Research Article
BibTex RIS Cite

Devre Teorisinden Esinlenerek Dinamik Sistemlerin Niteliksel Davranışı Üzerine Bir Paradigma

Year 2025, Volume: 30 Issue: 2, 699 - 707, 31.08.2025
https://doi.org/10.53433/yyufbed.1617145

Abstract

Bu makalede, elektriksel bir modele sahip sıvı mekanik tank sisteminin nitel analizini ele alıyoruz. Prototip aşamasında, bu tür modeller ilk nükleer reaktörlerin inşa süreci gibi daha esnektir. Bu dinamik sistemin matematiksel modeli doğrusal olmayan ve zamanla değişendir. Burada, herhangi bir matematiksel yaklaşım olmaksızın benzersiz sonuçlar bulmak için fiziksel ilkeler ve mühendislik özellikleri kullanılacaktır. Sistemin enerji fonksiyonu sezgisel fiziksel ilkelerle oluşturulmuştur. Sistem ayrıca geri bildirim kontrol yasalarıyla ve onlarsız olarak tartışılacaktır. Sistemin denge noktasının küresel asimptotik kontrol edilebilirliği belirlenecektir. Literatür bize seviye kontrolünün altıya kadar birkaç çoklu tankla çalıştığını göstermektedir. Bunları tanklarla farklı bir teorik bakış açısıyla tank olarak genelleştiriyoruz. Hazır sistem ve aday Lyapunov fonksiyonu burada kullanılmayacak; çalışma bunları inşa ederek yürütülecektir. Kontrol mekanizmasının etkinliği hem teorik analiz hem de simülasyonla belirlenecektir. Önerilen algoritmaya göre, tanklardaki sıvı seviyelerinin ölçümü sistemin herhangi bir yerinde, topluca veya ayrı ayrı volt cinsinden yapılabilir. Algoritma açıktır, çok zaman alıcı değildir ve çözüm maliyeti pahalı değildir. Ayrıca teorik tahminlerimizi doğrulayan bazı simülasyonlar da sunulmuştur.

References

  • Ates, M. (2021). Circuit theory approach to stability and passivity analysis of nonlinear dynamical systems. International Journal of Circuit Theory and Applications, 50(1), 214–225. https://doi.org/10.1002/cta.3159
  • Başçi, A., & Derdiyok, A. (2016). Implementation of an adaptive fuzzy compensator for coupled tank liquid level control system. Measurement, 91, 12–18. https://doi.org/10.1016/j.measurement.2016.05.026
  • Biswas, P. P., Srivastava, R., Ray, S., & Samanta, A. N. (2009). Sliding mode control of quadruple tank process. Mechatronics, 19(4), 548–561. https://doi.org/10.1016/j.mechatronics.2009.01.001
  • Eduardo, D. S. (1998). Mathematical control theory Deterministic finite dimensional systems. Second edition, Springer-Verlag New York, pp.218–230.
  • Edwards, C. H., & Penney, D. E. (2018). Elementary differential equations with boundary value problems (Classic version, 6th ed.). Pearson. ISBN: 9780134995410
  • Iplikci, S. (2010). A support vector machine based control application to the experimental three-tank system. ISA Transactions, 49(3), 376–386. https://doi.org/10.1016/j.isatra.2010.03.013
  • Kämpjärvi, P., & Jämsä-Jounela, S. L. (2003). Level control strategies for flotation cells. Minerals Engineering, 16(11), 1061–1068. https://doi.org/10.1016/j.mineng.2003.06.004
  • Raff, T., Huber, S., Nagy, Z. K., & Allgower, F. (2006, October). Nonlinear model predictive control of a four tank system: An experimental stability study. IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control. https://doi.org/10.1109/CACSD-CCA-ISIC.2006.4776652
  • Sankar, G. S., Kumar, S. M., Narasimhan, S., & Bhallamudi, S. M. (2015). Optimal control of water distribution networks with storage facilities. Journal of Process Control, 32, 127–137. https://doi.org/10.1016/j.jprocont.2015.04.007
  • Sbarbaro, D., & Ortega, R. (2005, December). Averaging level control of multiple tanks: a passivity based approach. Proceedings of the 44th IEEE Conference on Decision and Control. Sevilla, Spain. https://doi.org/10.1109/cdc.2005.1583353
  • Singh, A. P., Mukherjee, S., & Nikolaou, M. (2014). Debottlenecking level control for tanks in series. Journal of Process Control, 24(3), 158–171. https://doi.org/10.1016/j.jprocont.2013.12.002
  • Tunç, C., & Ateş, M. (2006). Stability and boundedness results for solutions of certain third order nonlinear vector differential equations. Nonlinear Dynamics, 45(3), 273–281. https://doi.org/10.1007/s11071-006-1437-3
  • Wang, J. L., Wu, H.N., Huang, T., Ren, S.Y., & Wu, J. (2018). Passivity and output synchronization of complex dynamical networks with fixed and adaptive coupling strength. IEEE Transactions on Neural Networks and Learning Systems, 29(2), 364–376, https://doi.org/10.1109/tnnls.2016.2627083
  • Wang, J. L., Wu, H.N., Huang, T., Ren, S.Y., & Wu, J. (2017). Passivity of directed and undirected complex dynamical networks with adaptive coupling weights. IEEE Transactions on Neural Networks and Learning Systems, 28(8), 1827–1839. https://doi.org/10.1109/tnnls.2016.2558502
  • Willems, J. C. (1972). Dissipative dynamical systems part I: General theory. Archive for Rational Mechanics and Analysis, 45(5), 321–351. https://doi.org/10.1007/bf00276493
  • Xiuyun, S. (2015). Adaptive nonlinear control for multi-tank level system. The Open Automation and Control Systems Journal, 7(1), 496–501, https://doi.org/10.2174/1874444301507010496
  • Xu, T., Yu, H., Yu, J., & Meng, X. (2020). Adaptive disturbance attenuation control of two tank liquid level system with uncertain parameters based on port-controlled Hamiltonian. IEEE Access, 8, 47384–47392. https://doi.org/10.1109/access.2020.2979352
  • Yang, C., Sun, J., Zhang, Q., & Ma, X. (2013). Lyapunov stability and strong passivity analysis for nonlinear descriptor systems. IEEE Transactions on Circuits and Systems I: Regular Papers, 60(4), 1003–1012. https://doi.org/10.1109/tcsi.2012.2215396
  • Yu, H., Yu, J., Wu, H., & Li, H. (2013). Energy-shaping and integral control of the three-tank liquid level system. Nonlinear Dynamics, 73(4), 2149–2156. https://doi.org/10.1007/s11071-013-0930-8
  • Zhang, L., & Yu, L. (2013). Global asymptotic stability of certain third‐order nonlinear differential equations. Mathematical Methods in the Applied Sciences, 36(14), 1845–1850. https://doi.org/10.1002/mma.2729

A Paradigm on the Qualitative Behavior of Dynamical Systems Inspired by Circuit Theory

Year 2025, Volume: 30 Issue: 2, 699 - 707, 31.08.2025
https://doi.org/10.53433/yyufbed.1617145

Abstract

In this paper, we consider the qualitative analysis of a liquid mechanical tank system with an electrical model. In the prototype phase, such models are more flexible like the construction process of the first nuclear reactors. The mathematical model of this dynamic system is nonlinear and time-varying. Here, physical principles and engineering specifications will be used to find unique results without any mathematical approximation. The energy function of the system is constructed with intuitive physical principles. The system also will be discussed with and without feedback control laws. Global asymptotic controllability of the equilibrium point of the system will be determined. The literature presents us, the level control works with a few multi-tanks up to six. We generalize those with tanks from a different theoretical perspective. The readymade system and candidate Lyapunov function will not be used here; the study will be conducted by constructing them. The effectiveness of the control mechanism will be determined by both theoretical analysis and simulation. According to the proposed algorithm, the measurement of liquid levels in tanks can be made in volts anywhere in the system, collectively or individually. The algorithm is clear, not large time-consuming and the solution cost is not expensive. Some simulations are also presented that validate our theoretical predictions.

References

  • Ates, M. (2021). Circuit theory approach to stability and passivity analysis of nonlinear dynamical systems. International Journal of Circuit Theory and Applications, 50(1), 214–225. https://doi.org/10.1002/cta.3159
  • Başçi, A., & Derdiyok, A. (2016). Implementation of an adaptive fuzzy compensator for coupled tank liquid level control system. Measurement, 91, 12–18. https://doi.org/10.1016/j.measurement.2016.05.026
  • Biswas, P. P., Srivastava, R., Ray, S., & Samanta, A. N. (2009). Sliding mode control of quadruple tank process. Mechatronics, 19(4), 548–561. https://doi.org/10.1016/j.mechatronics.2009.01.001
  • Eduardo, D. S. (1998). Mathematical control theory Deterministic finite dimensional systems. Second edition, Springer-Verlag New York, pp.218–230.
  • Edwards, C. H., & Penney, D. E. (2018). Elementary differential equations with boundary value problems (Classic version, 6th ed.). Pearson. ISBN: 9780134995410
  • Iplikci, S. (2010). A support vector machine based control application to the experimental three-tank system. ISA Transactions, 49(3), 376–386. https://doi.org/10.1016/j.isatra.2010.03.013
  • Kämpjärvi, P., & Jämsä-Jounela, S. L. (2003). Level control strategies for flotation cells. Minerals Engineering, 16(11), 1061–1068. https://doi.org/10.1016/j.mineng.2003.06.004
  • Raff, T., Huber, S., Nagy, Z. K., & Allgower, F. (2006, October). Nonlinear model predictive control of a four tank system: An experimental stability study. IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control. https://doi.org/10.1109/CACSD-CCA-ISIC.2006.4776652
  • Sankar, G. S., Kumar, S. M., Narasimhan, S., & Bhallamudi, S. M. (2015). Optimal control of water distribution networks with storage facilities. Journal of Process Control, 32, 127–137. https://doi.org/10.1016/j.jprocont.2015.04.007
  • Sbarbaro, D., & Ortega, R. (2005, December). Averaging level control of multiple tanks: a passivity based approach. Proceedings of the 44th IEEE Conference on Decision and Control. Sevilla, Spain. https://doi.org/10.1109/cdc.2005.1583353
  • Singh, A. P., Mukherjee, S., & Nikolaou, M. (2014). Debottlenecking level control for tanks in series. Journal of Process Control, 24(3), 158–171. https://doi.org/10.1016/j.jprocont.2013.12.002
  • Tunç, C., & Ateş, M. (2006). Stability and boundedness results for solutions of certain third order nonlinear vector differential equations. Nonlinear Dynamics, 45(3), 273–281. https://doi.org/10.1007/s11071-006-1437-3
  • Wang, J. L., Wu, H.N., Huang, T., Ren, S.Y., & Wu, J. (2018). Passivity and output synchronization of complex dynamical networks with fixed and adaptive coupling strength. IEEE Transactions on Neural Networks and Learning Systems, 29(2), 364–376, https://doi.org/10.1109/tnnls.2016.2627083
  • Wang, J. L., Wu, H.N., Huang, T., Ren, S.Y., & Wu, J. (2017). Passivity of directed and undirected complex dynamical networks with adaptive coupling weights. IEEE Transactions on Neural Networks and Learning Systems, 28(8), 1827–1839. https://doi.org/10.1109/tnnls.2016.2558502
  • Willems, J. C. (1972). Dissipative dynamical systems part I: General theory. Archive for Rational Mechanics and Analysis, 45(5), 321–351. https://doi.org/10.1007/bf00276493
  • Xiuyun, S. (2015). Adaptive nonlinear control for multi-tank level system. The Open Automation and Control Systems Journal, 7(1), 496–501, https://doi.org/10.2174/1874444301507010496
  • Xu, T., Yu, H., Yu, J., & Meng, X. (2020). Adaptive disturbance attenuation control of two tank liquid level system with uncertain parameters based on port-controlled Hamiltonian. IEEE Access, 8, 47384–47392. https://doi.org/10.1109/access.2020.2979352
  • Yang, C., Sun, J., Zhang, Q., & Ma, X. (2013). Lyapunov stability and strong passivity analysis for nonlinear descriptor systems. IEEE Transactions on Circuits and Systems I: Regular Papers, 60(4), 1003–1012. https://doi.org/10.1109/tcsi.2012.2215396
  • Yu, H., Yu, J., Wu, H., & Li, H. (2013). Energy-shaping and integral control of the three-tank liquid level system. Nonlinear Dynamics, 73(4), 2149–2156. https://doi.org/10.1007/s11071-013-0930-8
  • Zhang, L., & Yu, L. (2013). Global asymptotic stability of certain third‐order nonlinear differential equations. Mathematical Methods in the Applied Sciences, 36(14), 1845–1850. https://doi.org/10.1002/mma.2729
There are 20 citations in total.

Details

Primary Language English
Subjects Electrical Circuits and Systems
Journal Section Engineering and Architecture / Mühendislik ve Mimarlık
Authors

Muzaffer Ateş 0000-0001-5725-9580

Muhammet Ateş 0000-0003-2223-2745

Publication Date August 31, 2025
Submission Date January 10, 2025
Acceptance Date April 28, 2025
Published in Issue Year 2025 Volume: 30 Issue: 2

Cite

APA Ateş, M., & Ateş, M. (2025). A Paradigm on the Qualitative Behavior of Dynamical Systems Inspired by Circuit Theory. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 30(2), 699-707. https://doi.org/10.53433/yyufbed.1617145