Review Article
BibTex RIS Cite

Unveiling the effectiveness of Beauveria Bassiana as a biocontrol agent against adult hoppers: A Review

Year 2024, Volume: 5 Issue: 3, 1 - 9
https://doi.org/10.55549/zbs.1476970

Abstract

This review explores the efficacy of Beauveria bassiana as a biocontrol agent targeting adult
hoppers, crucial pests in agriculture. Beauveria bassiana, a fungal entomopathogen, shows
promising potential due to its eco-friendly nature and specificity in targeting hoppers. Through a
comprehensive analysis of existing literature, this review elucidates the mechanisms underlying
its effectiveness, including infection dynamics, host specificity, and environmental factors
influencing efficacy. Key findings highlight the significant impact of B. bassiana on hopper
populations and its potential as a sustainable alternative to chemical pesticides. The synthesis of
current knowledge aims to guide further research and application of B. bassiana in integrated pest
management strategies.

Supporting Institution

CUVAS

Thanks

Thanks

References

  • Akello, J., Dubois, T., Coyne, D., & Hillnhutter, C. (2007). Beauveria bassiana as an endophyte in tissue-cultured banana plants: a novel way to combat the banana weevil Cosmopolites sordidus. III International Symposium on Banana: ISHS-ProMusa Symposium on Recent Advances in Banana Crop Protection for Sustainable 828, 129–138.
  • Akello, J., Dubois, T., Coyne, D., & Kyamanywa, S. (2008). Endophytic Beauveria bassiana in banana (Musa spp.) reduces banana weevil (Cosmopolites sordidus) fitness and damage. Crop Protection, 27(11), 1437–1441.
  • Akello, J., Dubois, T., Coyne, D., & Kyamanywa, S. (2009). The effects of Beauveria bassiana dose and exposure duration on colonization and growth of tissue cultured banana (Musa sp.) plants. Biological Control, 49(1), 6–10.
  • Akutse, K. S., Maniania, N. K., Fiaboe, K. K. M., Van den Berg, J., & Ekesi, S. (2013). Endophytic colonization of Vicia faba and Phaseolus vulgaris (Fabaceae) by fungal pathogens and their effects on the life-history parameters of Liriomyza huidobrensis (Diptera: Agromyzidae). Fungal Ecology, 6(4), 293–301.
  • Arnold, A. E., Mejía, L. C., Kyllo, D., Rojas, E. I., Maynard, Z., Robbins, N., & Herre, E. A. (2003). Fungal endophytes limit pathogen damage in a tropical tree. Proceedings of the National Academy of Sciences, 100(26), 15649–15654.
  • Barbarin, A. M., Jenkins, N. E., Rajotte, E. G., & Thomas, M. B. (2012). A preliminary evaluation of the potential of Beauveria bassiana for bed bug control. Journal of Invertebrate Pathology, 111(1), 82–85.
  • Barelli, L., Moonjely, S., Behie, S. W., & Bidochka, M. J. (2016). Fungi with multifunctional lifestyles: endophytic insect pathogenic fungi. Plant Molecular Biology, 90, 657–664.
  • Craven, K. D., Hsiau, P. T. W., Leuchtmann, A., Hollin, W., & Schardl, C. L. (2001). Multigene phylogeny of Epichloë species, fungal symbionts of grasses. Annals of the Missouri Botanical Garden, 14–34.
  • Dara, S. K., Montalva, C., & Barta, M. (2019). Microbial control of invasive forest pests with entomopathogenic fungi: A review of the current situation. Insects, 10(10), 341.
  • de Faria, M. R., & Wraight, S. P. (2007). Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biological Control, 43(3), 237–256.
  • Deka, B., Baruah, C., & Babu, A. (2021). Entomopathogenic microorganisms: their role in insect pest management. Egyptian Journal of Biological Pest Control, 31, 1–8.
  • Enders, L., & Begcy, K. (2021). Unconventional routes to developing insect-resistant crops. Molecular Plant, 14(9), 1439–1453.
  • Fang, F., Ran, S., Fang, Z., Song, P., & Wang, H. (2019). Improved flame resistance and thermo-mechanical properties of epoxy resin nanocomposites from functionalized graphene oxide via self-assembly in water. Composites Part B: Engineering, 165, 406–416.
  • Fang, W., Leng, B., Xiao, Y., Jin, K., Ma, J., Fan, Y., Feng, J., Yang, X., Zhang, Y., & Pei, Y. (2005). Cloning of Beauveria bassiana chitinase gene Bbchit1 and its application to improve fungal strain virulence. Applied and Environmental Microbiology, 71(1), 363–370.
  • Grabka, R., d’Entremont, T. W., Adams, S. J., Walker, A. K., Tanney, J. B., Abbasi, P. A., & Ali, S. (2022). Fungal endophytes and their role in agricultural plant protection against pests and pathogens. Plants, 11(3), 384.
  • Grégoire, J.-C., & Gould, J. R. (2023). Forest insect–natural enemy interactions. In Forest Entomology and Pathology: Volume 1: Entomology (pp. 141–167). Springer International Publishing Cham.
  • Jenkins, R. W., Barbie, D. A., & Flaherty, K. T. (2018). Mechanisms of resistance to immune checkpoint inhibitors. British Journal of Cancer, 118(1), 9–16.
  • Keerthi, M. C., Darshan, K., Manjunatha, L., & Reddy, P. V. (2022). Status and scope of entomopathogenic fungus, Beauveria bassiana in sustainable pest management: A review. Pest Management in Horticultural Ecosystems, 28(2), 1–14.
  • Keswani, C., Singh, S. P., & Singh, H. B. (2013). Beauveria bassiana: status, mode of action, applications and safety issues. Biotech Today, 3(1), 16–20.
  • Lacey, L. A., Grzywacz, D., Shapiro-Ilan, D. I., Frutos, R., Brownbridge, M., & Goettel, M. S. (2015). Insect pathogens as biological control agents: Back to the future. Journal of Invertebrate Pathology, 132, 1–41.
  • Lu, H.-L., & Leger, R. J. S. (2016). Insect immunity to entomopathogenic fungi. Advances in Genetics, 94, 251–285.
  • McNEIL Jr, D. G. (2005). Fungus fatal to mosquito may aid global war on Malaria. The New York Times, 10.
  • Pedrini, N., Crespo, R., & Juárez, M. P. (2007). Biochemistry of insect epicuticle degradation by entomopathogenic fungi. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 146(1–2), 124–137.
  • Rehner, S. A., & Buckley, E. (2005). A Beauveria phylogeny inferred from nuclear ITS and EF1-α sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia, 97(1), 84–98.
  • Rehner, S. A., Minnis, A. M., Sung, G.-H., Luangsa-ard, J. J., Devotto, L., & Humber, R. A. (2011). Phylogeny and systematics of the anamorphic, entomopathogenic genus Beauveria. Mycologia, 103(5), 1055–1073.
  • Vega, F. E., Posada, F., Aime, M. C., Pava-Ripoll, M., Infante, F., & Rehner, S. A. (2008). Entomopathogenic fungal endophytes. Biological Control, 46(1), 72–82.
  • Vey, A., Hoagland, R. E., & Butt, T. M. (2001). Toxic metabolites of fungal biocontrol agents.
  • Wang, H., Wang, Z., Dong, Y., Chang, R., Xu, C., Yu, X., Zhang, S., Tsamlag, L., Shang, M., & Huang, J. (2020). Phase-adjusted estimation of the number of coronavirus disease 2019 cases in Wuhan, China. Cell Discovery, 6(1), 10.
  • Wang, Y., Yin, W., & Zeng, J. (2019). Global convergence of ADMM in nonconvex nonsmooth optimization. Journal of Scientific Computing, 78, 29–63.
  • Wang, Z., Lu, J., & Feng, M. (2012). Primary roles of two dehydrogenases in the mannitol metabolism and multi‐stress tolerance of entomopathogenic fungus Beauveria bassiana. Environmental Microbiology, 14(8), 2139–2150.
  • Zhang, L., Yan, K., Zhang, Y., Huang, R., Bian, J., Zheng, C., Sun, H., Chen, Z., Sun, N., & An, R. (2007). High-throughput synergy screening identifies microbial metabolites as combination agents for the treatment of fungal infections. Proceedings of the National Academy of Sciences, 104(11), 4606–4611.
  • Zhang, S., Xia, Y. X., Kim, B., & Keyhani, N. O. (2011). Two hydrophobins are involved in fungal spore coat rodlet layer assembly and each play distinct roles in surface interactions, development and pathogenesis in the entomopathogenic fungus, Beauveria bassiana. Molecular Microbiology, 80(3), 811–826.
Year 2024, Volume: 5 Issue: 3, 1 - 9
https://doi.org/10.55549/zbs.1476970

Abstract

References

  • Akello, J., Dubois, T., Coyne, D., & Hillnhutter, C. (2007). Beauveria bassiana as an endophyte in tissue-cultured banana plants: a novel way to combat the banana weevil Cosmopolites sordidus. III International Symposium on Banana: ISHS-ProMusa Symposium on Recent Advances in Banana Crop Protection for Sustainable 828, 129–138.
  • Akello, J., Dubois, T., Coyne, D., & Kyamanywa, S. (2008). Endophytic Beauveria bassiana in banana (Musa spp.) reduces banana weevil (Cosmopolites sordidus) fitness and damage. Crop Protection, 27(11), 1437–1441.
  • Akello, J., Dubois, T., Coyne, D., & Kyamanywa, S. (2009). The effects of Beauveria bassiana dose and exposure duration on colonization and growth of tissue cultured banana (Musa sp.) plants. Biological Control, 49(1), 6–10.
  • Akutse, K. S., Maniania, N. K., Fiaboe, K. K. M., Van den Berg, J., & Ekesi, S. (2013). Endophytic colonization of Vicia faba and Phaseolus vulgaris (Fabaceae) by fungal pathogens and their effects on the life-history parameters of Liriomyza huidobrensis (Diptera: Agromyzidae). Fungal Ecology, 6(4), 293–301.
  • Arnold, A. E., Mejía, L. C., Kyllo, D., Rojas, E. I., Maynard, Z., Robbins, N., & Herre, E. A. (2003). Fungal endophytes limit pathogen damage in a tropical tree. Proceedings of the National Academy of Sciences, 100(26), 15649–15654.
  • Barbarin, A. M., Jenkins, N. E., Rajotte, E. G., & Thomas, M. B. (2012). A preliminary evaluation of the potential of Beauveria bassiana for bed bug control. Journal of Invertebrate Pathology, 111(1), 82–85.
  • Barelli, L., Moonjely, S., Behie, S. W., & Bidochka, M. J. (2016). Fungi with multifunctional lifestyles: endophytic insect pathogenic fungi. Plant Molecular Biology, 90, 657–664.
  • Craven, K. D., Hsiau, P. T. W., Leuchtmann, A., Hollin, W., & Schardl, C. L. (2001). Multigene phylogeny of Epichloë species, fungal symbionts of grasses. Annals of the Missouri Botanical Garden, 14–34.
  • Dara, S. K., Montalva, C., & Barta, M. (2019). Microbial control of invasive forest pests with entomopathogenic fungi: A review of the current situation. Insects, 10(10), 341.
  • de Faria, M. R., & Wraight, S. P. (2007). Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biological Control, 43(3), 237–256.
  • Deka, B., Baruah, C., & Babu, A. (2021). Entomopathogenic microorganisms: their role in insect pest management. Egyptian Journal of Biological Pest Control, 31, 1–8.
  • Enders, L., & Begcy, K. (2021). Unconventional routes to developing insect-resistant crops. Molecular Plant, 14(9), 1439–1453.
  • Fang, F., Ran, S., Fang, Z., Song, P., & Wang, H. (2019). Improved flame resistance and thermo-mechanical properties of epoxy resin nanocomposites from functionalized graphene oxide via self-assembly in water. Composites Part B: Engineering, 165, 406–416.
  • Fang, W., Leng, B., Xiao, Y., Jin, K., Ma, J., Fan, Y., Feng, J., Yang, X., Zhang, Y., & Pei, Y. (2005). Cloning of Beauveria bassiana chitinase gene Bbchit1 and its application to improve fungal strain virulence. Applied and Environmental Microbiology, 71(1), 363–370.
  • Grabka, R., d’Entremont, T. W., Adams, S. J., Walker, A. K., Tanney, J. B., Abbasi, P. A., & Ali, S. (2022). Fungal endophytes and their role in agricultural plant protection against pests and pathogens. Plants, 11(3), 384.
  • Grégoire, J.-C., & Gould, J. R. (2023). Forest insect–natural enemy interactions. In Forest Entomology and Pathology: Volume 1: Entomology (pp. 141–167). Springer International Publishing Cham.
  • Jenkins, R. W., Barbie, D. A., & Flaherty, K. T. (2018). Mechanisms of resistance to immune checkpoint inhibitors. British Journal of Cancer, 118(1), 9–16.
  • Keerthi, M. C., Darshan, K., Manjunatha, L., & Reddy, P. V. (2022). Status and scope of entomopathogenic fungus, Beauveria bassiana in sustainable pest management: A review. Pest Management in Horticultural Ecosystems, 28(2), 1–14.
  • Keswani, C., Singh, S. P., & Singh, H. B. (2013). Beauveria bassiana: status, mode of action, applications and safety issues. Biotech Today, 3(1), 16–20.
  • Lacey, L. A., Grzywacz, D., Shapiro-Ilan, D. I., Frutos, R., Brownbridge, M., & Goettel, M. S. (2015). Insect pathogens as biological control agents: Back to the future. Journal of Invertebrate Pathology, 132, 1–41.
  • Lu, H.-L., & Leger, R. J. S. (2016). Insect immunity to entomopathogenic fungi. Advances in Genetics, 94, 251–285.
  • McNEIL Jr, D. G. (2005). Fungus fatal to mosquito may aid global war on Malaria. The New York Times, 10.
  • Pedrini, N., Crespo, R., & Juárez, M. P. (2007). Biochemistry of insect epicuticle degradation by entomopathogenic fungi. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 146(1–2), 124–137.
  • Rehner, S. A., & Buckley, E. (2005). A Beauveria phylogeny inferred from nuclear ITS and EF1-α sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia, 97(1), 84–98.
  • Rehner, S. A., Minnis, A. M., Sung, G.-H., Luangsa-ard, J. J., Devotto, L., & Humber, R. A. (2011). Phylogeny and systematics of the anamorphic, entomopathogenic genus Beauveria. Mycologia, 103(5), 1055–1073.
  • Vega, F. E., Posada, F., Aime, M. C., Pava-Ripoll, M., Infante, F., & Rehner, S. A. (2008). Entomopathogenic fungal endophytes. Biological Control, 46(1), 72–82.
  • Vey, A., Hoagland, R. E., & Butt, T. M. (2001). Toxic metabolites of fungal biocontrol agents.
  • Wang, H., Wang, Z., Dong, Y., Chang, R., Xu, C., Yu, X., Zhang, S., Tsamlag, L., Shang, M., & Huang, J. (2020). Phase-adjusted estimation of the number of coronavirus disease 2019 cases in Wuhan, China. Cell Discovery, 6(1), 10.
  • Wang, Y., Yin, W., & Zeng, J. (2019). Global convergence of ADMM in nonconvex nonsmooth optimization. Journal of Scientific Computing, 78, 29–63.
  • Wang, Z., Lu, J., & Feng, M. (2012). Primary roles of two dehydrogenases in the mannitol metabolism and multi‐stress tolerance of entomopathogenic fungus Beauveria bassiana. Environmental Microbiology, 14(8), 2139–2150.
  • Zhang, L., Yan, K., Zhang, Y., Huang, R., Bian, J., Zheng, C., Sun, H., Chen, Z., Sun, N., & An, R. (2007). High-throughput synergy screening identifies microbial metabolites as combination agents for the treatment of fungal infections. Proceedings of the National Academy of Sciences, 104(11), 4606–4611.
  • Zhang, S., Xia, Y. X., Kim, B., & Keyhani, N. O. (2011). Two hydrophobins are involved in fungal spore coat rodlet layer assembly and each play distinct roles in surface interactions, development and pathogenesis in the entomopathogenic fungus, Beauveria bassiana. Molecular Microbiology, 80(3), 811–826.
There are 32 citations in total.

Details

Primary Language English
Subjects Zoology (Other)
Journal Section Review
Authors

Sadia Tariq This is me

Publication Date
Submission Date May 1, 2024
Acceptance Date May 14, 2024
Published in Issue Year 2024 Volume: 5 Issue: 3

Cite

EndNote Tariq S Unveiling the effectiveness of Beauveria Bassiana as a biocontrol agent against adult hoppers: A Review. Zeugma Biological Science 5 3 1–9.