Year 2011, Volume 9, Issue 9, Pages 85 - 102 2011-06-01

ON SPLITTING PERFECT POLYNOMIALS OVER Fpp

Luis H. Gallardo [1] , Olivier Rahavandrainy [2]

59 167

We characterize some splitting perfect polynomials in Fq[x], where q = pp and p is a prime number.
Artin-Schreier extension, finite fields, splitting polynomials, perfect polynomials
Other ID JA55VM36FA
Journal Section Articles
Authors

Author: Luis H. Gallardo

Author: Olivier Rahavandrainy

Bibtex @ { ieja266316, journal = {International Electronic Journal of Algebra}, issn = {1306-6048}, eissn = {1306-6048}, address = {Abdullah HARMANCI}, year = {2011}, volume = {9}, pages = {85 - 102}, doi = {}, title = {ON SPLITTING PERFECT POLYNOMIALS OVER Fpp}, key = {cite}, author = {Gallardo, Luis H. and Rahavandrainy, Olivier} }
APA Gallardo, L , Rahavandrainy, O . (2011). ON SPLITTING PERFECT POLYNOMIALS OVER Fpp. International Electronic Journal of Algebra, 9 (9), 85-102. Retrieved from http://dergipark.org.tr/ieja/issue/25202/266316
MLA Gallardo, L , Rahavandrainy, O . "ON SPLITTING PERFECT POLYNOMIALS OVER Fpp". International Electronic Journal of Algebra 9 (2011): 85-102 <http://dergipark.org.tr/ieja/issue/25202/266316>
Chicago Gallardo, L , Rahavandrainy, O . "ON SPLITTING PERFECT POLYNOMIALS OVER Fpp". International Electronic Journal of Algebra 9 (2011): 85-102
RIS TY - JOUR T1 - ON SPLITTING PERFECT POLYNOMIALS OVER Fpp AU - Luis H. Gallardo , Olivier Rahavandrainy Y1 - 2011 PY - 2011 N1 - DO - T2 - International Electronic Journal of Algebra JF - Journal JO - JOR SP - 85 EP - 102 VL - 9 IS - 9 SN - 1306-6048-1306-6048 M3 - UR - Y2 - 2019 ER -
EndNote %0 International Electronic Journal of Algebra ON SPLITTING PERFECT POLYNOMIALS OVER Fpp %A Luis H. Gallardo , Olivier Rahavandrainy %T ON SPLITTING PERFECT POLYNOMIALS OVER Fpp %D 2011 %J International Electronic Journal of Algebra %P 1306-6048-1306-6048 %V 9 %N 9 %R %U
ISNAD Gallardo, Luis H. , Rahavandrainy, Olivier . "ON SPLITTING PERFECT POLYNOMIALS OVER Fpp". International Electronic Journal of Algebra 9 / 9 (June 2011): 85-102.