Systematic Reviews and Meta Analysis
BibTex RIS Cite

MicroRNAs as potential biomarkers for heat stress in livestock

Year 2023, , 6 - 12, 20.04.2023
https://doi.org/10.55549/zbs.1280878

Abstract

Heat stress is a major concern for livestock production, as it can result in reduced animal welfare, decreased production efficiency, and even mortality. MicroRNAs (miRNAs) are small non-coding RNA molecules that play a critical role in regulating gene expression and have been proposed as potential biomarkers for heat stress in livestock. Several studies have investigated the expression of miRNAs in response to heat stress in various livestock species, including cattle, pigs, and chickens. These studies have identified specific miRNAs differentially expressed in response to heat stress, suggesting they could serve as biomarkers for this condition. For example, in cattle, miR-21, miR-23a, miR-24, miR-27a, miR-30a-5p, and miR-126 have been shown to be upregulated in response to heat stress, while miR-122, miR-127, miR-148a, miR-195, and miR-335 were downregulated. In pigs, miR-23a, miR-26a, miR-27a, miR-27b, miR-34a, and miR-146a were upregulated, and miR-let7f, miR-let7i, miR-29c, miR-30c, miR-143, miR-148a, and miR-221 were downregulated in response to heat stress. In chickens, miR-22, miR-23a, miR-27a, miR-30a-5p, miR-92a, miR-146a, and miR-155 were upregulated, while miR-let-7f and miR-181a were downregulated. In conclusion, miRNAs have shown promise as potential biomarkers for heat stress. In addition, it is necessary to validate these findings and explore their potential use in developing diagnostic tools for monitoring heat stress in livestock.

References

  • Aalami, A. H., Hoseinzadeh, M., Hosseini Manesh, P., Jiryai Sharahi, A., & Kargar Aliabadi, E. (2022). Carcinogenic effects of heavy metals by inducing dysregulation of microRNAs: A review. Molecular Biology Reports, 1-12.
  • Billa, P.-A., Faulconnier, Y., Ye, T., Bourdon, C., Pires, J. A., & Leroux, C. (2021). Nutrigenomic analyses reveal miRNAs and mRNAs affected by feed restriction in the mammary gland of midlactation dairy cows. PLoS One, 16(4), e0248680.
  • Cestonaro, L. V., Macedo, S. M. D., Piton, Y. V., Garcia, S. C., & Arbo, M. D. (2022). Toxic effects of pesticides on cellular and humoral immunity: an overview. Immunopharmacology and Immunotoxicology, 44(6), 816-831.
  • Cui, X., Zhang, S., Zhang, Q., Guo, X., Wu, C., Yao, M., & Sun, D. (2020). Comprehensive MicroRNA expression profile of the mammary gland in lactating dairy cows with extremely different milk protein and fat percentages. Frontiers in genetics, 11, 548268.
  • Dos Santos, M. M., Souza-Junior, J. B. F., Dantas, M. R. T., & de Macedo Costa, L. L. (2021). An updated review on cattle thermoregulation: physiological responses, biophysical mechanisms, and heat stress alleviation pathways. Environmental Science and Pollution Research, 28(24), 30471-30485.
  • Dysin, A. P., Barkova, O. Y., & Pozovnikova, M. V. (2021). The role of microRNAs in the mammary gland development, health, and function of cattle, goats, and sheep. Non-coding RNA, 7(4), 78.
  • Fleming, A., Abdalla, E. A., Maltecca, C., & Baes, C. F. (2018). Invited review: Reproductive and genomic technologies to optimize breeding strategies for genetic progress in dairy cattle. Archives Animal Breeding, 61(1), 43-57.
  • Gapp, K., von Ziegler, L., Tweedie‐Cullen, R. Y., & Mansuy, I. M. (2014). Early life epigenetic programming and transmission of stress‐induced traits in mammals: how and when can environmental factors influence traits and their transgenerational inheritance? Bioessays, 36(5), 491-502.
  • Gley, K., Murani, E., Trakooljul, N., Zebunke, M., Puppe, B., Wimmers, K., & Ponsuksili, S. (2019). Transcriptome profiles of hypothalamus and adrenal gland linked to haplotype related to coping behavior in pigs. Scientific Reports, 9(1), 13038.
  • Herbut, P., Angrecka, S., Godyń, D., & Hoffmann, G. (2019). The physiological and productivity effects of heat stress in cattle–a review. Annals of animal science, 19(3), 579-593.
  • Hosseini, K., Ranjbar, M., Pirpour Tazehkand, A., Asgharian, P., Montazersaheb, S., Tarhriz, V., & Ghasemnejad, T. (2022). Evaluation of exosomal non-coding RNAs in cancer using high-throughput sequencing. Journal of Translational Medicine, 20(1), 1-15.
  • Hu, G., Do, D. N., Davoudi, P., & Miar, Y. (2022). Emerging roles of non-coding RNAs in the feed efficiency of livestock species. Genes, 13(2), 297.
  • Huang, Y., Wang, Y., Zhang, C., & Sun, X. (2020). Biological functions of circRNAs and their progress in livestock and poultry. Reproduction in Domestic Animals, 55(12), 1667-1677.
  • Ibeagha-Awemu, E. M., & Khatib, H. (2023). Epigenetics of Livestock Health, Production, and Breeding. In Handbook of Epigenetics (pp. 569-610). Elsevier.
  • Kadzere, C. T., Murphy, M., Silanikove, N., & Maltz, E. (2002). Heat stress in lactating dairy cows: a review. Livestock production science, 77(1), 59-91.
  • Li, Q., Yang, C., Du, J., Zhang, B., He, Y., Hu, Q., . . . Zhong, J. (2018). Characterization of miRNA profiles in the mammary tissue of dairy cattle in response to heat stress. BMC genomics, 19, 1-11.
  • Lu, Q., Chen, Z., Ji, D., Mao, Y., Jiang, Q., Yang, Z., & Loor, J. J. (2021). Progress on the regulation of ruminant milk fat by noncoding RNAs and ceRNAs. Frontiers in genetics, 12, 733925.
  • McManus, C. M., Lucci, C. M., Maranhão, A. Q., Pimentel, D., Pimentel, F., & Paiva, S. R. (2022). Response to heat stress for small ruminants: Physiological and genetic aspects. Livestock Science, 105028.
  • Miretti, S., Lecchi, C., Ceciliani, F., & Baratta, M. (2020). MicroRNAs as biomarkers for animal health and welfare in livestock. Frontiers in Veterinary Science, 7, 578193.
  • Neethirajan, S. (2022a). Measuring miRNA in Livestock Using Sensor Technologies: Challenges and Potential Approaches. Biology and Life Sciences Forum,
  • Neethirajan, S. (2022b). miRNA Sensing in Livestock: Challenges and Potential Approaches.
  • Ojo, O. E., & Kreuzer-Redmer, S. (2023). MicroRNAs in Ruminants and Their Potential Role in Nutrition and Physiology. Veterinary Sciences, 10(1), 57.
  • Polsky, L., & von Keyserlingk, M. A. (2017). Invited review: Effects of heat stress on dairy cattle welfare. Journal of dairy science, 100(11), 8645-8657.
  • Raza, S. H. A., Abdelnour, S. A., Alotaibi, M. A., AlGabbani, Q., Naiel, M. A., Shokrollahi, B., . . . Alagawany, M. (2022). MicroRNAs mediated environmental stress responses and toxicity signs in teleost fish species. Aquaculture, 546, 737310.
  • Renaudeau, D., Collin, A., Yahav, S., De Basilio, V., Gourdine, J.-L., & Collier, R. (2012). Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal, 6(5), 707-728.
  • Vogt, G. (2023). Evolution, functions and dynamics of epigenetic mechanisms in animals. In Handbook of Epigenetics (pp. 521-549). Elsevier.
  • Wang, D., Chen, Z., Zhuang, X., Luo, J., Chen, T., Xi, Q., . . . Sun, J. (2020). Identification of circRNA-associated-ceRNA networks involved in milk fat metabolism under heat stress. International Journal of Molecular Sciences, 21(11), 4162.
  • Weber, J. A., Baxter, D. H., Zhang, S., Huang, D. Y., How Huang, K., Jen Lee, M., . . . Wang, K. (2010). The microRNA spectrum in 12 body fluids. Clinical chemistry, 56(11), 1733-1741.
  • Wu, H., Eckhardt, C. M., & Baccarelli, A. A. (2023). Molecular mechanisms of environmental exposures and human disease. Nature Reviews Genetics, 1-13.
  • Zhang, J., Campion, S., Catlin, N., Reagan, W. J., Palyada, K., Ramaiah, S. K., & Ramanathan, R. (2023). Circulating microRNAs as promising testicular translatable safety biomarkers: current state and future perspectives. Archives of Toxicology, 1-15.
Year 2023, , 6 - 12, 20.04.2023
https://doi.org/10.55549/zbs.1280878

Abstract

References

  • Aalami, A. H., Hoseinzadeh, M., Hosseini Manesh, P., Jiryai Sharahi, A., & Kargar Aliabadi, E. (2022). Carcinogenic effects of heavy metals by inducing dysregulation of microRNAs: A review. Molecular Biology Reports, 1-12.
  • Billa, P.-A., Faulconnier, Y., Ye, T., Bourdon, C., Pires, J. A., & Leroux, C. (2021). Nutrigenomic analyses reveal miRNAs and mRNAs affected by feed restriction in the mammary gland of midlactation dairy cows. PLoS One, 16(4), e0248680.
  • Cestonaro, L. V., Macedo, S. M. D., Piton, Y. V., Garcia, S. C., & Arbo, M. D. (2022). Toxic effects of pesticides on cellular and humoral immunity: an overview. Immunopharmacology and Immunotoxicology, 44(6), 816-831.
  • Cui, X., Zhang, S., Zhang, Q., Guo, X., Wu, C., Yao, M., & Sun, D. (2020). Comprehensive MicroRNA expression profile of the mammary gland in lactating dairy cows with extremely different milk protein and fat percentages. Frontiers in genetics, 11, 548268.
  • Dos Santos, M. M., Souza-Junior, J. B. F., Dantas, M. R. T., & de Macedo Costa, L. L. (2021). An updated review on cattle thermoregulation: physiological responses, biophysical mechanisms, and heat stress alleviation pathways. Environmental Science and Pollution Research, 28(24), 30471-30485.
  • Dysin, A. P., Barkova, O. Y., & Pozovnikova, M. V. (2021). The role of microRNAs in the mammary gland development, health, and function of cattle, goats, and sheep. Non-coding RNA, 7(4), 78.
  • Fleming, A., Abdalla, E. A., Maltecca, C., & Baes, C. F. (2018). Invited review: Reproductive and genomic technologies to optimize breeding strategies for genetic progress in dairy cattle. Archives Animal Breeding, 61(1), 43-57.
  • Gapp, K., von Ziegler, L., Tweedie‐Cullen, R. Y., & Mansuy, I. M. (2014). Early life epigenetic programming and transmission of stress‐induced traits in mammals: how and when can environmental factors influence traits and their transgenerational inheritance? Bioessays, 36(5), 491-502.
  • Gley, K., Murani, E., Trakooljul, N., Zebunke, M., Puppe, B., Wimmers, K., & Ponsuksili, S. (2019). Transcriptome profiles of hypothalamus and adrenal gland linked to haplotype related to coping behavior in pigs. Scientific Reports, 9(1), 13038.
  • Herbut, P., Angrecka, S., Godyń, D., & Hoffmann, G. (2019). The physiological and productivity effects of heat stress in cattle–a review. Annals of animal science, 19(3), 579-593.
  • Hosseini, K., Ranjbar, M., Pirpour Tazehkand, A., Asgharian, P., Montazersaheb, S., Tarhriz, V., & Ghasemnejad, T. (2022). Evaluation of exosomal non-coding RNAs in cancer using high-throughput sequencing. Journal of Translational Medicine, 20(1), 1-15.
  • Hu, G., Do, D. N., Davoudi, P., & Miar, Y. (2022). Emerging roles of non-coding RNAs in the feed efficiency of livestock species. Genes, 13(2), 297.
  • Huang, Y., Wang, Y., Zhang, C., & Sun, X. (2020). Biological functions of circRNAs and their progress in livestock and poultry. Reproduction in Domestic Animals, 55(12), 1667-1677.
  • Ibeagha-Awemu, E. M., & Khatib, H. (2023). Epigenetics of Livestock Health, Production, and Breeding. In Handbook of Epigenetics (pp. 569-610). Elsevier.
  • Kadzere, C. T., Murphy, M., Silanikove, N., & Maltz, E. (2002). Heat stress in lactating dairy cows: a review. Livestock production science, 77(1), 59-91.
  • Li, Q., Yang, C., Du, J., Zhang, B., He, Y., Hu, Q., . . . Zhong, J. (2018). Characterization of miRNA profiles in the mammary tissue of dairy cattle in response to heat stress. BMC genomics, 19, 1-11.
  • Lu, Q., Chen, Z., Ji, D., Mao, Y., Jiang, Q., Yang, Z., & Loor, J. J. (2021). Progress on the regulation of ruminant milk fat by noncoding RNAs and ceRNAs. Frontiers in genetics, 12, 733925.
  • McManus, C. M., Lucci, C. M., Maranhão, A. Q., Pimentel, D., Pimentel, F., & Paiva, S. R. (2022). Response to heat stress for small ruminants: Physiological and genetic aspects. Livestock Science, 105028.
  • Miretti, S., Lecchi, C., Ceciliani, F., & Baratta, M. (2020). MicroRNAs as biomarkers for animal health and welfare in livestock. Frontiers in Veterinary Science, 7, 578193.
  • Neethirajan, S. (2022a). Measuring miRNA in Livestock Using Sensor Technologies: Challenges and Potential Approaches. Biology and Life Sciences Forum,
  • Neethirajan, S. (2022b). miRNA Sensing in Livestock: Challenges and Potential Approaches.
  • Ojo, O. E., & Kreuzer-Redmer, S. (2023). MicroRNAs in Ruminants and Their Potential Role in Nutrition and Physiology. Veterinary Sciences, 10(1), 57.
  • Polsky, L., & von Keyserlingk, M. A. (2017). Invited review: Effects of heat stress on dairy cattle welfare. Journal of dairy science, 100(11), 8645-8657.
  • Raza, S. H. A., Abdelnour, S. A., Alotaibi, M. A., AlGabbani, Q., Naiel, M. A., Shokrollahi, B., . . . Alagawany, M. (2022). MicroRNAs mediated environmental stress responses and toxicity signs in teleost fish species. Aquaculture, 546, 737310.
  • Renaudeau, D., Collin, A., Yahav, S., De Basilio, V., Gourdine, J.-L., & Collier, R. (2012). Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal, 6(5), 707-728.
  • Vogt, G. (2023). Evolution, functions and dynamics of epigenetic mechanisms in animals. In Handbook of Epigenetics (pp. 521-549). Elsevier.
  • Wang, D., Chen, Z., Zhuang, X., Luo, J., Chen, T., Xi, Q., . . . Sun, J. (2020). Identification of circRNA-associated-ceRNA networks involved in milk fat metabolism under heat stress. International Journal of Molecular Sciences, 21(11), 4162.
  • Weber, J. A., Baxter, D. H., Zhang, S., Huang, D. Y., How Huang, K., Jen Lee, M., . . . Wang, K. (2010). The microRNA spectrum in 12 body fluids. Clinical chemistry, 56(11), 1733-1741.
  • Wu, H., Eckhardt, C. M., & Baccarelli, A. A. (2023). Molecular mechanisms of environmental exposures and human disease. Nature Reviews Genetics, 1-13.
  • Zhang, J., Campion, S., Catlin, N., Reagan, W. J., Palyada, K., Ramaiah, S. K., & Ramanathan, R. (2023). Circulating microRNAs as promising testicular translatable safety biomarkers: current state and future perspectives. Archives of Toxicology, 1-15.
There are 30 citations in total.

Details

Primary Language English
Subjects Genetics
Journal Section Research Articles
Authors

Muhammad Safdar

Mehmet Özaslan This is me 0000-0001-9380-4902

Publication Date April 20, 2023
Submission Date March 16, 2023
Published in Issue Year 2023

Cite

EndNote Safdar M, Özaslan M (April 1, 2023) MicroRNAs as potential biomarkers for heat stress in livestock. Zeugma Biological Science 4 2 6–12.