Temperature-Dependent Structural Dynamics of SOD1 Revealed by Serial Synchrotron Crystallography
Year 2025,
Volume: 14 Issue: 3, 208 - 224, 30.12.2025
Ilkin Yapici
,
Hasan Demirci
Abstract
Objective: To determine the high-resolution structure of human Copper-Zinc superoxide dismutase (hSOD1), an antioxidant enzyme whose mutations cause amyotrophic lateral sclerosis (ALS), under near-physiological conditions. Because SOD1 is intrinsically dynamic, capturing its structure at ambient temperature is key to understanding how temperature modulates its conformational flexibility, ensemble and functional states relevant to both catalysis and disease.
Materials and Methods: Recombinant hSOD1 was expressed in E. coli, purified by affinity and size-exclusion chromatography, and crystallized at ambient temperature. Serial synchrotron crystallography (SSX) data were collected at 293 K at the EMBL P14-2 Time-Resolved Experiments with Crystallography (T-REXX) beamline at PETRA III, and compared with a 100 K cryogenic at the Diamond Light Source beamline (I03). Both datasets were processed and refined using CCP4 suite and PHENIX packages. B-factor distributions, per-residue RMSD values, and conformational differences were analyzed to quantify temperature-dependent effects.
Results: The ambient-temperature SOD1SSX structure was determined at 2.3 Å resolution (PDB ID:9XJ0 this work) and closely matched its 2.37 Å cryogenic counterpart (SOD1CRYO, PDB ID:9XJI this work), both obtained from identical crystallization conditions in the hexagonal P6₃ space group. Cryocooling caused a 3.8% contraction in unit-cell volume, consistent with lattice densification and a 5.2% reduction in molecular surface volume. Despite the overall similarities, the ambient-temperature model revealed localized conformational differences in solvent-exposed loop residues, particularly Ser25-Asn26, Leu67-Glu77, Ile99, and the Asp109-His110-Cys111 triad, and a distinct side-chain orientation of Asn53 was observed at the dimerization interface. While the β-barrel core remained rigid, these regions correspond to redox- and metal-responsive sites implicated in aggregation/fiber formation and putative drug binding.
Conclusions: Temperature perturbs local dynamics in SOD1 structure without altering its native dimeric form. The ambient-temperature model reveals flexible, chemically accessible regions that act as druggable hotspots and coincide with ALS-linked mutation sites driving misfolding and aggregation. Considering temperature effects is crucial for structure-based drug design, ensuring candidate molecules engage physiologically relevant conformations. This structure lays the groundwork for future time-resolved crystallography of SOD1 folding and ligand interactions.
Ethical Statement
Ethical committee approval was not required for this study, not applicable.
Supporting Institution
TÜBİTAK
Thanks
We gratefully acknowledge the Neurodegeneration Research Laboratory (KUTTAM-NDAL) and the Suna and İnan Kıraç Foundation for their support. Ambient-temperature serial synchrotron crystallography data were collected at a beamline operated by EMBL Hamburg at the PETRA III storage ring (DESY, Hamburg, Germany), with the invaluable assistance of David von Stetten and Arwen Pearson, to whom the authors extend their sincere thanks. The authors also thank the Diamond Light Source for beamtime (proposal MX-37045) and the beamline I03 staff for their expert support during crystal testing and data collection. We are grateful to the organizers and tutors of the DLS–CCP4 Data Collection and Structure Solution Workshop 2023 (Diamond Light Source, Oxfordshire, UK) for their guidance; to Kay Diederichs, Andrey Lebedev, and Michail Isupov for their helpful discussions and advice on molecular replacement; and to Marco Mazzorana and Felicity Bertram for their kind assistance with crystal handling.
References
-
Jomova K, Raptova R, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, Valko M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Arch Toxicol. 2023;97(10):2499-574.
-
Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr Biol. 2014;24(10):R453-62.
-
Cross CE, Halliwell B, Borish ET, Pryor WA, Ames BN, Saul RL, McCord JM, Harman D. Oxygen radicals and human disease. Ann Intern Med. 1987;107(4):526-45.
-
Fridovich I. Superoxide dismutases. Annu Rev Biochem. 1975;44:147-59.
-
Rakhit R, Chakrabartty A. Structure, folding, and misfolding of Cu,Zn superoxide dismutase in amyotrophic lateral sclerosis. Biochim Biophys Acta. 2006;1762(11-12):1025-37.
-
Deng HX, Hentati A, Tainer JA, Iqbal Z, Cayabyab A, Hung WY, Getzoff ED, Hu P, Herzfeldt B, Roos RP, et al. Amyotrophic lateral sclerosis and structural defects in Cu,Zn superoxide dismutase. Science. 1993;261(5124):1047-51.
-
Tainer JA, Getzoff ED, Beem KM, Richardson JS, Richardson DC. Determination and analysis of the 2 Å structure of copper, zinc superoxide dismutase. J Mol Biol. 1982;160(2):181-217.
-
Wright GSA, Antonyuk SV, Hasnain SS. The biophysics of superoxide dismutase-1 and amyotrophic lateral sclerosis. Q Rev Biophys. 2019;52:e12.
-
Hashimoto S, Ono K, Takeuchi H. Resonance scattering from UV Raman metal-coordinating histidine residues in Cu,Zn-superoxide dismutase. J Raman Spectrosc. 1998;29(11):969-75.
-
Tainer JA, Getzoff ED, Richardson JS, Richardson DC. Structure and mechanism of copper, zinc superoxide dismutase. Nature. 1983;306(5940):284-7.
-
Hough MA, Hasnain SS. Structure of fully reduced bovine copper zinc superoxide dismutase at 1.15 Å. Structure. 2003;11(8):937-46.
-
Hart PJ, Balbirnie MM, Ogihara NL, Nersissian AM, Weiss MS, Valentine JS, Eisenberg D. A structure-based mechanism for copper-zinc superoxide dismutase. Biochemistry. 1999;38(7):2167-78.
-
Yapici I, Tokur AG, Sever B, Ciftci H, Basak AN, DeMirci H. Structural insights into the dynamics of water in SOD1 catalysis and drug interactions. Int J Mol Sci. 2025;26(9):4228.
-
Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O’Regan JP, Deng HX, et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature. 1993;362(6415):59-62.
-
Sever B, Ciftci H, Demirci H, Sever H, Ocak F, Yulug B, Otsuka M, Tateishi T, Rogelj B, Fujita T, et al. Comprehensive research on past and future therapeutic strategies devoted to treatment of amyotrophic lateral sclerosis. Int J Mol Sci. 2022;23(5):2400.
-
Abel O, Powell JF, Andersen PM, Al-Chalabi A. ALSoD: a user-friendly online bioinformatics tool for amyotrophic lateral sclerosis genetics. Hum Mutat. 2012;33(9):1345-51.
-
Müller K, Oh KW, Nordin A, Panthi S, Kim SH, Nordin F, Theunissen F, Zetterström P, Marklund SL, Birve A, et al. De novo mutations in SOD1 are a cause of ALS. J Neurol Neurosurg Psychiatry. 2022;93(2):201-6.
-
Sau D, De Biasi S, Vitellaro-Zuccarello L, Riso P, Guarnieri S, Porrini M, Simeoni S, Crippa V, Onesto E, Palazzolo I, et al. Mutation of SOD1 in ALS: a gain of a loss of function. Hum Mol Genet. 2007;16(13):1604-18.
-
Jaiswal MK. Riluzole and edaravone: a tale of two amyotrophic lateral sclerosis drugs. Med Res Rev. 2019;39(2):733-48.
-
Miller TM, Cudkowicz ME, Genge A, Shaw PJ, Sobue G, Bucelli RC, Chiò A, Van Damme P, Ludolph AC, Glass JD, et al. Trial of antisense oligonucleotide tofersen for SOD1 ALS. N Engl J Med. 2022;387(12):1099-110.
-
Wiesenfarth M, Dorst J, Brenner D, Elmas Z, Parlak Ö, Uzelac Z, Senel M, Mayer KS, Schuster J, Rosenbohm A, et al. Effects of tofersen treatment in patients with SOD1-ALS in a “real-world” setting – a 12-month multicenter cohort study from the German early access program. EClinicalMedicine. 2024;69:102483.
-
Keedy DA, Van Den Bedem H, Sivak DA, Petsko GA, Ringe D, Wilson MA, Fraser JS. Crystal cryocooling distorts conformational heterogeneity in a model Michaelis complex of DHFR. Structure. 2014;22(6):899-910.
-
Fraser JS, van den Bedem H, Samelson AJ, Lang PT, Holton JM, Echols N, Alber T. Accessing protein conformational ensembles using room-temperature X-ray crystallography. Proc Natl Acad Sci U S A. 2011;108(39):16247-52.
-
Kneller DW, Phillips G, O’Neill HM, Jedrzejczak R, Stols L, Langan P, Joachimiak A. Structural plasticity of SARS-CoV-2 3CL Mpro active site cavity revealed by room temperature X-ray crystallography. Nat Commun. 2020;11(1):3202.
-
O’Sullivan ME, Poitevin F, Sierra RG, Gati C, Rao Y, Han Dao E, Brewster AS, et al. Aminoglycoside ribosome interactions reveal novel conformational states at ambient temperature. Nucleic Acids Res. 2018;46(18):9793-804.
-
Hope H. Crystallography of biological macromolecules at ultra-low temperature. Annu Rev Biophys Biophys Chem. 1990;19:107-26.
-
Teng TY. Mounting of crystals for macromolecular crystallography in a free-standing thin film. J Appl Crystallogr. 1990;23(5):387-91.
-
Garman EF, Owen RL. Cryocooling and radiation damage in macromolecular crystallography. Acta Crystallogr D Biol Crystallogr. 2006;62(Pt 1):32-47.
-
Nakasako M. Large-scale networks of hydration water molecules around bovine β-trypsin revealed by cryogenic X-ray crystal structure analysis. J Mol Biol. 1999;289(3):547-64.
-
Mozzarelli A, Rossi GL. Protein function in the crystal. Annu Rev Biophys Biomol Struct. 1996;25:343-65.
-
Shafiei A, Baldir N, Na J, Kim JH, DeMirci H. Comparative structural analysis of Escherichia coli CyaY at room and cryogenic temperatures using macromolecular and serial crystallography. ChemBioChem. 2025;26(20):e202500442.
-
Tosun B, Rao Y, Destan E, Dao EH, Ertem FB, Yilmaz M, Gonen M, et al. Ambient temperature bacterial large ribosomal subunit structure enabled by serial femtosecond X-ray crystallography. bioRxiv. 2023:2023.10.24.563633.
-
Durdagi S, Dağ Ç, Dogan B, Yigin M, Avsar T, Buyukdag C, Ozdemir E, et al. Near-physiological-temperature serial crystallography reveals conformations of SARS-CoV-2 main protease active site for improved drug repurposing. Structure. 2021;29(12):1382-96.e6.
-
Fischer M, Shoichet BK, Fraser JS. One crystal, two temperatures: cryocooling penalties alter ligand binding to transient protein sites. ChemBioChem. 2015;16(11):1560-4.
-
Sierra RG, Gati C, Laksmono H, Dao EH, Gul S, Fuller F, Kern J, et al. Concentric-flow electrokinetic injector enables serial crystallography of ribosome and photosystem-II. Nat Methods. 2016;13(1):59-62.
-
Mehrabi P, Muller-Werkmeister HM, Leimkohl JP, Schikora H, Ninkovic J, Krivokuca S, Miller RJD. The HARE chip for efficient time-resolved serial synchrotron crystallography. J Synchrotron Radiat. 2020;27(Pt 2):360-70.
-
Wolff AM, Nango E, Young ID, Brewster AS, Kubo M, Nomura T, Sugahara M, et al. Mapping protein dynamics at high spatial resolution with temperature-jump X-ray crystallography. Nat Chem. 2023;15(11):1549-58.
-
Chapman HN, Fromme P, Barty A, White TA, Kirian RA, Aquila A, Hunter MS, et al. Femtosecond X-ray protein nanocrystallography. Nature. 2011;470(7332):73-7.
-
Gul M, Ayan E, Destan E, Johnson JA, Shafiei A, Kepceoğlu A, Yilmaz M, et al. Rapid and efficient ambient temperature X-ray crystal structure determination at Turkish Light Source. Sci Rep. 2023;13(1):7698.
-
Ertem FB, Guven O, Buyukdag C, Gocenler O, Ayan E, Yuksel B, Destan E, et al. Protocol for structure determination of SARS-CoV-2 main protease at near-physiological-temperature by serial femtosecond crystallography. STAR Protoc. 2022;3(1):101158.
-
Cianci M, Bourenkov G, Pompidor G, Karpics I, Kallio J, Bento I, Roessle M, et al. P13, the EMBL macromolecular crystallography beamline at the low-emittance PETRA III ring for high- and low-energy phasing with variable beam focusing. J Synchrotron Radiat. 2017;24(Pt 1):323-32.
-
von Stetten D, Agthe M, Bourenkov G, Polikarpov M, Horrell S, Yorke B, Svergun DI. TREXX: a new endstation for serial time-resolved crystallography at PETRA III. Acta Crystallogr A Found Adv. 2019;75(Pt a2):e26.
-
von Stetten D, Pearson AR. Decision-making in serial crystallography: a simple test to quickly determine whether sufficient data have been collected. bioRxiv. 2025:2025.08.12.669835.
-
White TA, Kirian RA, Martin AV, Aquila A, Nass K, Barty A, Chapman HN. CrystFEL: a software suite for snapshot serial crystallography. J Appl Crystallogr. 2012;45(Pt 2):335-41.
-
White TA, Mariani V, Brehm W, Yefanov O, Barty A, Beyerlein KR, Chervinskii F, et al. Recent developments in CrystFEL. J Appl Crystallogr. 2016;49(Pt 2):680-9.
-
Gevorkov Y, Yefanov O, Barty A, White TA, Mariani V, Brehm W, Tolstikova A, et al. XGANDALF – extended gradient descent algorithm for lattice finding. Acta Crystallogr A Found Adv. 2019;75(Pt 5):694-704.
-
Murshudov GN, Skubák P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, Winn MD, et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr. 2011;67(Pt 4):355-67.
-
Agirre J, Atanasova M, Bagdonas H, Ballard CB, Baslé A, Beilsten-Edmands J, Bond PS, et al. The CCP4 suite: integrative software for macromolecular crystallography. Acta Crystallogr D Struct Biol. 2023;79(Pt 6):449-61.
-
Emsley P, Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr. 2004;60(Pt 12 Pt 1):2126-32.
-
Adams PD, Afonine PV, Bunkóczi G, Chen VB, Davis IW, Echols N, Headd JJ, et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr. 2010;66(Pt 2):213-21.
-
McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ. Phaser crystallographic software. J Appl Crystallogr. 2007;40(Pt 4):658-74.
-
Afonine PV, Grosse-Kunstleve RW, Echols N, Headd JJ, Moriarty NW, Mustyakimov M, Terwilliger TC, et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr D Biol Crystallogr. 2012;68(Pt 4):352-67.
-
Horrell S, Agthe M, von Stetten D, Mehrabi P, Schulz EC, Bourenkov G, et al. P14 T-REXX: first results from the Jurassic beamline. Acta Crystallogr A Found Adv. 2019;75(Pt a2):e35.
-
Pravda L, Sehnal D, Toušek D, Navrátilová V, Bazgier V, Berka K, Svobodová Vařeková R, et al. MOLEonline: a web-based tool for analyzing channels, tunnels and pores (2018 update). Nucleic Acids Res. 2018;46(W1):W368-73.
-
Raček T, Vel’ký D, Bučeková G, Schindler O, Hutařová Vařeková I, Špačková A, et al. MOLEonline: a web-based tool for analysing channels, tunnels, and pores (2025 update). Bioinformatics. 2025;41(9):btae612.
-
Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, et al. Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr. 2011;67(Pt 4):235-42.
-
Krissinel E, Lebedev AA, Uski V, Ballard CB, Keegan RM, Kovalevskiy O, Nicholls RA, et al. CCP4 Cloud for structure determination and project management in macromolecular crystallography. Acta Crystallogr D Struct Biol. 2022;78(Pt 9):1079-89.
-
Klose DP, Wallace BA, Janes RW. 2Struc: the secondary structure server. Bioinformatics. 2010;26(20):2624-5.
-
Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983;22(12):2577-637.
-
Fischer M. Macromolecular room temperature crystallography. Q Rev Biophys. 2021;54:e1.
-
Thorne RE. Determining biomolecular structures near room temperature using X-ray crystallography: concepts, methods and future optimization. Acta Crystallogr D Struct Biol. 2023;79(Pt 1):78-94.
-
Nam KH. Comparative analysis of room temperature structures determined by macromolecular and serial crystallography. Crystals (Basel). 2024;14(3):276.
-
Takaba K, Maki-Yonekura S, Inoue I, Tono K, Hamaguchi T, Kawakami K, Yonekura K. Structural resolution of a small organic molecule by serial X-ray free-electron laser and electron crystallography. Nat Chem. 2023;15(4):491-7.
-
Neutze R, Wouts R, van der Spoel D, Weckert E, Hajdu J. Potential for biomolecular imaging with femtosecond X-ray pulses. Nature. 2000;406(6797):752-7.
-
Boutet S, Lomb L, Williams GJ, Barends TRM, Aquila A, Doak RB, Weierstall U, et al. High-resolution protein structure determination by serial femtosecond crystallography. Science. 2012;337(6092):362-4.
-
Juers DH, Matthews BW. Reversible lattice repacking illustrates the temperature dependence of macromolecular interactions. J Mol Biol. 2001;311(4):851-62.
-
Garman EF. Summary of lecture and practical session at Biophysics and Structural Biology at Synchrotrons workshop: cryo-cooling in macromolecular crystallography—why and how? Biophys Rev. 2019;11(4):539-41.
-
Boissinot M, Karnas S, Lepock JR, Cabelli DE, Tainer JA, Getzoff ED, Hallewell RA. Function of the Greek key connection analysed using circular permutants of superoxide dismutase. EMBO J. 1997;16(9):2171-8.
-
Wright HT. Sequence and structure determinants of the nonenzymatic deamidation of asparagine and glutamine residues in proteins. Protein Eng. 1991;4(3):283-94.
-
Trist BG, Hilton JB, Hare DJ, Crouch PJ, Double KL. Superoxide dismutase 1 in health and disease: how a frontline antioxidant becomes neurotoxic. Angew Chem Int Ed Engl. 2021;60(17):9215-46.
-
Shi Y, Rhodes NR, Abdolvahabi A, Kohn T, Cook NP, Marti AA, Shaw BF. Deamidation of asparagine to aspartate destabilizes Cu, Zn superoxide dismutase, accelerates fibrillization, and mirrors ALS-linked mutations. J Am Chem Soc. 2013;135(42):15897-908.
-
Banci L, Bertini I, Boca M, Calderone V, Cantini F, Girotto S, Vieru M. Structural and dynamic aspects related to oligomerization of apo SOD1 and its mutants. Proc Natl Acad Sci U S A. 2009;106(17):6980-5.
-
Ferraroni M, Rypniewski W, Wilson KS, Viezzoli MS, Banci L, Bertini I, Mangani S. The crystal structure of the monomeric human SOD mutant F50E/G51E/E133Q at atomic resolution: the enzyme mechanism revisited. J Mol Biol. 1999;288(3):413-26.
-
Cao X, Antonyuk SV, Seetharaman SV, Whitson LJ, Taylor AB, Holloway SP, Strange RW, et al. Structures of the G85R variant of SOD1 in familial amyotrophic lateral sclerosis. J Biol Chem. 2008;283(23):16169-77.
-
Wang J, Caruano-Yzermans A, Rodriguez A, Scheurmann JP, Slunt HH, Cao X, Gitler A, et al. Disease-associated mutations at copper ligand histidine residues of superoxide dismutase 1 diminish the binding of copper and compromise dimer stability. J Biol Chem. 2007;282(1):345-52.
-
Ihara K, Fujiwara N, Yamaguchi Y, Torigoe H, Wakatsuki S, Taniguchi N, Ichimiya S. Structural switching of Cu,Zn-superoxide dismutases at loop VI: insights from the crystal structure of 2-mercaptoethanol-modified enzyme. Biosci Rep. 2012;32(6):539-48.
-
Go YM, Chandler JD, Jones DP. The cysteine proteome. Free Radic Biol Med. 2015;84:227-45.
-
Zhang K, Zhang Y, Zi J, Xue X, Wan Y. Production of human Cu,Zn SOD with higher activity and lower toxicity in E. coli via mutation of free cysteine residues. Biomed Res Int. 2017;2017:4817376.
-
Chen X, Shang H, Qiu X, Fujiwara N, Cui L, Li XM, Gao Z. Oxidative modification of cysteine 111 promotes disulfide bond-independent aggregation of SOD1. Neurochem Res. 2012;37(4):835-45.
-
Isim S. Targeting Trp32 and Cys111 to stabilize the ALS-associated protein Cu/Zn superoxide dismutase [dissertation]. Waltham (MA): Brandeis University; 2014.
-
Watanabe S, Amporndanai K, Awais R, Latham C, Awais M, O’Neill PM, Berry NG, et al. Ebselen analogues delay disease onset and its course in fALS by on-target SOD-1 engagement. Sci Rep. 2024;14(1):28281.
-
Baziyar P, Seyedalipour B, Hosseinkhani S. Zinc binding loop mutations of hSOD1 promote amyloid fibrils under physiological conditions: implications for initiation of amyotrophic lateral sclerosis. Biochimie. 2022;199:170-81.
-
Chng CP, Strange RW. Lipid-associated aggregate formation of superoxide dismutase-1 is initiated by membrane-targeting loops. Proteins. 2014;82(11):3194-209.
-
Estácio SG, Leal SS, Cristóvão JS, Faísca PFN, Gomes CM. Calcium binding to gatekeeper residues flanking aggregation-prone segments underlies non-fibrillar amyloid traits in superoxide dismutase 1 (SOD1). Biochim Biophys Acta Proteins Proteom. 2015;1854(2):118-26.
-
Del Grande A, Luigetti M, Conte A, Mancuso I, Lattante S, Marangi G, Sabatelli M. A novel L67P SOD1 mutation in an Italian ALS patient. Amyotroph Lateral Scler. 2011;12(2):150-2.
-
Lim L, Lee X, Song J. Mechanism for transforming cytosolic SOD1 into integral membrane proteins of organelles by ALS-causing mutations. Biochim Biophys Acta Biomembr. 2015;1848(1 Pt A):1-7.
-
Jahan I, Nayeem SM. Conformational dynamics of superoxide dismutase (SOD1) in osmolytes: a molecular dynamics simulation study. RSC Adv. 2020;10(46):27598-614.
-
Zhang MY, Ma Y, Wang LQ, Xia W, Li XN, Zhao K, Wang Q, et al. Distinct amyloid fibril structures formed by ALS-causing SOD1 mutants G93A and D101N. EMBO Rep. 2025;26(19):e61123.
-
Sala FA, Wright GSA, Antonyuk SV, Garratt RC, Hasnain SS. Molecular recognition and maturation of SOD1 by its evolutionarily destabilised cognate chaperone hCCS. PLoS Biol. 2019;17(2):e3000141.
-
Keerthana SP, Kolandaivel P. Interaction between dimer interface residues of native and mutated SOD1 protein: a theoretical study. J Biol Inorg Chem. 2015;20(3):509-22.
-
Wang LQ, Ma Y, Yuan HY, Zhao K, Zhang MY, Wang Q, Li XN, et al. Cryo-EM structure of an amyloid fibril formed by full-length human SOD1 reveals its conformational conversion. Nat Commun. 2022;13(1):3451.
-
Yapici I, Dao EH, Yokoi S, Destan E, Ayan E, Shafei A, DeMirci H, et al. 4D crystallography captures transient IF1-ribosome dynamics in translation initiation. bioRxiv. 2023:2023.10.27.564398.
-
Dasgupta M, Budday D, de Oliveira SHP, Madzelan P, Marchany-Rivera D, Seravalli J, Hayes BJ, et al. Mix-and-inject XFEL crystallography reveals gated conformational dynamics during enzyme catalysis. Proc Natl Acad Sci U S A. 2019;116(51):25634-40.
-
Smith N, Dasgupta M, Wych DC, Dolamore C, Sierra RG, Lisova S, et al. Changes in an enzyme ensemble during catalysis observed by high-resolution XFEL crystallography. Sci Adv. 2024;10(13):eado6822.
-
Stagno JR, Liu Y, Bhandari YR, Conrad CE, Panja S, Swain M, Fan L, et al. Structures of riboswitch RNA reaction states by mix-and-inject XFEL serial crystallography. Nature. 2017;541(7636):242-6.
-
Henkel A, Oberthür D. A snapshot love story: what serial crystallography has done and will do for us. Acta Crystallogr D Struct Biol. 2024;80(8):563-79.