Araştırma Makalesi
BibTex RIS Kaynak Göster

Can Hounsfield Unit be Used in the Diagnosis of Hydrocephalus?

Yıl 2018, Cilt: 8 Sayı: 1, 29 - 33, 17.04.2018
https://doi.org/10.16899/gopctd.365158

Öz

ABSTRACT

 

Objectives: Diagnosis of hydrocephalus is still challenging. It is
important to confirm the diagnosis before deciding surgical treatment. Defined
criteria in the literature seems insufficient for the diagnosis of
hydrocephalus in some cases. We aimed to analyze the effects of hydrocephalus
to CSF/parenchymal density and give an understanding about the changes in
CSF/parenchymal density in non-treated and treated hydrocephalus patients.

Materials and methods: We used computed tomography (CT) with
Hounsfield unit (HU) for density measurements. Two study groups were evaluated
in this retrospective study. Twenty patients who had diagnosis of hydrocephalus
and underwent ventriculoperitoneal shunt surgery, were included in the
operation group. These patients were evaluated both preoperatively and
postoperatively with CT. Therefore, this group also was divided into
preoperative and postoperative study groups. Twenty patients who had brain CT
with no detected cerebral pathology were included in the control study group.
Cerebral density measurements were obtained from clinical CT with HU. HU values
of the study groups were compared with each other by using statistical
analysis.

Results: The HU values of the ventricules in the frontal and
occipital horns consistently decreased after the operations. There were
extremely significant differences between the preoperative HU values and the
postoperative HU values of the all evaluated ventricles statistically.
Additionally, there were very significant decreases after the operations in the
HU values of white matter near grey mater.

Conclusıon: Density measurements with CT can easily make contribution in
the diagnosis of hydrocephalus.

 

 


Kaynakça

  • REFERENCES
  • 1) Pennell T, Yi JL, Kaufman BA, Krishnamurthy S. Noninvasive measurement of cerebrospinal fluid flow using an ultrasonic transit time flow sensor: a preliminary study. J Neurosurg Pediatr 2016; 17: 270-277. 2) Szczepek E, Czerwosz L, Nowiński K, Dmowska-Pycka A, Czernicki Z, Jurkiewicz J. The usefulness of the evaluation of volumetric and posturographic parameters in the differential diagnosis of hydrocephalus. Wiad Lek 2015; 68: 145-152. 3) Kosteljanetz M, Ingstrup HM. Normal pressure hydrocephalus: correlation between CT and measurements of cerebrospinal fluid dynamics. Acta Neurochir (Wien) 1985; 77: 8-13. 4) Tisell M, Tullberg M, Hellström P, Edsbagge M, Högfeldt M, Wikkelsö C. Shunt surgery in patients with hydrocephalus and white matter changes. J Neurosurg 2011; 114: 1432-1438. 5) Virhammar J, Laurell K, Ahlgren A, Cesarini KG, Larsson EM. Idiopathic normal pressure hydrocephalus: cerebral perfusion measured with pCASL before and repeatedly after CSF removal. J Cereb Blood Flow Metab 2014; 34: 1771-1778. 6) Marmarou A, Young HF, Aygok GA, Sawauchı S, Tsujı O, Yamamoto T, Dunbar J. Diagnosis and management of idiopathic normal-pressure hydrocephalus: a prospective study in 151 patients. J Neurosurg 2005; 102: 987-997. 7) Kiefer M, Unterberg A. The Differential Diagnosis and Treatment of Normal-Pressure Hydrocephalus. Dtsch Arztebl Int 2012; 109: 15-26. 8) Hartman R, Aglyamov S, Fox DJ Jr, Emelianov S. Quantitative contrast-enhanced ultrasound measurement of cerebrospinal fluid flow for the diagnosis of ventricular shunt malfunction. J Neurosurg 2015; 123: 1420-1426. 9) Song Z, Chen X, Tang Y, Yu X, Li S, Chen X, Peng J, Li F, Zhou D. Magnetic resonance three dimensional sampling perfection with application optimized contrasts using different flip angle evolution sequence for obstructive hydrocephalus: impact on diagnosis and surgical strategy modification. Zhonghua Wai Ke Za Zhi 2015; 53(11): 860-864. 10) Thompson EM, Wagner K, Kronfeld K, Selden NR. Using a 2-variable method in radionuclide shuntography to predict shunt patency. J Neurosurg 2014; 121: 1504-1507. 11) Cala LA, Thickbroom GW, Black JL, Collins DW, Mastaglia FL. Brain density and cerebrospinal fluid space size: CT of normal volunteers. AJNR Am J Neuroradiol 1981; 2: 41-47. 12) Kozler P, Pokorny J. CT density decrease in water intoxication rat model of brain oedema. Neuro Endocrinol Lett 2014; 35: 608-612. 13) Mangel L1, Vönöczky K, Hanzély Z, Kiss T, Agoston P, Somogyi A, Németh G. CT densitometry of the brain: a novel method for early detection and assessment of irradiation induced brain edema. Neoplasma 2002; 49: 237-242. 14) Rózsa L, Grote EH, Egan P. Traumatic brain swelling studied by computerized tomography and densitometry. Neurosurg Rev 1989; 12: 133-140. 15) Wu O, Batista LM, Lima FO, Vangel MG, Furie KL, Greer DM. Predicting clinical outcome in comatose cardiac arrest patients using early noncontrast computed tomography. Stroke 2011; 42: 985-992. 16) Calcagni ML, Taralli S, Mangiola A, Indovina L, Lavalle M, De Bonis P, Anile C, Giordano A. Regional cerebral metabolic rate of glucose evaluation and clinical assessment in patients with idiopathic normal-pressure hydrocephalus before and after ventricular shunt placement: a prospective analysis. Clin Nucl Med 2013; 38: 426-431. 17) Cerda M, Manterola A, Ponce S, Basauri L. Electrolyte levels in the CSF of children with nontumoral hydrocephalus Relation to clinical parameters. Child's Nervous System 1985; 1: 306-311. 18) Kang K, Ko PW, Jin M, Suk K, Lee HW. Idiopathic normal-pressure hydrocephalus, cerebrospinal fluid biomarkers, and the cerebrospinal fluid tap test. J Clin Neurosci 2014; 21: 1398-1403. 19) Tedeschi E, Hasselbalch SG, Waldemar G, Juhler M, P Høgh, S Holm, L Garde, Knudsen LL, Klinken L, Gjerris F. Heterogeneous cerebral glucose metabolism in normal pressure hydrocephalus. Neurol Neurosurg Psychiatry 1995; 59: 608–615. 20) Wikkelsø C, Blomstrand C. Cerebrospinal fluid proteins and cells in normal-pressure hydrocephalus. J Neurol 1982; 228: 171-180. 21) Segev Y, Metser U, Beni-adani L Elran C, Reider-Groswasser II, Constantini S. Morphometric study of the midsagittal MR imaging plane in cases of hydrocephalus and atrophy and in normal brains. AJNR Am J Neuroradiol 2001; 22: 1674-1679.

Hounsfield Ünitesi Hidrosefali Tanısında Kullanılır mı?

Yıl 2018, Cilt: 8 Sayı: 1, 29 - 33, 17.04.2018
https://doi.org/10.16899/gopctd.365158

Öz

ÖZ

 

Amaç: Hidrosefalinin
tanısı hala ciddi bir sorundur. Cerrahi tedaviye karar vermeden önce tanıyı
doğrulamak önemlidir. Literatürde tanımlanmış kriterler bazı vakalarda
hidrosefali tanısı için yeterli gözükmemektedir. Biz hidrosefalinin
BOS/parankim dansitesi üzerine etkilerini araştırdık ve tedavi edilmiş ve
tedavi edilmemiş hidrosefali hastalarında bu dansitelerdeki değişiklikleri
göstererek bir fikir vermeyi amaçladık.

Materyal ve metodlar: Biz dansite ölçümleri için bilgisayarlı
tomografi (BT) ile Hounsfield ünitesini (HU) kullandık. Bu retrospektif
çalışmada iki çalışma grubunu inceledik. Hidrosefali tanısını almış ve
ventriküloperitoneal şant cerrahisi tedavisi uygulanmış 20 hasta operasyon
grubunu oluşturdu. Bu gruptaki hastalar operasyon öncesi ve sonrası BT ile ayrı
ayrı değerlendirildi. Bu nedenle bu gruptaki hastalar aynı zamanda preoperatif
ve postoperatif çalışma gruplarını oluşturdular. Serebral patoloji saptanmamış
tomografiye sahip 20 hasta da kontrol grubunu oluşturdu. Serebral dansite
ölçümlerini klinik BT kullanarak HU ile yaptık. Çalışma gruplarının HU
değerleri birbirleri ile istatistiksel analiz kullanılarak karşılaştırıldı.

Bulgular: Ventriküllerin frontal ve oksipital hornlarından alınan HU
değerleri operasyon sonrası uyumlu bir şekilde azaldı. İncelenen ventriküllerde,
preoperatif HU değerleri ile postoperatif HU değerleri arasında istatistiksel
olarak ileri derecede fark bulundu. Ayrıca gri cevher komşuluğundaki beyaz
cevher HU değerlerinde operasyon sonrası istatistiksel olarak çok belirgin
azalmalar tespit edildi.

Sonuç: BT ile dansite ölçümü hidrosefali tanısına kolaylıkla
yardımcı olabilir.
































 

Kaynakça

  • REFERENCES
  • 1) Pennell T, Yi JL, Kaufman BA, Krishnamurthy S. Noninvasive measurement of cerebrospinal fluid flow using an ultrasonic transit time flow sensor: a preliminary study. J Neurosurg Pediatr 2016; 17: 270-277. 2) Szczepek E, Czerwosz L, Nowiński K, Dmowska-Pycka A, Czernicki Z, Jurkiewicz J. The usefulness of the evaluation of volumetric and posturographic parameters in the differential diagnosis of hydrocephalus. Wiad Lek 2015; 68: 145-152. 3) Kosteljanetz M, Ingstrup HM. Normal pressure hydrocephalus: correlation between CT and measurements of cerebrospinal fluid dynamics. Acta Neurochir (Wien) 1985; 77: 8-13. 4) Tisell M, Tullberg M, Hellström P, Edsbagge M, Högfeldt M, Wikkelsö C. Shunt surgery in patients with hydrocephalus and white matter changes. J Neurosurg 2011; 114: 1432-1438. 5) Virhammar J, Laurell K, Ahlgren A, Cesarini KG, Larsson EM. Idiopathic normal pressure hydrocephalus: cerebral perfusion measured with pCASL before and repeatedly after CSF removal. J Cereb Blood Flow Metab 2014; 34: 1771-1778. 6) Marmarou A, Young HF, Aygok GA, Sawauchı S, Tsujı O, Yamamoto T, Dunbar J. Diagnosis and management of idiopathic normal-pressure hydrocephalus: a prospective study in 151 patients. J Neurosurg 2005; 102: 987-997. 7) Kiefer M, Unterberg A. The Differential Diagnosis and Treatment of Normal-Pressure Hydrocephalus. Dtsch Arztebl Int 2012; 109: 15-26. 8) Hartman R, Aglyamov S, Fox DJ Jr, Emelianov S. Quantitative contrast-enhanced ultrasound measurement of cerebrospinal fluid flow for the diagnosis of ventricular shunt malfunction. J Neurosurg 2015; 123: 1420-1426. 9) Song Z, Chen X, Tang Y, Yu X, Li S, Chen X, Peng J, Li F, Zhou D. Magnetic resonance three dimensional sampling perfection with application optimized contrasts using different flip angle evolution sequence for obstructive hydrocephalus: impact on diagnosis and surgical strategy modification. Zhonghua Wai Ke Za Zhi 2015; 53(11): 860-864. 10) Thompson EM, Wagner K, Kronfeld K, Selden NR. Using a 2-variable method in radionuclide shuntography to predict shunt patency. J Neurosurg 2014; 121: 1504-1507. 11) Cala LA, Thickbroom GW, Black JL, Collins DW, Mastaglia FL. Brain density and cerebrospinal fluid space size: CT of normal volunteers. AJNR Am J Neuroradiol 1981; 2: 41-47. 12) Kozler P, Pokorny J. CT density decrease in water intoxication rat model of brain oedema. Neuro Endocrinol Lett 2014; 35: 608-612. 13) Mangel L1, Vönöczky K, Hanzély Z, Kiss T, Agoston P, Somogyi A, Németh G. CT densitometry of the brain: a novel method for early detection and assessment of irradiation induced brain edema. Neoplasma 2002; 49: 237-242. 14) Rózsa L, Grote EH, Egan P. Traumatic brain swelling studied by computerized tomography and densitometry. Neurosurg Rev 1989; 12: 133-140. 15) Wu O, Batista LM, Lima FO, Vangel MG, Furie KL, Greer DM. Predicting clinical outcome in comatose cardiac arrest patients using early noncontrast computed tomography. Stroke 2011; 42: 985-992. 16) Calcagni ML, Taralli S, Mangiola A, Indovina L, Lavalle M, De Bonis P, Anile C, Giordano A. Regional cerebral metabolic rate of glucose evaluation and clinical assessment in patients with idiopathic normal-pressure hydrocephalus before and after ventricular shunt placement: a prospective analysis. Clin Nucl Med 2013; 38: 426-431. 17) Cerda M, Manterola A, Ponce S, Basauri L. Electrolyte levels in the CSF of children with nontumoral hydrocephalus Relation to clinical parameters. Child's Nervous System 1985; 1: 306-311. 18) Kang K, Ko PW, Jin M, Suk K, Lee HW. Idiopathic normal-pressure hydrocephalus, cerebrospinal fluid biomarkers, and the cerebrospinal fluid tap test. J Clin Neurosci 2014; 21: 1398-1403. 19) Tedeschi E, Hasselbalch SG, Waldemar G, Juhler M, P Høgh, S Holm, L Garde, Knudsen LL, Klinken L, Gjerris F. Heterogeneous cerebral glucose metabolism in normal pressure hydrocephalus. Neurol Neurosurg Psychiatry 1995; 59: 608–615. 20) Wikkelsø C, Blomstrand C. Cerebrospinal fluid proteins and cells in normal-pressure hydrocephalus. J Neurol 1982; 228: 171-180. 21) Segev Y, Metser U, Beni-adani L Elran C, Reider-Groswasser II, Constantini S. Morphometric study of the midsagittal MR imaging plane in cases of hydrocephalus and atrophy and in normal brains. AJNR Am J Neuroradiol 2001; 22: 1674-1679.
Toplam 2 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sağlık Kurumları Yönetimi
Bölüm Orjinal Çalışma
Yazarlar

Özgür Demir

Yayımlanma Tarihi 17 Nisan 2018
Kabul Tarihi 30 Ocak 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 8 Sayı: 1

Kaynak Göster

APA Demir, Ö. (2018). Can Hounsfield Unit be Used in the Diagnosis of Hydrocephalus?. Çağdaş Tıp Dergisi, 8(1), 29-33. https://doi.org/10.16899/gopctd.365158
AMA Demir Ö. Can Hounsfield Unit be Used in the Diagnosis of Hydrocephalus?. J Contemp Med. Mart 2018;8(1):29-33. doi:10.16899/gopctd.365158
Chicago Demir, Özgür. “Can Hounsfield Unit Be Used in the Diagnosis of Hydrocephalus?”. Çağdaş Tıp Dergisi 8, sy. 1 (Mart 2018): 29-33. https://doi.org/10.16899/gopctd.365158.
EndNote Demir Ö (01 Mart 2018) Can Hounsfield Unit be Used in the Diagnosis of Hydrocephalus?. Çağdaş Tıp Dergisi 8 1 29–33.
IEEE Ö. Demir, “Can Hounsfield Unit be Used in the Diagnosis of Hydrocephalus?”, J Contemp Med, c. 8, sy. 1, ss. 29–33, 2018, doi: 10.16899/gopctd.365158.
ISNAD Demir, Özgür. “Can Hounsfield Unit Be Used in the Diagnosis of Hydrocephalus?”. Çağdaş Tıp Dergisi 8/1 (Mart 2018), 29-33. https://doi.org/10.16899/gopctd.365158.
JAMA Demir Ö. Can Hounsfield Unit be Used in the Diagnosis of Hydrocephalus?. J Contemp Med. 2018;8:29–33.
MLA Demir, Özgür. “Can Hounsfield Unit Be Used in the Diagnosis of Hydrocephalus?”. Çağdaş Tıp Dergisi, c. 8, sy. 1, 2018, ss. 29-33, doi:10.16899/gopctd.365158.
Vancouver Demir Ö. Can Hounsfield Unit be Used in the Diagnosis of Hydrocephalus?. J Contemp Med. 2018;8(1):29-33.