Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2019, Cilt: 2 Sayı: 3, 98 - 102, 01.09.2019
https://doi.org/10.33205/cma.547221

Öz

Kaynakça

  • [1] T. Acar, A. Aral, I. Raşa, Modified Bernstein-Durrmeyer operators, General Mathematics, 22 (1), 2014, 27-41.
  • [2] A. Aral, D. Inoan, I. Raşa, On the generalized Szasz-Mirakyan Operators, Results in Mathematics, 65(3-4), 2014, 441–452.
  • [3] D. Cárdenas-Morales, P. Garrancho, F. J. Munoz-Delgado, Shape preserving approximation by Bernstein-Type op- erators which fix polynomials, Appl. Math. Comp. 182, 2006, 1615-1622.
  • [4] D. Cárdenas-Morales, P. Garrancho, I. Raşa, Asymptotic formulae via Korovkin-type result, Abstract and Applied Analysis, vol. 2012, Article ID 217464, 12 pages, 2012. https://doi.org/10.1155/2012/217464.
  • [5] D. Cárdenas-Morales, P. Garrancho ,I. Raşa, Bernstein-type operators which preserve polynomials, Computers and Mathematics with Applications 62, 2011, 158–163.
  • [6] J. P. King, Positive linear operators which preserve x2, Acta. Math. Hungar., 99, 2003, 203–208

Positive Linear Operators Preserving $\tau $ and $\tau ^{2}$

Yıl 2019, Cilt: 2 Sayı: 3, 98 - 102, 01.09.2019
https://doi.org/10.33205/cma.547221

Öz

In the paper we introduce a general class of linear positive approximation processes defined on bounded and unbounded intervals designed using an appropriate function. Voronovskaya type theorems are given for these new constructions. Some examples including well known operators are presented.

Kaynakça

  • [1] T. Acar, A. Aral, I. Raşa, Modified Bernstein-Durrmeyer operators, General Mathematics, 22 (1), 2014, 27-41.
  • [2] A. Aral, D. Inoan, I. Raşa, On the generalized Szasz-Mirakyan Operators, Results in Mathematics, 65(3-4), 2014, 441–452.
  • [3] D. Cárdenas-Morales, P. Garrancho, F. J. Munoz-Delgado, Shape preserving approximation by Bernstein-Type op- erators which fix polynomials, Appl. Math. Comp. 182, 2006, 1615-1622.
  • [4] D. Cárdenas-Morales, P. Garrancho, I. Raşa, Asymptotic formulae via Korovkin-type result, Abstract and Applied Analysis, vol. 2012, Article ID 217464, 12 pages, 2012. https://doi.org/10.1155/2012/217464.
  • [5] D. Cárdenas-Morales, P. Garrancho ,I. Raşa, Bernstein-type operators which preserve polynomials, Computers and Mathematics with Applications 62, 2011, 158–163.
  • [6] J. P. King, Positive linear operators which preserve x2, Acta. Math. Hungar., 99, 2003, 203–208
Toplam 6 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Makaleler
Yazarlar

Tuncer Acar

Ali Aral 0000-0002-2024-8607

Ioan Raşa Bu kişi benim

Yayımlanma Tarihi 1 Eylül 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 2 Sayı: 3

Kaynak Göster

APA Acar, T., Aral, A., & Raşa, I. (2019). Positive Linear Operators Preserving $\tau $ and $\tau ^{2}$. Constructive Mathematical Analysis, 2(3), 98-102. https://doi.org/10.33205/cma.547221
AMA Acar T, Aral A, Raşa I. Positive Linear Operators Preserving $\tau $ and $\tau ^{2}$. CMA. Eylül 2019;2(3):98-102. doi:10.33205/cma.547221
Chicago Acar, Tuncer, Ali Aral, ve Ioan Raşa. “Positive Linear Operators Preserving $\tau $ and $\tau ^{2}$”. Constructive Mathematical Analysis 2, sy. 3 (Eylül 2019): 98-102. https://doi.org/10.33205/cma.547221.
EndNote Acar T, Aral A, Raşa I (01 Eylül 2019) Positive Linear Operators Preserving $\tau $ and $\tau ^{2}$. Constructive Mathematical Analysis 2 3 98–102.
IEEE T. Acar, A. Aral, ve I. Raşa, “Positive Linear Operators Preserving $\tau $ and $\tau ^{2}$”, CMA, c. 2, sy. 3, ss. 98–102, 2019, doi: 10.33205/cma.547221.
ISNAD Acar, Tuncer vd. “Positive Linear Operators Preserving $\tau $ and $\tau ^{2}$”. Constructive Mathematical Analysis 2/3 (Eylül 2019), 98-102. https://doi.org/10.33205/cma.547221.
JAMA Acar T, Aral A, Raşa I. Positive Linear Operators Preserving $\tau $ and $\tau ^{2}$. CMA. 2019;2:98–102.
MLA Acar, Tuncer vd. “Positive Linear Operators Preserving $\tau $ and $\tau ^{2}$”. Constructive Mathematical Analysis, c. 2, sy. 3, 2019, ss. 98-102, doi:10.33205/cma.547221.
Vancouver Acar T, Aral A, Raşa I. Positive Linear Operators Preserving $\tau $ and $\tau ^{2}$. CMA. 2019;2(3):98-102.

Cited By