Research Article
BibTex RIS Cite

Bursa’da Kullanılan Yapı Malzemelerinde Doğal Radyonüklit Analizi

Year 2025, Volume: 30 Issue: 2, 524 - 536, 31.08.2025
https://doi.org/10.53433/yyufbed.1674395

Abstract

Bu makalede, Bursa ilinde yapı malzemesi olarak kullanılan çimento, tuğla, kum ve alçı ile yüzey malzemelerinden mermer, fayans ve derz dolgu örnekleri (27 adet) rastgele toplandı. Örneklerin 226Ra, 232Th ve 40K radyonüklit aktivite konsantrasyonları NaI(Tl) gama ışını spektrometresi ile ölçüldü. Sonuçlar analiz edildiğinde, 226Ra, 232Th ve 40K aktivite konsantrasyonlarının sırasıyla BDL - 81.16 Bq kg-1, BDL - 94.22 Bq kg-1, BDL – 781.26 Bq kg-1 arasında değiştiği gözlendi. 226Ra ve 232Th aktivitesinin en yüksek ortalama değerleri sırasıyla 33.6 ve 43.2 Bq kg−1 ile çimento örneklerine ait iken 40K için ölçülen en yüksek ortalama değer 771.2 Bq kg−1 ile tuğla örneklerine aittir. Ayrıca numunelerdeki radyolojik tehlikeleri değerlendirmek için, elde edilen aktivite değerleri kullanılarak radyum eşdeğer aktivitesi (Raeq), iç hava emilen doz hızı (Din), yıllık etkin doz hızı (AEDEin), dış tehlike indeksi (Hex), iç tehlike indeksi (Hin) ve gama indeksi hesaplandı (Ig). Raeq değerleri, uluslararası olarak kabul edilen 370 Bq kg-1 sınır değerinin altındadır. Çimento 2, Çimento 4 ve Çimento 7 numuneleri dışında tüm yapı malzemeleri için Din değerleri kabul edilebilir limit değer aralığındadır. Bu yapı malzemeleri için, AEDEin, Hex, Hin ve Ig değerleri önerilen birim sınırın altındadır ve radyolojik risk oluşturmazlar. Bu özellikleri ile söz konusu malzemeler inşaat malzemesi olarak önerilebilir.

References

  • Asaduzzaman, K., Khandaker, M. U., Amin, Y. M., & Bradley, D. A. (2016). Natural radioactivity levels and radiological assessment of decorative building materials in Bangladesh. Indoor and Built Environment, 25(3), 541-550. https://doi.org/10.1177/1420326X14562048
  • Baker, M. B. (2017). The application of marble and granite as building materials in Jordan. Jordan Journal of Civil Engineering, 11(2), 2017-2234.
  • Barbosa da Silva, L., Faria da Silva, L., Omar P. Orejuela, C., Junior, V. B., & da Silva, A. X. (2024). Assessment and estimation of the effective dose due to external exposure from natural radioactivity of sands used in civil construction in the state of Rio de Janeiro, Brazil. Applied Radiation and Isotopes, 205, 111157. https://doi.org/10.1016/J.APRADISO.2023.111157
  • Baykara, O., Karatepe, Ş., & Doǧru, M. (2011). Assessments of natural radioactivity and radiological hazards in construction materials used in Elazig, Turkey. Radiation Measurements, 46(1), 153-158. https://doi.org/10.1016/J.RADMEAS.2010.08.010
  • Beretka, J., & Mathew, P. J. (1985). Natural radioactivity of Australian building materials, industrial wastes and by-products. Health Physics, 48(1), 87-95. https://doi.org/10.1097/00004032-198501000-00007
  • Brígido Flores, O., Montalván Estrada, A., Rosa Suárez, R., Tomás Zerquera, J., & Hernández Pérez, A. (2008). Natural radionuclide content in building materials and gamma dose rate in dwellings in Cuba. Journal of Environmental Radioactivity, 99(12), 1834-1837. https://doi.org/10.1016/J.JENVRAD.2008.08.001
  • Chandrasekaran, A., Senthil Kumar, C. K., Sathish, V., Manigandan, S., & Tamilarasi, A. (2021). Effect of minerals and heavy metals in sand samples of Ponnai river, Tamil Nadu, India. Scientific Reports 2021, 11(1), 1-14. https://doi.org/10.1038/s41598-021-02717-x
  • Ding, X., Lu, X., Zhao, C., Yang, G., & Li, N. (2013). Measurement of natural radioactivity in building materials used in Urumqi, China. Radiation Protection Dosimetry, 155(3), 374–379. https://doi.org/10.1093/RPD/NCT002
  • EC (European Commission). (2000). Radiological protection principles concerning the natural radioactivity of building materials. Publications Office of the European Union. https://op.europa.eu/en/publication-detail/-/publication/988f3243-5259-43a5-b621-fbff662deeb0/language-en
  • El-Mageed, A. I. A., Farid, M. E. A., Saleh, E. E., Mansour, M., & Mohammed, A. K. (2014). Natural radioactivity and radiological hazards of some building materials of Aden, Yemen. Journal of Geochemical Exploration, 140, 41–45. https://doi.org/10.1016/J.GEXPLO.2014.01.015
  • El-Taher, A. (2012). Assessment of natural radioactivity levels and radiation hazards for building materials used in Qassim Area, Saudi Arabia. Romanian Journal of Physics, 57, 726-735.
  • Erkan, A. (2007). An investigation on the natural radioactivity of building materials, raw materials and interior coatings in Central Turkey. Turkish Journal of Medical Sciences, 37(4), 199-203.
  • Erzin, S., & Yaprak, G. (2022). Prediction of the activity concentrations of 232Th, 238U and 40K in geological materials using radial basis function neural network. Journal of Radioanalytical and Nuclear Chemistry, 331(9), 3525-3533. https://doi.org/10.1007/s10967-022-08438-3
  • Eštoková, A., & Palaščáková, L. (2013). Assessment of natural radioactivity levels of cements and cement composites in the Slovak Republic. International Journal of Environmental Research and Public Health, 10(12), 7165-7179. https://doi.org/10.3390/IJERPH10127165
  • Issa, S. A. M., & Alaseri, S. M. (2015). Determination of natural radioactivity and associated radiological risk in building materials used in Tabuk Area, Saudi Arabia. International Journal of Advanced Science and Technology, 82, 45-62. https://doi.org/10.14257/ijast.2015.82.05
  • Kayakökü, H. (2024). Experimental investigation of gamma radiation shielding ability of some building materials in Bitlis (Turkey). Radiation Physics and Chemistry, 214, 111297. https://doi.org/10.1016/J.RADPHYSCHEM.2023.111297
  • Kurnaz, A., Gezelge, M., Hançerlioğulları, A., Çetiner, M. A., & Turhan, Ş. (2016). Radionuclides content in grape molasses soil samples from Central Black Sea region of Turkey. Human and Ecological Risk Assessment: An International Journal, 22(6), 1375-1385. https://doi.org/10.1080/10807039.2016.1185356
  • Lewicka, S., Piotrowska, B., Łukaszek-Chmielewska, A., & Drzymała, T. (2022). Assessment of natural radioactivity in cements used as building materials in Poland. International Journal of Environmental Research and Public Health, 19(18), 11695. https://doi.org/10.3390/IJERPH191811695
  • Lu, X., Yang, G., & Ren, C. (2012). Natural radioactivity and radiological hazards of building materials in Xianyang, China. Radiation Physics and Chemistry, 81(7), 780-784. https://doi.org/10.1016/J.RADPHYSCHEM.2012.02.043
  • Mavi, B., & Akkurt, I. (2010). Natural radioactivity and radiation hazards in some building materials used in Isparta, Turkey. Radiation Physics and Chemistry, 79(9), 933-937. https://doi.org/10.1016/J.RADPHYSCHEM.2010.03.019
  • Melià, P., Ruggieri, G., Sabbadini, S., & Dotelli, G. (2014). Environmental impacts of natural and conventional building materials: a case study on earth plasters. Journal of Cleaner Production, 80, 179-186. https://doi.org/10.1016/J.JCLEPRO.2014.05.073
  • NEA (Nuclear Energy Agency). (1979). Exposure to radiation from the natural radioactivity in building materials. OECD publishing, Paris
  • Ramadhan, R. A., & Abdullah, K. M. (2018). Background reduction by Cu/Pb shielding and efficiency study of NaI (TI) detector. Nuclear Engineering and Technology, 50(3), 462-469. https://doi.org/10.1016/j.net.2017.12.016
  • Rizaoğlu, T., Karataş, M. Z., & Çoşkun, C. (2022). The effect of the main component ratios in the joint filling on the product quality. Mining Machines, 40, 180-190. https://doi.org/10.32056/KOMAG2022.4.1
  • Salim, K., Houssam, A., Belaid, A., & Brahim, H. (2019). Reinforcement of building plaster by waste plastic and glass. Procedia Structural Integrity, 17, 170-176. https://doi.org/10.1016/J.PROSTR.2019.08.023
  • Sidique, E., Hassan, S. H. A., & Dawoud, M. M. (2022). Natural radioactivity measurements and radiological hazards evaluation for some Egyptian granites and ceramic tiles. Sustainability, 14(21), 14611. https://doi.org/10.3390/SU142114611
  • Tarhan, M., Tarhan, B., & Aydin, T. (2016). The effects of fine fire clay sanitaryware wastes on ceramic wall tiles. Ceramics International, 42(15), 17110-17115. https://doi.org/10.1016/J.CERAMINT.2016.07.222
  • Tufan, M. Ç., & Dişci, T. (2013). Natural radioactivity measurements in building materials used in Samsun, Turkey. Radiation Protection Dosimetry, 156(1), 87-92. https://doi.org/10.1093/RPD/NCT047
  • Tuo, F., Peng, X., Zhou, Q., & Zhang, J. (2020). Assessment of natural radioactivity levels and radiological hazards in building materials. Radiation Protection Dosimetry, 188(3), 316-321. https://doi.org/10.1093/rpd/ncz289
  • Turhan, Ş., Baykan, U. N., & Şen, K. (2008). Measurement of the natural radioactivity in building materials used in Ankara andassessment of external doses. Journal of Radiological Protection, 28(1), 83. https://doi.org/10.1088/0952-4746/28/1/005
  • Turhan, Ş. (2010). Radioactivity levels of limestone and gypsum used as building raw materials in Turkey and estimation of exposure doses. Radiation Protection Dosimetry, 140(4), 402-407. https://doi.org/10.1093/RPD/NCQ132
  • Turhan, Ş., Demir, K., & Karataşlı, M. (2018). Radiological evaluation of the use of clay brick and pumice brick as a structural building material. Applied Radiation and Isotopes, 141, 95-100. https://doi.org/10.1016/J.APRADISO.2018.08.022
  • Turhan, Ş., Kurnaz, A., & Karataşlı, M. (2022). Evaluation of natural radioactivity levels and potential radiological hazards of common building materials utilized in Mediterranean region, Turkey. Environmental Science and Pollution Research, 29(7), 10575-10584. https://doi.org/10.1007/S11356-021-16505-7/METRICS
  • Tzortzis, M., Tsertos, H., Christofides, S., & Christodoulides, G. (2003). Gamma radiation measurements and dose rates in commercially-used natural tiling rocks (granites). Journal of Environmental Radioactivity, 70(3), 223-235. https://doi.org/10.1016/S0265-931X(03)00106-1
  • UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation). (2000). Sources and effects of ionizing radiation UNSCEAR 2000 report to the general assembly, with scientific annexes volume ı: sources: Vol. I.
  • Xinwei, L. (2005). Natural radioactivity in some building materials of Xi’an, China. Radiation Measurements, 40(1), 94-97. https://doi.org/10.1016/J.RADMEAS.2005.01.003
  • Yang, G., Lu, X., Zhao, C., & Li, N. (2013). Natural radioactivity in building materials used in Changzhi, China. Radiation Protection Dosimetry, 155(4), 512-516. https://doi.org/10.1093/RPD/NCT018
  • Zhang, L. (2013). Production of bricks from waste materials – A review. Construction and Building Materials, 47, 643-655. https://doi.org/10.1016/J.CONBUILDMAT.2013.05.043

Natural Radionuclide Analysis in Building Materials Used in Bursa

Year 2025, Volume: 30 Issue: 2, 524 - 536, 31.08.2025
https://doi.org/10.53433/yyufbed.1674395

Abstract

In this study, a total of 27 samples of cement, brick, sand and plaster used as construction materials and marble, tile and grout from surface materials in Bursa province were randomly collected. 226Ra, 232Th and 40K radionuclide activity concentrations of the samples were measured by NaI(Tl) gamma-ray spectrometer. When the results were analyzed, it was observed that 226Ra, 232Th and 40K activity concentrations varied between BDL (Below Detection Limit) - 81.16 Bq kg-1, BDL - 94.22 Bq kg-1, BDL - 781.26 Bq kg-1, respectively. The highest mean values of 226Ra and 232Th activities belong to the cement samples with 33.6 and 43.2 Bq kg−1, respectively, while the highest average value measured for 40K belongs to the brick samples with 771.2 Bq kg−1. In addition, to evaluate the radiological hazards in the samples, radium equivalent activity (Raeq), indoor air absorbed dose rate (Din), annual effective dose rate (AEDEin), external hazard index (Hex), internal hazard index (Hin), and gamma index (Ig) were calculated using the obtained activity values. Raeq values are below the internationally accepted limit value of 370 Bq kg-1. Din values for all construction materials except Cement 2, Cement 4 and Cement 7 samples are within the acceptable limit value range. For these building materials, the AEDEin, Hin, Hex and Ig values are below the recommended unit limit and do not pose radiological risk. With these properties, these materials can be recommended as construction materials.

References

  • Asaduzzaman, K., Khandaker, M. U., Amin, Y. M., & Bradley, D. A. (2016). Natural radioactivity levels and radiological assessment of decorative building materials in Bangladesh. Indoor and Built Environment, 25(3), 541-550. https://doi.org/10.1177/1420326X14562048
  • Baker, M. B. (2017). The application of marble and granite as building materials in Jordan. Jordan Journal of Civil Engineering, 11(2), 2017-2234.
  • Barbosa da Silva, L., Faria da Silva, L., Omar P. Orejuela, C., Junior, V. B., & da Silva, A. X. (2024). Assessment and estimation of the effective dose due to external exposure from natural radioactivity of sands used in civil construction in the state of Rio de Janeiro, Brazil. Applied Radiation and Isotopes, 205, 111157. https://doi.org/10.1016/J.APRADISO.2023.111157
  • Baykara, O., Karatepe, Ş., & Doǧru, M. (2011). Assessments of natural radioactivity and radiological hazards in construction materials used in Elazig, Turkey. Radiation Measurements, 46(1), 153-158. https://doi.org/10.1016/J.RADMEAS.2010.08.010
  • Beretka, J., & Mathew, P. J. (1985). Natural radioactivity of Australian building materials, industrial wastes and by-products. Health Physics, 48(1), 87-95. https://doi.org/10.1097/00004032-198501000-00007
  • Brígido Flores, O., Montalván Estrada, A., Rosa Suárez, R., Tomás Zerquera, J., & Hernández Pérez, A. (2008). Natural radionuclide content in building materials and gamma dose rate in dwellings in Cuba. Journal of Environmental Radioactivity, 99(12), 1834-1837. https://doi.org/10.1016/J.JENVRAD.2008.08.001
  • Chandrasekaran, A., Senthil Kumar, C. K., Sathish, V., Manigandan, S., & Tamilarasi, A. (2021). Effect of minerals and heavy metals in sand samples of Ponnai river, Tamil Nadu, India. Scientific Reports 2021, 11(1), 1-14. https://doi.org/10.1038/s41598-021-02717-x
  • Ding, X., Lu, X., Zhao, C., Yang, G., & Li, N. (2013). Measurement of natural radioactivity in building materials used in Urumqi, China. Radiation Protection Dosimetry, 155(3), 374–379. https://doi.org/10.1093/RPD/NCT002
  • EC (European Commission). (2000). Radiological protection principles concerning the natural radioactivity of building materials. Publications Office of the European Union. https://op.europa.eu/en/publication-detail/-/publication/988f3243-5259-43a5-b621-fbff662deeb0/language-en
  • El-Mageed, A. I. A., Farid, M. E. A., Saleh, E. E., Mansour, M., & Mohammed, A. K. (2014). Natural radioactivity and radiological hazards of some building materials of Aden, Yemen. Journal of Geochemical Exploration, 140, 41–45. https://doi.org/10.1016/J.GEXPLO.2014.01.015
  • El-Taher, A. (2012). Assessment of natural radioactivity levels and radiation hazards for building materials used in Qassim Area, Saudi Arabia. Romanian Journal of Physics, 57, 726-735.
  • Erkan, A. (2007). An investigation on the natural radioactivity of building materials, raw materials and interior coatings in Central Turkey. Turkish Journal of Medical Sciences, 37(4), 199-203.
  • Erzin, S., & Yaprak, G. (2022). Prediction of the activity concentrations of 232Th, 238U and 40K in geological materials using radial basis function neural network. Journal of Radioanalytical and Nuclear Chemistry, 331(9), 3525-3533. https://doi.org/10.1007/s10967-022-08438-3
  • Eštoková, A., & Palaščáková, L. (2013). Assessment of natural radioactivity levels of cements and cement composites in the Slovak Republic. International Journal of Environmental Research and Public Health, 10(12), 7165-7179. https://doi.org/10.3390/IJERPH10127165
  • Issa, S. A. M., & Alaseri, S. M. (2015). Determination of natural radioactivity and associated radiological risk in building materials used in Tabuk Area, Saudi Arabia. International Journal of Advanced Science and Technology, 82, 45-62. https://doi.org/10.14257/ijast.2015.82.05
  • Kayakökü, H. (2024). Experimental investigation of gamma radiation shielding ability of some building materials in Bitlis (Turkey). Radiation Physics and Chemistry, 214, 111297. https://doi.org/10.1016/J.RADPHYSCHEM.2023.111297
  • Kurnaz, A., Gezelge, M., Hançerlioğulları, A., Çetiner, M. A., & Turhan, Ş. (2016). Radionuclides content in grape molasses soil samples from Central Black Sea region of Turkey. Human and Ecological Risk Assessment: An International Journal, 22(6), 1375-1385. https://doi.org/10.1080/10807039.2016.1185356
  • Lewicka, S., Piotrowska, B., Łukaszek-Chmielewska, A., & Drzymała, T. (2022). Assessment of natural radioactivity in cements used as building materials in Poland. International Journal of Environmental Research and Public Health, 19(18), 11695. https://doi.org/10.3390/IJERPH191811695
  • Lu, X., Yang, G., & Ren, C. (2012). Natural radioactivity and radiological hazards of building materials in Xianyang, China. Radiation Physics and Chemistry, 81(7), 780-784. https://doi.org/10.1016/J.RADPHYSCHEM.2012.02.043
  • Mavi, B., & Akkurt, I. (2010). Natural radioactivity and radiation hazards in some building materials used in Isparta, Turkey. Radiation Physics and Chemistry, 79(9), 933-937. https://doi.org/10.1016/J.RADPHYSCHEM.2010.03.019
  • Melià, P., Ruggieri, G., Sabbadini, S., & Dotelli, G. (2014). Environmental impacts of natural and conventional building materials: a case study on earth plasters. Journal of Cleaner Production, 80, 179-186. https://doi.org/10.1016/J.JCLEPRO.2014.05.073
  • NEA (Nuclear Energy Agency). (1979). Exposure to radiation from the natural radioactivity in building materials. OECD publishing, Paris
  • Ramadhan, R. A., & Abdullah, K. M. (2018). Background reduction by Cu/Pb shielding and efficiency study of NaI (TI) detector. Nuclear Engineering and Technology, 50(3), 462-469. https://doi.org/10.1016/j.net.2017.12.016
  • Rizaoğlu, T., Karataş, M. Z., & Çoşkun, C. (2022). The effect of the main component ratios in the joint filling on the product quality. Mining Machines, 40, 180-190. https://doi.org/10.32056/KOMAG2022.4.1
  • Salim, K., Houssam, A., Belaid, A., & Brahim, H. (2019). Reinforcement of building plaster by waste plastic and glass. Procedia Structural Integrity, 17, 170-176. https://doi.org/10.1016/J.PROSTR.2019.08.023
  • Sidique, E., Hassan, S. H. A., & Dawoud, M. M. (2022). Natural radioactivity measurements and radiological hazards evaluation for some Egyptian granites and ceramic tiles. Sustainability, 14(21), 14611. https://doi.org/10.3390/SU142114611
  • Tarhan, M., Tarhan, B., & Aydin, T. (2016). The effects of fine fire clay sanitaryware wastes on ceramic wall tiles. Ceramics International, 42(15), 17110-17115. https://doi.org/10.1016/J.CERAMINT.2016.07.222
  • Tufan, M. Ç., & Dişci, T. (2013). Natural radioactivity measurements in building materials used in Samsun, Turkey. Radiation Protection Dosimetry, 156(1), 87-92. https://doi.org/10.1093/RPD/NCT047
  • Tuo, F., Peng, X., Zhou, Q., & Zhang, J. (2020). Assessment of natural radioactivity levels and radiological hazards in building materials. Radiation Protection Dosimetry, 188(3), 316-321. https://doi.org/10.1093/rpd/ncz289
  • Turhan, Ş., Baykan, U. N., & Şen, K. (2008). Measurement of the natural radioactivity in building materials used in Ankara andassessment of external doses. Journal of Radiological Protection, 28(1), 83. https://doi.org/10.1088/0952-4746/28/1/005
  • Turhan, Ş. (2010). Radioactivity levels of limestone and gypsum used as building raw materials in Turkey and estimation of exposure doses. Radiation Protection Dosimetry, 140(4), 402-407. https://doi.org/10.1093/RPD/NCQ132
  • Turhan, Ş., Demir, K., & Karataşlı, M. (2018). Radiological evaluation of the use of clay brick and pumice brick as a structural building material. Applied Radiation and Isotopes, 141, 95-100. https://doi.org/10.1016/J.APRADISO.2018.08.022
  • Turhan, Ş., Kurnaz, A., & Karataşlı, M. (2022). Evaluation of natural radioactivity levels and potential radiological hazards of common building materials utilized in Mediterranean region, Turkey. Environmental Science and Pollution Research, 29(7), 10575-10584. https://doi.org/10.1007/S11356-021-16505-7/METRICS
  • Tzortzis, M., Tsertos, H., Christofides, S., & Christodoulides, G. (2003). Gamma radiation measurements and dose rates in commercially-used natural tiling rocks (granites). Journal of Environmental Radioactivity, 70(3), 223-235. https://doi.org/10.1016/S0265-931X(03)00106-1
  • UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation). (2000). Sources and effects of ionizing radiation UNSCEAR 2000 report to the general assembly, with scientific annexes volume ı: sources: Vol. I.
  • Xinwei, L. (2005). Natural radioactivity in some building materials of Xi’an, China. Radiation Measurements, 40(1), 94-97. https://doi.org/10.1016/J.RADMEAS.2005.01.003
  • Yang, G., Lu, X., Zhao, C., & Li, N. (2013). Natural radioactivity in building materials used in Changzhi, China. Radiation Protection Dosimetry, 155(4), 512-516. https://doi.org/10.1093/RPD/NCT018
  • Zhang, L. (2013). Production of bricks from waste materials – A review. Construction and Building Materials, 47, 643-655. https://doi.org/10.1016/J.CONBUILDMAT.2013.05.043
There are 38 citations in total.

Details

Primary Language English
Subjects Nuclear Physics
Journal Section Natural Sciences and Mathematics / Fen Bilimleri ve Matematik
Authors

Mağrur Baş 0009-0006-7607-1990

Abdullah Mavi 0009-0001-9173-5410

Nergiz Yıldız Yorgun 0000-0002-2515-1994

Publication Date August 31, 2025
Submission Date April 11, 2025
Acceptance Date July 1, 2025
Published in Issue Year 2025 Volume: 30 Issue: 2

Cite

APA Baş, M., Mavi, A., & Yıldız Yorgun, N. (2025). Natural Radionuclide Analysis in Building Materials Used in Bursa. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 30(2), 524-536. https://doi.org/10.53433/yyufbed.1674395