Year 2017, Volume 17, Issue 1, Pages 3113 - 3119 2017-03-27

Assessment of Similarity Rates of Liver Images Using Geometric Transformations

Tuğba Palabaş Tapkın [1] , Onur Osman [2] , Tuncer Ergin [3] , Uygar Teomete [4] , Özgür Dandin [5] , Nizamettin Aydın [6]

178 414

In this study, similarity rates of the liver images which are obtained from different peoples are determined using 3D geometric transformation methods.  The similarity is evaluated based on the numerical comparisons and visual results. 10 intact liver images which are drawn by the radiologists are used. Three geometric transformation methods scaling, rotating, and translating are consecutively applied to the liver images. All images are used both as atlas and as test images. The Dice coefficient values are calculated to show the similarity of each test image to atlas. The scaling, rotating, and translating amounts of the image are retained for the atlas which the similarity rate is highest. The liver images of different persons are similar to each other at an average rate of 67 0.09 % according to Dice coefficient values which express the similarity. This study is presented as a step to prepare atlas database for segmentation of the injured liver.

Scaling, rotation, translating, liver segmentation
  • [1] Linguraru, M.G., Sandberg J.K., Li Z., Shah F., Summers R.M., “Automated Segmentation and Quantification of Liver and Spleen from CT Images using Normalized Probabilistic Atlases and Enhancement Estimation, Medical Pyysics, 37(2):771-783, 2010..
  • [2] Campadelli P., Casiraghi E., Pratissoli S., A Segmentation Framework for Abdominal Organs from CT Scans, Artificial Intelligence in Medicine, 50:3–11, 2010.9.
  • [3] Li C., Wang X., Li J., Eberl S., Fulham M., Yin Y., Feng D.D., Joint Probabilistic Model of Shape and Intensity for Multiple Abdominal Organ Segmentation from Volumetric CT Images, IEEE Journal of Bıomedical and Health Informatics, 17( 1): 92-102, 2013.
  • [4] Chen X., Udupa J.K., Bagci U, Zhuge Y., Yao J., Medical Image Segmentation by Combining Graph Cuts and Oriented Active Appearance Models, IEEE Transactions on Image Processing, 21(4): 2035-2046, 2012.
  • [5] Wolz R., Chu C., Misawa K., Fujiwara M., Mori K., Rueckert D., Automated Abdominal Multi-Organ Segmentation with Subject-Specific Atlas Generation, IEEE Transactions on Medical Imaging, 32(9): 1723-1730, 2013.
  • [6] Linguraru M.G., Pura J.A, Chowdhury A.S., Summers R.M., Multi-Organ Segmentation from Multi-Phase Abdominal CT via 4D Graphs using Enhancement, Shape and Location Optimization, Medical Image Computing and Computer-Assisted Intervention – MICCAI , 13(Pt 3): 89–96, 2010.
  • [7] Palabaş T., Osman, O., Ergin T, Teomete U., Dandin Ö., Automated Segmentation of the Injured Liver, Medical Technologies National Conference (TIPTEKNO),2015, DOI: 10.1109/TIPTEKNO.2015.7374590.
  • [8] Dandin, Ö., Teomete, U., Osman, O., Tulum, G., Ergin, T., Sabuncuoğlu, M.Z., “Automated Segmentation of the Injured Spleen”, International Journal of Computer Assisted Radiology and Surgery, 2015, DOI:10.1007/s11548-015-1288-9.
  • [9] Selver, M. A., Kocaoğlu, A., Doğan, H., Demir, G. K., Dicle, O. ve Güzeliş, C., “Nakil Öcesi Verici Değerlendirmeleri için Otomatik Karaciğer Bölütleme Yöntemi”, Hastane ve Yaşam, Ocak 2008, 80-87.
  • [10] Çınar, A. ve Durkaya, A. K., “Karaciğer Görüntüsü Ayıklamak için Genişleme Prensipli Yaklaşım”, 2010 National Conference on Electrical Electronics and Computer Engineering-ELECO 2010, December 2010, 588-591.
Subjects Engineering
Journal Section Articles
Authors

Author: Tuğba Palabaş Tapkın
Institution: YILDIZ TEKNIK UNIV
Country: Turkey


Author: Onur Osman

Author: Tuncer Ergin

Author: Uygar Teomete

Author: Özgür Dandin

Author: Nizamettin Aydın

Bibtex @research article { iujeee289080, journal = {IU-Journal of Electrical \& Electronics Engineering}, issn = {1303-0914}, address = {Istanbul University}, year = {2017}, volume = {17}, pages = {3113 - 3119}, doi = {}, title = {Assessment of Similarity Rates of Liver Images Using Geometric Transformations}, key = {cite}, author = {Palabaş Tapkın, Tuğba and Osman, Onur and Ergin, Tuncer and Teomete, Uygar and Dandin, Özgür and Aydın, Nizamettin} }
APA Palabaş Tapkın, T , Osman, O , Ergin, T , Teomete, U , Dandin, Ö , Aydın, N . (2017). Assessment of Similarity Rates of Liver Images Using Geometric Transformations. IU-Journal of Electrical & Electronics Engineering, 17 (1), 3113-3119. Retrieved from http://dergipark.org.tr/iujeee/issue/28345/289080
MLA Palabaş Tapkın, T , Osman, O , Ergin, T , Teomete, U , Dandin, Ö , Aydın, N . "Assessment of Similarity Rates of Liver Images Using Geometric Transformations". IU-Journal of Electrical & Electronics Engineering 17 (2017): 3113-3119 <http://dergipark.org.tr/iujeee/issue/28345/289080>
Chicago Palabaş Tapkın, T , Osman, O , Ergin, T , Teomete, U , Dandin, Ö , Aydın, N . "Assessment of Similarity Rates of Liver Images Using Geometric Transformations". IU-Journal of Electrical & Electronics Engineering 17 (2017): 3113-3119
RIS TY - JOUR T1 - Assessment of Similarity Rates of Liver Images Using Geometric Transformations AU - Tuğba Palabaş Tapkın , Onur Osman , Tuncer Ergin , Uygar Teomete , Özgür Dandin , Nizamettin Aydın Y1 - 2017 PY - 2017 N1 - DO - T2 - IU-Journal of Electrical & Electronics Engineering JF - Journal JO - JOR SP - 3113 EP - 3119 VL - 17 IS - 1 SN - 1303-0914- M3 - UR - Y2 - 2019 ER -
EndNote %0 IU-Journal of Electrical & Electronics Engineering Assessment of Similarity Rates of Liver Images Using Geometric Transformations %A Tuğba Palabaş Tapkın , Onur Osman , Tuncer Ergin , Uygar Teomete , Özgür Dandin , Nizamettin Aydın %T Assessment of Similarity Rates of Liver Images Using Geometric Transformations %D 2017 %J IU-Journal of Electrical & Electronics Engineering %P 1303-0914- %V 17 %N 1 %R %U
ISNAD Palabaş Tapkın, Tuğba , Osman, Onur , Ergin, Tuncer , Teomete, Uygar , Dandin, Özgür , Aydın, Nizamettin . "Assessment of Similarity Rates of Liver Images Using Geometric Transformations". IU-Journal of Electrical & Electronics Engineering 17 / 1 (March 2017): 3113-3119.