & Smouni, A. (2016). Microalgae polysaccharides are a promising plant growth biostimulant. Journal of Algal Biomass Utilization, 7(4), 55-63.
  • Erdal, İ., Alaboz, P., Ekinci, K., Türkan, Ş. A., Yaylacı, C., & Şener, A. (2024). Effect of biochar on some soil properties after 4-year application and its effect on growth, yield and nutrient uptake of wheat grown on an alkaline soil. Rendiconti Lincei. Scienze Fisiche e Naturali, 35(1), 223-235. https://doi.org/10.1007/s12210-023-01221-w
  • Frene, J. P., Frazier, M., Liu, S., Clark, B., Parker, M., & Gardner, T. (2021). Early efect of pine biochar on peach-tree planting on microbial community composition and enzymatic activity. Applied Sciences, 11(4), 1473. https://doi.org/10.3390/app11041473
  • Garbuz, S., Mackay, A., Camps-Arbestain, M., DeVantier, B., & Minor, M. (2021) Biochar amendment improves soil physico-chemical properties and alters root biomass and the soil food web in grazed pastures. Agriculture, Ecosystems & Environment, 319, 107517. https://doi.org/10.1016/j.agee.2021.107517
  • Godlewska, K., Michalak, I., Pacyga, P., Baśladyńska, S., & Chojnacka, K. (2019). Potential applications of cyanobacteria: Spirulina platensis filtrates and homogenates in agriculture. World Journal of Microbiology and Biotechnology, 35, 80. https://doi.org/10.1007/s11274-019-2653-6
  • Górka, B., Korzeniowska, K., Lipok, J., & Wieczorek, P. P. (2018). The biomass of algae and algal extracts in agricultural production. In K. Chojnacka, P. Wieczorek, G. Schroeder, & I. Michalak (Eds.), Algae biomass: Characteristics and applications. Developments in applied phycology, vol 8 (pp. 103-114). Springer, Cham. https://doi.org/10.1007/978-3-319-74703-3_9
  • Grzesik, M., & Romanowska-Duda, Z. (2015). Ability of cyanobacteria and green algae to improve metabolic activity and development of willow plants. Polish Journal of Environmental Studies, 24(3), 1003-1012. https://doi.org/10.15244/pjoes/34667
  • Grzesik, M., Romanowska-Duda, Z., Kalaji, H. M. (2017). Effectiveness of cyanobacteria and green algae in enhancing the photosynthetic performance and growth of willow (Salix viminalis L.) plants under limited synthetic fertilizers application. Photosynthetica, 55(3), 510-521. https://doi.org/10.1007/s11099-017-0716-1
  • Haider, F. U., Coulter, J. A., Cheema, S. A., Farooq, M., Wu, J., Zhang, R., Shuaijie, G., & Liqun, C. (2021). Co-application of biochar and microorganisms improves soybean performance and remediate cadmium-contaminated soil. Ecotoxicology and Environmental Safety, 214, 112112. https://doi.org/10.1016/j.ecoenv.2021.112112
  • Hassan, S. M., Ashour, M., Soliman, A. A. F., Hassanien, H. A., Alsanie, W. F., Gaber, A., & Elshobary, M. E. (2021). The potential of a new commercial seaweed extract in stimulating morpho-agronomic and bioactive properties of Eruca vesicaria (L.) cav. Sustainability, 13(8), 4485. https://doi.org/10.3390/su13084485
  • Kumar, A., Chaurasia, U., Elshobary, M. E., Kumari, S., Hussain, T., Bharti, A. P., Maurya, D. K., Samanta, L., & El-Sheekh, M. (2022). Utilization of algae in crop improvement and crop protection for a better agricultural system. In M. El-Sheekh, N. Abdullah, & I. Ahmad (Eds.), Handbook of research on Algae as a sustainable solution for food, energy, and the environment (pp. 442-470). IGI Global Scientific Publishing. https://doi.org/10.4018/978-1-6684-2438-4.ch018
  • Küçük, Ç., & Cevheri, C. (2019). Investigation of some soil microbiological properties of rhizosphere soil of halophytic forage plants. Sigma Journal of Engineering and Natural Sciences, 37(1), 7-14.
  • Küçük, Ç., & Şinşek, N. (2020). The effects of different agricultural wastes on some microbiologial properties of soil. EJONS International Journal on Mathematics, Engineering & Natural Sciences, 15, 451-460.
  • Küçük, Ç., Uslu, P., & Sezen, G. (2024). Cladophora sp. ve Arbüsküler Mikorizal Fungus (AMF) spor aşılamasının mısır bitkisinin (Zea mays L.) gelişim parametreleri ve bazı rizosfer toprak enzimlerine etkisi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28(2), 189-196. http://dx.doi.org/10.19113/sdufenbed.1473028
  • Li, H., Zhao, Q., & Huang, H. (2019). Current status and challenges of salt-affected soil remediation by cyanobacteria. Science of the Total Environment, 669, 258-272. https://doi.org/10.1016/j.scitotenv.2019.03.104
  • Li, X., Zhao, W., Chen, J., & Wang, F. (2023). Dosage impact of submerged plants extracts on Microcystis aeruginosa growth: From hormesis to inhibition. Ecotoxicology and Environmental Safety, 268, 115703. https://doi.org/10.1016/j.ecoenv.2023.115703
  • Machado, J., Campos, A., Vasconcelos, V., & Freitas, M. (2017). Effects of microcystin-LR and cylindrospermopsin on plant-soil systems: A review of their relevance for agricultural plant quality and public health. Environmental Research, 153, 191-204. https://doi.org/10.1016/j.envres.2016.09.015
  • Monchamp, E., Spaak, M., Domaizon, I., Dubois, N., Bouffard, D., & Pomati, F. (2018). Homogenization of Lake Cyanobacterial communities over a century of climate change and eutrophication. Nature Ecology & Evolution, 2(2), 317-324. https://doi.org/10.1038/s41559-017-0407-0
  • Mutale-Joan, C., Redouane, B., Najib, E., Yassine, K., Lyamlouli, K., Laila, S., Zeroual, Y., & Hicham, E. A. (2020). Screening of microalgae liquid extracts for their biostimulant properties on plant growth, nutrient uptake and metabolite profile of Solanum lycopersicum L. Scientific Reports, 10(1), 1-12. https://doi.org/10.1038/s41598-020-59840-4
  • Nawaz, T., Saud, S., Gu, L., Khan, I., Fahad, S., & Zhou, R. (2024). Cyanobacteria: Harnessing the power of microorganisms for plant growth promotion, stress alleviation, and phytoremediation in the era of sustainable agriculture. Plant Stress, 11, 100399, https://doi.org/10.1016/j.stress.2024.100399
  • Oladele, S., Adeyemo, A., Awodun, M., Ajayi, A., & Fasina, A. (2019). Effects of biochar and nitrogen fertilizer on soil physicochemical properties, nitrogen use efficiency and upland rice (Oryza sativa) yield grown on an Alfisol in Southwestern Nigeria. International Journal of Recycling of Organic Waste in Agriculture, 8, 295-308. https://doi.org/10.1007/s40093-019-0251-0
  • Osman, M. E. H., Abo-Shady, A. M., & El-Nagar, M. M. F. (2020). Treatment of broad bean seeds with algal suspensions to study their effects on certain growth and yield parameters. Journal of Environmental Sciences, 49(1), 1-7. https://doi.org/10.21608/JOESE.2020.147760
  • Osman, M. E. H., Abo-Shady, A. M., Gaafar, R. M., El-Nagar, M. M. F., & Ismail, G. A. (2021). Promoting wheat growth by priming grains with water extracts of Nostoc muscorum and Arthrospira platensis. Egyptian Journal of Botany, 61(3), 809-821. https://doi.org/10.21608/ejbo.2021.78079.1697
  • Pan, S., Jeevanandam, J., & Danquah, M. K. (2019). Benefits of algal extracts in sustainable agriculture. In: A. Hallmann, & P. Rampelotto (Eds.), Grand challenges in algae biotechnology. Grand challenges in biology and biotechnology (pp. 501-534). Springer, Cham. https://doi.org/10.1007/978-3-030-25233-5_14
  • Parmar, P., Kumar, R., Neha, Y., & Srivatsan, V. (2023). Microalgae as next generation plant growth additives: Functions, applications, challenges and circular bioeconomy based solutions. Front. Plant Sci., Plant Physiology, 14, 1-37. https://doi.org/10.3389/fpls.2023.1073546
  • Rahmanian, M., & Khadem, A. (2024). The effects of biochar on soil extra and intracellular enzymes activity. Biomass Conversion and Biorefinery, 14, 21993-22005. https://doi.org/10.1007/s13399-023-04330-6
  • Rey, C. S., Oyege, I., Shetty, K. G., Jayachandran, K., & Balaji Bhaskar, M. S. (2024). Evaluation of vermicompost, Sseaweed, and algal fertilizers on soil fertility and plant production of sunn hemp. Soil Systems, 8(4), 132. https://doi.org/10.3390/soilsystems8040132
  • Rondon, M. A., Lehmann, J., Ramírez, J., & Hurtado, M. (2007) Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biology and Fertility of Soils, 43, 699-708. http://dx.doi.org/10.1007/s00374-006-0152-z
  • Sezen, G., & Küçük, Ç. (2021). Microcystis viridis ve Aphanizomenon gracile karışık kültürün fiğ, nohut ve arpa gelişimine etkileri. Commagene Journal of Biology, 5(2), 182-186. https://doi.org/10.31594/commagene.1031232
  • Sezen, G., & Küçük, Ç. (2023). Mısır (Zea mays L.) ve mercimek (Lens culinaris Medik) gelişimi üzerine Microcystis viridis ve Aphanizomenon gracile karışımının etkisi. Commagene Journal of Biology, 7(2), 141-146. https://doi.org/10.31594/commagene.1396910
  • Shashirekha, S., Uma, L., & Subramanian, G. (1997). Phenol degradation by the marine cyanobacterium Phormidium valderianum BDU 30501. Journal of Industrial Microbiology and Biotechnology, 19(2), 130-133. https://doi.org/10.1038/sj.jim.2900438
  • Spinelli, F., Fiori, G., Noferini, M., Sprocatti, M., & Costa, G. (2009). Perspectives on the use of a seaweed extract to moderate the negative effects of alternate bearing in apple trees. Journal of Horticultural Science & Biotechnology, 84(6), 131-137. https://doi.org/10.1080/14620316.2009.11512610
  • Şener, A., & Erdal, İ. (2022). Biyokömür inkübasyonunun buğday verimi ve bazı verim parametrelerine etkisi. Avrupa Bilim ve Teknoloji Dergisi, 41, 410-415. https://doi.org/10.31590/ejosat.1197040
  • Tanabe, Y., Kasai, F., & Watanabe, M. M. (2007). Multilocus sequence typing (MLST) reveals high genetic diversity and clonal population structure of the toxic cyanobacterium Microcystis aeruginosa. Microbiology, 153(11), 3695-3703. https://doi.org/10.1099/mic.0.2007/010645-0
  • Tanabe, Y., Hodoki, Y., Sano, T., Tada, K., & Watanabe, M. M. (2018). Adaptation of the freshwater bloom-forming cyanobacterium Microcystis aeruginosa to brackish water is driven by recent horizontal transfer of sucrose genes. Frontiers in Microbiology, 9, 1150. https://doi.org/10.3389/fmicb.2018.01150
  • Tsoumalakou, E., Papadimitriou, T., Berillis, P., Kormas, K. A., & Levizou, E. (2021). Spray irrigation with microcystins-rich water affects plant performance from the microscopic to the functional level and food safety of spinach (Spinacia oleracea L.). Science of the Total Environment, 789, 147948. https://doi.org/10.1016/j.scitotenv.2021.147948
  • Wojewódzki, P., Lemanowicz, J., Debska, B., & Haddad, S. A. (2022). Soil enzyme activity response under the amendment of different types of biochar. Agronomy, 12(3), 569. https://doi.org/10.3390/agronomy12030569
  • Yamaguchi, H., Suzuki, S., Osana, Y., & Kawachi, M. (2020). Genomic characteristics of the toxic bloom-forming cyanobacterium Microcystis aeruginosa NIES-102. Journal of Genomics, 8, 1. https://doi.org/10.7150/jgen.40978
  • Yildiz, M., & Özgen, M. (2004). The effect of a submersion pretreatment on in vitro explant growth and shoot regeneration from hypocotyls of flax (Linum usitatissimum). Plant cell, tissue and Organ Culture, 77, 111-115. https://doi.org/10.1023/B:TICU.0000016493.03592.c3
  • Yuan, P., Wang, J., Pan, Y., Shen, B., Wu, C. (2019). Review of biochar for the management of contaminated soil: preparation, application and prospect. Science of The Total Environment, 659, 473-490. https://doi.org/10.1016/j.scitotenv.2018.12.400
  • Zhang, C., Liu, L., Zhao, M., Rong, H., & Xu, Y. (2018). The environmental characteristics and applications of biochar. Environmental Science and Pollution Research, 25, 21525-21534. https://doi.org/10.1007/s11356-018-2521-1
  • Zhang, M., Riaz, M., Zhang, L., El-desouki, Z., Jiang, C. (2019). Biochar induces changes to basic soil properties and bacterial communities of different soils to varying degrees at 25 mm rainfall: More effective on acidic soils. Frontier Microbiology, 10, 1321. https://doi.org/10.3389/fmicb.2019.01321
  • Zhu, J., Ren, X., Liu, H., & Liang, C. (2018). Effect of irrigation with microcystins-contaminated water on growth and fruit quality of Cucumis sativus L. and the health risk. Agricultural Water Management, 204, 91-99. https://doi.org/10.1016/j.agwat.2018.04.011

Microcystis aeruginosa ve Biyokömür Uygulamalarının Buğday Rizosferindeki Bazı Enzimler ve Temel Gelişme Özelliklerine Etkileri

Year 2025, Volume: 30 Issue: 1, 303 - 314, 29.04.2025
https://doi.org/10.53433/yyufbed.1568023

Abstract

Microcystis aeruginosa ve biyokömür uygulamalarının buğdayın rizosfer bölgesindeki bazı toprak enzimleri üzerine ve temel bitki büyüme özelliklerine etkileri incelenmiştir. Araştırma serada tesadüf parselleri faktöryel deneme desenine göre 3 tekrarlı olarak yürütülmüştür. Biyokömürün üç dozu (kontrol, % 1, % 2), M. aeruginosa’nın 4 dozu (kontrol, % 0.5, %1 ve % 1.5) kullanılmıştır. Biyokömür ekimle birlikte, M. aeruginosa ise çimlenme sonrası topraklara uygulanmıştır. Hasat ekimden 60 gün sonra yapılmıştır. Uygulamalar incelenen özellikler üzerinde farklılık göstermiştir. En fazla yeşil aksam ağırlığı %2 biyokömür uygulamasından elde edilirken, kök ağırlığı en yüksek %2 biyokömür x %0.5 M. aeruginosa uygulamasında belirlenmiştir. Biyokömürün %2 x M. aeruginosa %1’in birlikte uygulanması ile en yüksek bitki boyu, %2 biyokömür x %1.5 M. aeruginosa uygulaması ile en yüksek kök uzunluğu elde edilmiştir. Uygulamalar yaprakların klorofil içeriklerini kontrole göre artırmıştır. Rizosferdeki en yüksek β-glukosidaz, alkalin fosfataz ve dehidrogenaz aktivitesi biyokömür %2 x M. aeruginosa %1.5 uygulamalarında belirlenmiştir.

References

  • Abo-Shady, A. M., Osman, M. E., Gaafar, R. M., Ismail, G. A., & El-Nagar, M. F. E. (2023). Cyanobacteria as a valuable natural resource for improved agriculture, environment, and plant protection. Water, Air, & Soil Pollution, 234(5), 313. https://doi.org/10.1007/s11270-023-06331-7
  • Albay, M., Köker, L., Oğuz, A., Zengin, Z., Gürevin, C., & Akçaalan, R. (2024). An emerging problem in Türki̇ye’s lake and drinking water reservoirs:“Cyanobacteria Blooms and Cyanotoxins”. In M. Albay, E. G. Özbayram, Z. Dorak, & R. A. Albay (Eds.), Freshwater researches: Fundamentals, trends and perspectives (pp. 81-96). Istanbul University Press.
  • Arnon, D. I. (1949). Copper enzymes in isolated chloroplast polyphenol oxidase in Beta vulgaris. Plant Physiology, 24(1), 1-15. https://doi.org/10.1104/pp.24.1.1
  • Ashour, M., Al-Souti, A. S., Hassan, S. M., Ammar, G. a. G., Goda, A. M. A., El-Shenody, R., Abomohra, A. E., El-Haroun, E., & Elshobary, M. E. (2022). Commercial seaweed liquid extract as strawberry biostimulants and bioethanol production. Life, 13(1), 85. https://doi.org/10.3390/life13010085
  • Bibi, S., Saadaoui, I., Bibi, A., Al-Ghouti, M., & Dieyeh, M. H. A. (2024). Applications, advancements, and challenges of cyanobacteria-based biofertilizers for sustainable agro and ecosystems in arid climates. Bioresource Technology Reports, 25, 101789. http://dx.doi.org/10.1016/j.biteb.2024.101789
  • Campos, A., Redouane, E. M., Freitas, M., Amaral, S., Azevedo, T., Loss, L., Máthé, C., Mohamed, Z. A., Oudra, B., & Vasconcelos, V. (2021). Impacts of microcystins on morphological and physiological parameters of agricultural plants: a review. Plants, 10(4), 639. https://doi.org/10.3390/plants10040639
  • Cao, Q., Rediske, R. R., Yao, L., & Xie, L. (2018). Effect of microcystins on root growth, oxidative response, and exudation of rice (Oryza sativa). Ecotoxicology and Environmental Safety, 149, 143-149. https://doi.org/10.1016/j.ecoenv.2017.11.020
  • Ceylan, B., & Sezen, G. (2024). Determination of biological activity of some macro/micro algae. Kastamonu University Journal of Engineering and Sciences, 10(1), 1-6. https://doi.org/10.55385/kastamonujes.1424276
  • Corbel, S., Bouaïcha, N., & Mougin, C. (2014). Dynamics of the toxic cyanobacterial microcystin-leucine-arginine peptide in agricultural soil. Environmental Chemistry Letters, 12, 535-541. https://doi.org/10.1007/s10311-014-0482-2
  • Dick, R. P. (1997). Soil enzyme activities as integrative indicators of soil health. In C. Pankhurst, B. M. Doube, V. V. S. R. Gupta (Eds.), Biological indicators of soil health (pp. 121-156). CABI Publishing, Wallingford, UK.
  • Elarroussi, H., Elmernissi, N., Benhima, R., Meftah El Kadmiri, I., Bendaou, N., & Smouni, A. (2016). Microalgae polysaccharides are a promising plant growth biostimulant. Journal of Algal Biomass Utilization, 7(4), 55-63.
  • Erdal, İ., Alaboz, P., Ekinci, K., Türkan, Ş. A., Yaylacı, C., & Şener, A. (2024). Effect of biochar on some soil properties after 4-year application and its effect on growth, yield and nutrient uptake of wheat grown on an alkaline soil. Rendiconti Lincei. Scienze Fisiche e Naturali, 35(1), 223-235. https://doi.org/10.1007/s12210-023-01221-w
  • Frene, J. P., Frazier, M., Liu, S., Clark, B., Parker, M., & Gardner, T. (2021). Early efect of pine biochar on peach-tree planting on microbial community composition and enzymatic activity. Applied Sciences, 11(4), 1473. https://doi.org/10.3390/app11041473
  • Garbuz, S., Mackay, A., Camps-Arbestain, M., DeVantier, B., & Minor, M. (2021) Biochar amendment improves soil physico-chemical properties and alters root biomass and the soil food web in grazed pastures. Agriculture, Ecosystems & Environment, 319, 107517. https://doi.org/10.1016/j.agee.2021.107517
  • Godlewska, K., Michalak, I., Pacyga, P., Baśladyńska, S., & Chojnacka, K. (2019). Potential applications of cyanobacteria: Spirulina platensis filtrates and homogenates in agriculture. World Journal of Microbiology and Biotechnology, 35, 80. https://doi.org/10.1007/s11274-019-2653-6
  • Górka, B., Korzeniowska, K., Lipok, J., & Wieczorek, P. P. (2018). The biomass of algae and algal extracts in agricultural production. In K. Chojnacka, P. Wieczorek, G. Schroeder, & I. Michalak (Eds.), Algae biomass: Characteristics and applications. Developments in applied phycology, vol 8 (pp. 103-114). Springer, Cham. https://doi.org/10.1007/978-3-319-74703-3_9
  • Grzesik, M., & Romanowska-Duda, Z. (2015). Ability of cyanobacteria and green algae to improve metabolic activity and development of willow plants. Polish Journal of Environmental Studies, 24(3), 1003-1012. https://doi.org/10.15244/pjoes/34667
  • Grzesik, M., Romanowska-Duda, Z., Kalaji, H. M. (2017). Effectiveness of cyanobacteria and green algae in enhancing the photosynthetic performance and growth of willow (Salix viminalis L.) plants under limited synthetic fertilizers application. Photosynthetica, 55(3), 510-521. https://doi.org/10.1007/s11099-017-0716-1
  • Haider, F. U., Coulter, J. A., Cheema, S. A., Farooq, M., Wu, J., Zhang, R., Shuaijie, G., & Liqun, C. (2021). Co-application of biochar and microorganisms improves soybean performance and remediate cadmium-contaminated soil. Ecotoxicology and Environmental Safety, 214, 112112. https://doi.org/10.1016/j.ecoenv.2021.112112
  • Hassan, S. M., Ashour, M., Soliman, A. A. F., Hassanien, H. A., Alsanie, W. F., Gaber, A., & Elshobary, M. E. (2021). The potential of a new commercial seaweed extract in stimulating morpho-agronomic and bioactive properties of Eruca vesicaria (L.) cav. Sustainability, 13(8), 4485. https://doi.org/10.3390/su13084485
  • Kumar, A., Chaurasia, U., Elshobary, M. E., Kumari, S., Hussain, T., Bharti, A. P., Maurya, D. K., Samanta, L., & El-Sheekh, M. (2022). Utilization of algae in crop improvement and crop protection for a better agricultural system. In M. El-Sheekh, N. Abdullah, & I. Ahmad (Eds.), Handbook of research on Algae as a sustainable solution for food, energy, and the environment (pp. 442-470). IGI Global Scientific Publishing. https://doi.org/10.4018/978-1-6684-2438-4.ch018
  • Küçük, Ç., & Cevheri, C. (2019). Investigation of some soil microbiological properties of rhizosphere soil of halophytic forage plants. Sigma Journal of Engineering and Natural Sciences, 37(1), 7-14.
  • Küçük, Ç., & Şinşek, N. (2020). The effects of different agricultural wastes on some microbiologial properties of soil. EJONS International Journal on Mathematics, Engineering & Natural Sciences, 15, 451-460.
  • Küçük, Ç., Uslu, P., & Sezen, G. (2024). Cladophora sp. ve Arbüsküler Mikorizal Fungus (AMF) spor aşılamasının mısır bitkisinin (Zea mays L.) gelişim parametreleri ve bazı rizosfer toprak enzimlerine etkisi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28(2), 189-196. http://dx.doi.org/10.19113/sdufenbed.1473028
  • Li, H., Zhao, Q., & Huang, H. (2019). Current status and challenges of salt-affected soil remediation by cyanobacteria. Science of the Total Environment, 669, 258-272. https://doi.org/10.1016/j.scitotenv.2019.03.104
  • Li, X., Zhao, W., Chen, J., & Wang, F. (2023). Dosage impact of submerged plants extracts on Microcystis aeruginosa growth: From hormesis to inhibition. Ecotoxicology and Environmental Safety, 268, 115703. https://doi.org/10.1016/j.ecoenv.2023.115703
  • Machado, J., Campos, A., Vasconcelos, V., & Freitas, M. (2017). Effects of microcystin-LR and cylindrospermopsin on plant-soil systems: A review of their relevance for agricultural plant quality and public health. Environmental Research, 153, 191-204. https://doi.org/10.1016/j.envres.2016.09.015
  • Monchamp, E., Spaak, M., Domaizon, I., Dubois, N., Bouffard, D., & Pomati, F. (2018). Homogenization of Lake Cyanobacterial communities over a century of climate change and eutrophication. Nature Ecology & Evolution, 2(2), 317-324. https://doi.org/10.1038/s41559-017-0407-0
  • Mutale-Joan, C., Redouane, B., Najib, E., Yassine, K., Lyamlouli, K., Laila, S., Zeroual, Y., & Hicham, E. A. (2020). Screening of microalgae liquid extracts for their biostimulant properties on plant growth, nutrient uptake and metabolite profile of Solanum lycopersicum L. Scientific Reports, 10(1), 1-12. https://doi.org/10.1038/s41598-020-59840-4
  • Nawaz, T., Saud, S., Gu, L., Khan, I., Fahad, S., & Zhou, R. (2024). Cyanobacteria: Harnessing the power of microorganisms for plant growth promotion, stress alleviation, and phytoremediation in the era of sustainable agriculture. Plant Stress, 11, 100399, https://doi.org/10.1016/j.stress.2024.100399
  • Oladele, S., Adeyemo, A., Awodun, M., Ajayi, A., & Fasina, A. (2019). Effects of biochar and nitrogen fertilizer on soil physicochemical properties, nitrogen use efficiency and upland rice (Oryza sativa) yield grown on an Alfisol in Southwestern Nigeria. International Journal of Recycling of Organic Waste in Agriculture, 8, 295-308. https://doi.org/10.1007/s40093-019-0251-0
  • Osman, M. E. H., Abo-Shady, A. M., & El-Nagar, M. M. F. (2020). Treatment of broad bean seeds with algal suspensions to study their effects on certain growth and yield parameters. Journal of Environmental Sciences, 49(1), 1-7. https://doi.org/10.21608/JOESE.2020.147760
  • Osman, M. E. H., Abo-Shady, A. M., Gaafar, R. M., El-Nagar, M. M. F., & Ismail, G. A. (2021). Promoting wheat growth by priming grains with water extracts of Nostoc muscorum and Arthrospira platensis. Egyptian Journal of Botany, 61(3), 809-821. https://doi.org/10.21608/ejbo.2021.78079.1697
  • Pan, S., Jeevanandam, J., & Danquah, M. K. (2019). Benefits of algal extracts in sustainable agriculture. In: A. Hallmann, & P. Rampelotto (Eds.), Grand challenges in algae biotechnology. Grand challenges in biology and biotechnology (pp. 501-534). Springer, Cham. https://doi.org/10.1007/978-3-030-25233-5_14
  • Parmar, P., Kumar, R., Neha, Y., & Srivatsan, V. (2023). Microalgae as next generation plant growth additives: Functions, applications, challenges and circular bioeconomy based solutions. Front. Plant Sci., Plant Physiology, 14, 1-37. https://doi.org/10.3389/fpls.2023.1073546
  • Rahmanian, M., & Khadem, A. (2024). The effects of biochar on soil extra and intracellular enzymes activity. Biomass Conversion and Biorefinery, 14, 21993-22005. https://doi.org/10.1007/s13399-023-04330-6
  • Rey, C. S., Oyege, I., Shetty, K. G., Jayachandran, K., & Balaji Bhaskar, M. S. (2024). Evaluation of vermicompost, Sseaweed, and algal fertilizers on soil fertility and plant production of sunn hemp. Soil Systems, 8(4), 132. https://doi.org/10.3390/soilsystems8040132
  • Rondon, M. A., Lehmann, J., Ramírez, J., & Hurtado, M. (2007) Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biology and Fertility of Soils, 43, 699-708. http://dx.doi.org/10.1007/s00374-006-0152-z
  • Sezen, G., & Küçük, Ç. (2021). Microcystis viridis ve Aphanizomenon gracile karışık kültürün fiğ, nohut ve arpa gelişimine etkileri. Commagene Journal of Biology, 5(2), 182-186. https://doi.org/10.31594/commagene.1031232
  • Sezen, G., & Küçük, Ç. (2023). Mısır (Zea mays L.) ve mercimek (Lens culinaris Medik) gelişimi üzerine Microcystis viridis ve Aphanizomenon gracile karışımının etkisi. Commagene Journal of Biology, 7(2), 141-146. https://doi.org/10.31594/commagene.1396910
  • Shashirekha, S., Uma, L., & Subramanian, G. (1997). Phenol degradation by the marine cyanobacterium Phormidium valderianum BDU 30501. Journal of Industrial Microbiology and Biotechnology, 19(2), 130-133. https://doi.org/10.1038/sj.jim.2900438
  • Spinelli, F., Fiori, G., Noferini, M., Sprocatti, M., & Costa, G. (2009). Perspectives on the use of a seaweed extract to moderate the negative effects of alternate bearing in apple trees. Journal of Horticultural Science & Biotechnology, 84(6), 131-137. https://doi.org/10.1080/14620316.2009.11512610
  • Şener, A., & Erdal, İ. (2022). Biyokömür inkübasyonunun buğday verimi ve bazı verim parametrelerine etkisi. Avrupa Bilim ve Teknoloji Dergisi, 41, 410-415. https://doi.org/10.31590/ejosat.1197040
  • Tanabe, Y., Kasai, F., & Watanabe, M. M. (2007). Multilocus sequence typing (MLST) reveals high genetic diversity and clonal population structure of the toxic cyanobacterium Microcystis aeruginosa. Microbiology, 153(11), 3695-3703. https://doi.org/10.1099/mic.0.2007/010645-0
  • Tanabe, Y., Hodoki, Y., Sano, T., Tada, K., & Watanabe, M. M. (2018). Adaptation of the freshwater bloom-forming cyanobacterium Microcystis aeruginosa to brackish water is driven by recent horizontal transfer of sucrose genes. Frontiers in Microbiology, 9, 1150. https://doi.org/10.3389/fmicb.2018.01150
  • Tsoumalakou, E., Papadimitriou, T., Berillis, P., Kormas, K. A., & Levizou, E. (2021). Spray irrigation with microcystins-rich water affects plant performance from the microscopic to the functional level and food safety of spinach (Spinacia oleracea L.). Science of the Total Environment, 789, 147948. https://doi.org/10.1016/j.scitotenv.2021.147948
  • Wojewódzki, P., Lemanowicz, J., Debska, B., & Haddad, S. A. (2022). Soil enzyme activity response under the amendment of different types of biochar. Agronomy, 12(3), 569. https://doi.org/10.3390/agronomy12030569
  • Yamaguchi, H., Suzuki, S., Osana, Y., & Kawachi, M. (2020). Genomic characteristics of the toxic bloom-forming cyanobacterium Microcystis aeruginosa NIES-102. Journal of Genomics, 8, 1. https://doi.org/10.7150/jgen.40978
  • Yildiz, M., & Özgen, M. (2004). The effect of a submersion pretreatment on in vitro explant growth and shoot regeneration from hypocotyls of flax (Linum usitatissimum). Plant cell, tissue and Organ Culture, 77, 111-115. https://doi.org/10.1023/B:TICU.0000016493.03592.c3
  • Yuan, P., Wang, J., Pan, Y., Shen, B., Wu, C. (2019). Review of biochar for the management of contaminated soil: preparation, application and prospect. Science of The Total Environment, 659, 473-490. https://doi.org/10.1016/j.scitotenv.2018.12.400
  • Zhang, C., Liu, L., Zhao, M., Rong, H., & Xu, Y. (2018). The environmental characteristics and applications of biochar. Environmental Science and Pollution Research, 25, 21525-21534. https://doi.org/10.1007/s11356-018-2521-1
  • Zhang, M., Riaz, M., Zhang, L., El-desouki, Z., Jiang, C. (2019). Biochar induces changes to basic soil properties and bacterial communities of different soils to varying degrees at 25 mm rainfall: More effective on acidic soils. Frontier Microbiology, 10, 1321. https://doi.org/10.3389/fmicb.2019.01321
  • Zhu, J., Ren, X., Liu, H., & Liang, C. (2018). Effect of irrigation with microcystins-contaminated water on growth and fruit quality of Cucumis sativus L. and the health risk. Agricultural Water Management, 204, 91-99. https://doi.org/10.1016/j.agwat.2018.04.011
There are 53 citations in total.

Details

Primary Language Turkish
Subjects Algology, Plant Nutrition and Soil Fertility, Soil Microbiology
Journal Section Agriculture / Zirai Bilimler
Authors

Göksal Sezen 0000-0001-9054-851X

Çiğdem Küçük 0000-0001-5688-5440

Ramazan Aktan 0009-0002-3419-1514

Publication Date April 29, 2025
Submission Date October 16, 2024
Acceptance Date February 27, 2025
Published in Issue Year 2025 Volume: 30 Issue: 1

Cite

APA Sezen, G., Küçük, Ç., & Aktan, R. (2025). Microcystis aeruginosa ve Biyokömür Uygulamalarının Buğday Rizosferindeki Bazı Enzimler ve Temel Gelişme Özelliklerine Etkileri. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 30(1), 303-314. https://doi.org/10.53433/yyufbed.1568023