Year 2019, Volume 5, Issue 2, Pages 84 - 89 2019-06-30

The Compressive Strength Development of Alkali Activated Fly Ash/Slag Concretes with Different Alkali Activator Ratios

Anıl Niş [1]

13 23

Recently, geopolymer or alkali-activated concrete takes great attention due to low carbon footprint since fly ash and ground granulated blast furnace slag (industrial by-product materials) has been utilized as binder materials in the alkali-activated concrete. In this research, the compressive strength (CS) development of the alkali-activated fly ash/slag (AAFAS) concrete was investigated in an ambient environment at 7., 14., 28., and 56. days using alkali activator (sodium silicate to sodium hydroxide) ratios of 1, 1.5, 2, and 2.5 with 6M SH (low) concentration. In addition, the effect of delayed oven-curing condition was also studied at 56.day. The results indicated that for the ambient-cured specimens with 6M SH concentration, the maximum and minimum CS were reached in the AAFSS concrete with alkali activator (SS/SH) ratios of 2 and 1, respectively. The AAFAS concrete with an alkali activator ratio of 2.5 showed the lowest CS enhancement after 7.day and 14.day, while the AAFAS specimens with an alkali activator ratio of 1.5 performed the least CS improvement at 28.day in the ambient environment. Meanwhile, the highest CS enhancement was observed in the specimens with an alkali activator ratio of 2 for all ages. Due to the delayed oven-curing, the least and the highest CS enhancements were observed in the AAFAS specimens with alkali activator ratios of 2 and 1.5, respectively. The results pointed out that AAFAS concrete with a higher alkali activator ratio (≥2) should be used for structural applications in the ambient environment.

Alkali activated fly ash/slag concrete, alkali activator, delayed oven-curing, sodium silicate to sodium hydroxide ratio
  • S. A. Hasanein, H. M. Khate, S. A. A. El-Enein, and H.A. El-Sayed, “Resistance of alkali activated water-cooled slag geopolymer to sulphate attack”, Ceramics-Silikáty, vol. 55, no. 2, pp. 153–160, 2011.
  • A. Niş, ‘‘Mineral katkılı betonların kimyasal durabilitesinin toplam bağlayıcı miktarı ve eşdeğer su/çimento parametreleriyle beraber incelenmesi’’, Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 21, no. 1, pp. 459-473, 2019.
  • A. E. Kurtoglu, R. Alzeebaree, O. Aljumaili, A. Nis, M. E. Gulsan, G. Humur, and A. Cevik, ‘‘Mechanical and durability properties of fly ash and slag based geopolymer concrete’’, Advances in Concrete Construction, vol. 6, no. 4, pp. 345–362, 2018.
  • A. Çevik, R. Alzeebaree, G. Humur, A. Niş, and M. E. Gülşan, ‘‘Effect of nano-silica on the chemical durability and mechanical performance of fly ash based geopolymer concrete’’, Ceramics International, vol. 44, no. 11, pp. 12253-12264, 2018.
  • R. Alzeebaree, M.E Gulsan, A. Nis, A. Mohammedameen, and A. Cevik, ‘‘Performance of FRP confined and unconfined geopolymer concrete exposed to sulfate attacks’’, Steel and Composite Structures, vol. 29, no. 2, pp. 201-218, 2018.
  • R. Alzeebaree, A. Çevik, B. Nematollahi, J. Sanjayan, A. Mohammedameen, and M.E. Gülşan, ‘‘Mechanical properties and durability of unconfined and confined geopolymer concrete with fiber reinforced polymers exposed to sulfuric acid’’, Construction and Building Materials, vol. 215, pp. 1015-1032, 2019.
  • M. E. Gülşan, R. Alzeebaree, A. A. Rasheed, A. Niş, and A.E. Kurtoğlu, ‘‘Development of fly ash/slag based selfcompacting geopolymer concrete using nano-silica and steel fiber’’, Construction and Building Materials, vol. 211, pp. 271-283, 2019.
  • F. N. Okoye, S. Prakash, and N. B. Singh, ‘‘Durability of fly ash based geopolymer concrete in the presence of silica fume’’, Journal of Cleaner Production, vol. 149, pp. 1062- 1067, 2017.
  • J. Davidovits, Geopolymer Chemistry and Applications, 2nd Edn., Inst. Geopolymer, SaintQuentin, France, 2008.
  • J. Davidovits, ‘‘Geopolymer cement to minimize carbon-dioxde greenhouse-warming’’, Ceram. Trans., vol. 37, pp. 165–182, 1993.
  • S. Saha and C. Rajasekaran, ‘‘Enhancement of the properties of fly ash based geopolymer paste by incorporating ground granulated blast furnace slag’’, Construction and Building Materials, vol. 146, pp. 615-620, 2017.
  • A. Fernández-Jiménez, J. G. Palomo, and F. Puertas, ‘‘Alkali-activated slag mortars: mechanical strength behaviour’’, Cement and Concrete Research, vol. 29, no. 8, pp. 1313-1321, 1999.
  • K. Somna, C. Jaturapitakkul, P. Kajitvichyanukul, and P. Chindaprasirt, ‘‘NaOH-activated ground fly ash geopolymer cured at ambient temperature’’, Fuel, vol. 90, no. 6, pp. 2118-2124, 2011.
  • T. Bakharev, ‘‘Durability of geopolymer materials in sodium and magnesium sulfate solutions’’, Cement and Concrete Research, vol. 35, no.6, 1233-1246, 2005.
  • C. B. Cheah, M. H. Samsudin, M. Ramli, W.K. Part, and L.E. Tan, L. E. ‘‘The use of high calcium wood ash in the preparation of Ground Granulated Blast Furnace Slag and Pulverized Fly Ash geopolymers: A complete microstructural and mechanical characterization’’, Journal of Cleaner Production, vol. 156, pp. 114-123, 2017.
  • N. K. Lee, J. G. Jang, and H.K. Lee, ‘‘Shrinkage characteristics of alkali-activated fly ash/slag paste and mortar at early ages’’, Cement and Concrete Composites, vol. 53, pp. 239-248, 2014.
  • M. Hu, X. Zhu, and F. Long, ‘‘Alkali-activated fly ashbased geopolymers with zeolite or bentonite as additives’’, Cement and Concrete Composites, vol. 31, no. 10, pp. 762-768, 2009.
  • G. Görhan, and G. Kürklü, ‘‘The influence of the NaOH solution on the properties of the fly ash-based geopolymer mortar cured at different temperatures’’, Composites part b: engineering, vol. 58, pp. 371-377, 2014.
  • P. Duxson, , J. L. Provis, G. C. Lukey, S. W. Mallicoat, W. M. Kriven, and J. S. Van Deventer, ‘‘Understanding the relationship between geopolymer composition, microstructure and mechanical properties’’, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 269, no. 1-3, pp. 47-58, 2005.
  • G.B. Singh, and K. V. Subramaniam, ‘‘Evaluation of sodium content and sodium hydroxide molarity on compressive strength of alkali activated low-calcium fly ash’’, Cement and Concrete Composites, vol. 81, pp. 122-132, 2017.
  • M. Albitar, M. M. Ali, P. Visintin, and M. Drechsler, ‘‘Durability evaluation of geopolymer and conventional concretes’’, Construction and Building Materials, vol. 136, pp. 374-385, 2017.
  • M. Soutsos, A. P. Boyle, R. Vinai, A. Hadjierakleous, and S. J. Barnett, ‘‘Factors influencing the compressive strength of fly ash based geopolymers’’, Construction and Building Materials, vol. 110, pp. 355-368, 2016.
Primary Language en
Subjects Engineering
Journal Section Makaleler
Authors

Orcid: 0000-0001-9092-8088
Author: Anıl Niş
Country: Turkey


Dates

Publication Date: June 30, 2019

Bibtex @research article { ijet565200, journal = {International Journal of Engineering Technologies IJET}, issn = {2149-0104}, eissn = {2149-5262}, address = {İstanbul Gelisim University}, year = {2019}, volume = {5}, pages = {84 - 89}, doi = {}, title = {The Compressive Strength Development of Alkali Activated Fly Ash/Slag Concretes with Different Alkali Activator Ratios}, key = {cite}, author = {Niş, Anıl} }
APA Niş, A . (2019). The Compressive Strength Development of Alkali Activated Fly Ash/Slag Concretes with Different Alkali Activator Ratios. International Journal of Engineering Technologies IJET, 5 (2), 84-89. Retrieved from http://dergipark.org.tr/ijet/issue/45163/565200
MLA Niş, A . "The Compressive Strength Development of Alkali Activated Fly Ash/Slag Concretes with Different Alkali Activator Ratios". International Journal of Engineering Technologies IJET 5 (2019): 84-89 <http://dergipark.org.tr/ijet/issue/45163/565200>
Chicago Niş, A . "The Compressive Strength Development of Alkali Activated Fly Ash/Slag Concretes with Different Alkali Activator Ratios". International Journal of Engineering Technologies IJET 5 (2019): 84-89
RIS TY - JOUR T1 - The Compressive Strength Development of Alkali Activated Fly Ash/Slag Concretes with Different Alkali Activator Ratios AU - Anıl Niş Y1 - 2019 PY - 2019 N1 - DO - T2 - International Journal of Engineering Technologies IJET JF - Journal JO - JOR SP - 84 EP - 89 VL - 5 IS - 2 SN - 2149-0104-2149-5262 M3 - UR - Y2 - 2019 ER -
EndNote %0 International Journal of Engineering Technologies IJET The Compressive Strength Development of Alkali Activated Fly Ash/Slag Concretes with Different Alkali Activator Ratios %A Anıl Niş %T The Compressive Strength Development of Alkali Activated Fly Ash/Slag Concretes with Different Alkali Activator Ratios %D 2019 %J International Journal of Engineering Technologies IJET %P 2149-0104-2149-5262 %V 5 %N 2 %R %U
ISNAD Niş, Anıl . "The Compressive Strength Development of Alkali Activated Fly Ash/Slag Concretes with Different Alkali Activator Ratios". International Journal of Engineering Technologies IJET 5 / 2 (June 2019): 84-89.
AMA Niş A . The Compressive Strength Development of Alkali Activated Fly Ash/Slag Concretes with Different Alkali Activator Ratios. IJET. 2019; 5(2): 84-89.
Vancouver Niş A . The Compressive Strength Development of Alkali Activated Fly Ash/Slag Concretes with Different Alkali Activator Ratios. International Journal of Engineering Technologies IJET. 2019; 5(2): 89-84.