Review
BibTex RIS Cite

Uses of Human Papilloma Virus (HPV) and Vaccines and Social Effects

Year 2022, Volume: 11 Issue: 1, 143 - 151, 29.04.2022
https://doi.org/10.47493/abantmedj.977792

Abstract

Human Papilloma Virus (IPV/HPV) is a DNA virus belonging to the papillomavirus family that infects basal epithelial cells on skin and mucosal surfaces. HPV is the cause of cancers of the anus, penis, vulva, vagina and oropharynx as well as cervical (cervix) cancer. It has been understood that HPV virus can be seen at almost any age, regardless of sociocultural and economic parameters. In addition, although there are no symptoms for a long time in infected people, the life cycle of the virus in the body can continue and may cause cancer development in the long term. It has been proven that generating neutralizing antibodies against HPV capsid proteins can be achieved through an effective prophylactic vaccine production strategy against infection. There are three types of HPV vaccines: bivalent (2vHPV), quadrivalent (4vHPV), and nanovalent (9vHPV). The bivalent HPV vaccine (2vHPV) contains VLPs 16 and 18, the most oncogenic HPV types responsible for approximately 71% of cervical cancers. Quadrivalan HPV (4vHPV) includes VLPs 16 and 18, along with VLPs 6 and 11, which are responsible for approximately 90% of genital warts. In addition to the quadrivalent HPV (4vHPV) content, the nanonovalan (9vHPV) vaccines also contain the HPV types 31, 33, 45, 52, 58 VLPs that are frequently detected in cervical cancer. Prophylactic HPV vaccines are known to be immunogenic and effective against targeted types of HPV infections and type-specific genital lesions, including high-grade cervical intraepithelial neoplasia (CIN), when administered prior to HPV infection. In this review study, the basic mechanism of the HPV virus, the types of vaccines administered, its global use, and its social effects after vaccination are discussed.

References

  • 1. Schiffman, M., et al., Human papillomavirus and cervical cancer. The Lancet, 2007. 370(9590): p. 890-907.
  • 2. Stoler, M.H., et al., Human papillomavirus type 16 and 18 gene expression in cervical neoplasias. Human pathology, 1992. 23(2): p. 117-128.
  • 3. Zhou, J., et al., The induction of cytotoxic T-lymphocyte precursor cells by recombinant vaccinia virus expressing human papillomavirus type 16 L1. Virology, 1991. 181(1): p. 203-210.
  • 4. Munger, K., et al., Mechanisms of human papillomavirus-induced oncogenesis. Journal of virology, 2004. 78(21): p. 11451-11460.
  • 5. Fehrmann, F. and L.A. Laimins, Human papillomaviruses: targeting differentiating epithelial cells for malignant transformation. Oncogene, 2003. 22(33): p. 5201-5207.
  • 6. Nakagawa, M., et al., Cytotoxic T lymphocyte responses to E6 and E7 proteins of human papillomavirus type 16: relationship to cervical intraepithelial neoplasia. Journal of Infectious Diseases, 1997. 175(4): p. 927-931.
  • 7. Avcı, G.A. and G. Bozdayı, İnsan papilloma virüsü. Kafkas Tıp Bilimleri Dergisi, 2013(3): p. 136-144.
  • 8. Horvath, C.A., et al., Mechanisms of cell entry by human papillomaviruses: an overview. Virology journal, 2010. 7(1): p. 1-7.
  • 9. Baseman, J.G. and L.A. Koutsky, The epidemiology of human papillomavirus infections. Journal of clinical virology, 2005. 32: p. 16-24.
  • 10. Moody, C.A. and L.A. Laimins, Human papillomavirus oncoproteins: pathways to transformation. Nature Reviews Cancer, 2010. 10(8): p. 550-560.
  • 11. Burd, E.M., Human papillomavirus and cervical cancer. Clinical microbiology reviews, 2003. 16(1): p. 1.
  • 12. Ullmann, E.V., On the aetiology of the laryngeal papilloma. Acta Otolaryngol, 1923. 5(4): p. 317-334.
  • 13. Cutts, F.T., et al., Human papillomavirus and HPV vaccines: a review. Bulletin of the World Health Organization, 2007. 85: p. 719-726.
  • 14. SE, A., Ülkemizde servikal kanser epidemiyolojisi ve HPV serotipleri. Ankem Derg, 2007. 21(2): p. 96-98.
  • 15. Cardoso, J.C. and E. Calonje, Cutaneous manifestations of human papillomaviruses: a review. Acta dermatovenerologica Alpina, Pannonica, et Adriatica, 2011. 20(3): p. 145-154.
  • 16. Beutler, B., Immunology, phenotype first: how mutations have established new principles and pathways in immunology. 2008: Springer.
  • 17. Sarısoy, Z.A., et al., Oral kavite ve orofarenks benign ve malign lezyonlarında human papilloma virüs ilişkisi, güncel yaklaşım. Okmeydanı Tıp Dergisi, 2018. 34(1): p. 31-37.
  • 18. Majewski, S. and S. Jablonska, Possible involvement of epidermodysplasia verruciformis human papillomaviruses in the immunopathogenesis of psoriasis: a proposed hypothesis. Experimental dermatology, 2003. 12(6): p. 721-728.
  • 19. Pfister, H., Chapter 8: Human papillomavirus and skin cancer. JNCI Monographs, 2003. 2003(31): p. 52-56.
  • 20. Zur Hausen, H., Papillomaviruses and cancer: from basic studies to clinical application. Nature reviews cancer, 2002. 2(5): p. 342-350.
  • 21. Ceyhan, M., İnsan papilloma virusu (HPV) aşısı uygulamasında ülkemizde mevcut problemler. ANKEM Dergisi, 2007. 21(2): p. 102-104.
  • 22. Akin, L., Türkiye’de cinsel yolla bulaşan enfeksiyonların epidemiyolojisi. Turkiye Klinikleri J Med Sci, 2006. 26: p. 655-65.
  • 23. Münger, K., et al., Mechanisms of human papillomavirus-induced oncogenesis. Journal of virology, 2004. 78(21): p. 11451-11460.
  • 24. Liu, Z., Human papillomavirus infection among male virgins and the potential for non-sexual transmission. 2016, The University of Texas School of Public Health.
  • 25. Schiffman, M. and S.K. Kjaer, Chapter 2: Natural history of anogenital human papillomavirus infection and neoplasia. JNCi Monographs, 2003. 2003(31): p. 14-19.
  • 26. Hancer, V.S., et al., Prevalence of human papilloma virus types in Turkish and Albanian women. Journal of cytology, 2018. 35(4): p. 252.
  • 27. Galloway, D., Serological assays for the detection of HPV antibodies. IARC scientific publications, 1992(119): p. 147-161.
  • 28. Galloway, D.A., Papillomavirus capsids: a new approach to identify serological markers of HPV infection. 1994, Citeseer.
  • 29. Lowy, D.R. and J.T. Schiller, Prophylactic human papillomavirus vaccines. The Journal of clinical investigation, 2006. 116(5): p. 1167-1173.
  • 30. Kirnbauer, R., et al., A virus-like particle enzyme-linked immunosorbent assay detects serum antibodies in a majority of women infected with human papillomavirus type 16. JNCI: Journal of the National Cancer Institute, 1994. 86(7): p. 494-499.
  • 31. Carter, J.J., et al., Comparison of human papillomavirus types 16, 18, and 6 capsid antibody responses following incident infection. Journal of Infectious Diseases, 2000. 181(6): p. 1911-1919.
  • 32. Sun, Y., et al., Human papillomavirus-related serological markers of invasive cervical carcinoma in Brazil. Cancer Epidemiology and Prevention Biomarkers, 1994. 3(4): p. 341-347.
  • 33. Hamšková, E., et al., Presence Of Antibodies To Seven Human Papillomavirus Type 16-Derived. Journal of Infectious Diseases, 1994. 170(6): p. 1424-1431.
  • 34. Moller, M., et al., Antibodies to HPV-16 E6 and E7 proteins as markers for HPV-16-associated invasive cervical cancer. Virology, 1992. 187(2): p. 508-514.
  • 35. Herrero, R., et al., Human papillomavirus and oral cancer: the International Agency for Research on Cancer multicenter study. Journal of the National Cancer Institute, 2003. 95(23): p. 1772-1783.
  • 36. Ho, G.Y., et al., Natural history of human papillomavirus type 16 virus-like particle antibodies in young women. Cancer Epidemiology and Prevention Biomarkers, 2004. 13(1): p. 110-116.
  • 37. Harper, D.M., et al., Efficacy of a bivalent L1 virus-like particle vaccine in prevention of infection with human papillomavirus types 16 and 18 in young women: a randomised controlled trial. The lancet, 2004. 364(9447): p. 1757-1765.
  • 38. Villa, L., et al., High sustained efficacy of a prophylactic quadrivalent human papillomavirus types 6/11/16/18 L1 virus-like particle vaccine through 5 years of follow-up. British journal of cancer, 2006. 95(11): p. 1459-1466.
  • 39. Yang, R., et al., Papillomavirus-like particles stimulate murine bone marrow-derived dendritic cells to produce alpha interferon and Th1 immune responses via MyD88. Journal of virology, 2004. 78(20): p. 11152-11160.
  • 40. Yan, M., et al., Activation of dendritic cells by human papillomavirus‐like particles through TLR4 and NF‐κB‐mediated signalling, moderated by TGF‐β. Immunology and cell biology, 2005. 83(1): p. 83-91.
  • 41. Markowitz, L.E., et al., Human papillomavirus vaccine introduction–the first five years. Vaccine, 2012. 30: p. F139-F148.
  • 42. Lamb, F., et al., Timing of two versus three doses of quadrivalent HPV vaccine and associated effectiveness against condyloma in Sweden: a nationwide cohort study. BMJ open, 2017. 7(6): p. e015021.
  • 43. Perkins, R.B., et al., Impact of number of HPV vaccine doses on genital warts diagnoses among a national cohort of US adolescents. Sexually transmitted diseases, 2017. 44(6): p. 365.
  • 44. Navarro-Illana, E., et al., Effectiveness of HPV vaccines against genital warts in women from Valencia, Spain. Vaccine, 2017. 35(25): p. 3342-3346.
  • 45. Lurie, S., et al., Impact of quadrivalent human papillomavirus vaccine on genital warts in an opportunistic vaccination structure. Gynecologic oncology, 2017. 146(2): p. 299-304.
  • 46. Bollerup, S., et al., Significant reduction in the incidence of genital warts in young men 5 years into the Danish human papillomavirus vaccination program for girls and women. Sexually transmitted diseases, 2016. 43(4): p. 238-242.
  • 47. Guerra, F.M., et al., Early impact of Ontario’s human papillomavirus (HPV) vaccination program on anogenital warts (AGWs): a population-based assessment. Vaccine, 2016. 34(39): p. 4678-4683.
  • 48. Drolet, M., et al., Population-level impact and herd effects following human papillomavirus vaccination programmes: a systematic review and meta-analysis. The Lancet infectious diseases, 2015. 15(5): p. 565-580.
  • 49. Cocchio, S., et al., Decline in hospitalization for genital warts in the Veneto region after an HPV vaccination program: an observational study. BMC infectious diseases, 2017. 17(1): p. 1-7.
  • 50. Serrano, B., et al., Potential impact of a nine-valent vaccine in human papillomavirus related cervical disease. Infectious agents and cancer, 2012. 7(1): p. 1-13.
  • 51. Garland, S.M., et al., Natural history of genital warts: analysis of the placebo arm of 2 randomized phase III trials of a quadrivalent human papillomavirus (types 6, 11, 16, and 18) vaccine. The Journal of infectious diseases, 2009. 199(6): p. 805-814.
  • 52. Kjaer, S.K., et al., A pooled analysis of continued prophylactic efficacy of quadrivalent human papillomavirus (Types 6/11/16/18) vaccine against high-grade cervical and external genital lesions. Cancer prevention research, 2009. 2(10): p. 868-878.
  • 53. Markowitz, L.E., et al., Reduction in human papillomavirus (HPV) prevalence among young women following HPV vaccine introduction in the United States, National Health and Nutrition Examination Surveys, 2003–2010. The Journal of infectious diseases, 2013. 208(3): p. 385-393.
  • 54. Mikolajczyk, R.T., et al., Changes in incidence of anogenital warts diagnoses after the introduction of human papillomavirus vaccination in Germany—an ecologic study. Sexually transmitted diseases, 2013. 40(1): p. 28-31.
  • 55. Kavanagh, K., et al., Changes in the prevalence of human papillomavirus following a national bivalent human papillomavirus vaccination programme in Scotland: a 7-year cross-sectional study. The Lancet infectious diseases, 2017. 17(12): p. 1293-1302.
  • 56. Organization, W.H., Human papillomavirus vaccines: WHO position paper, October 2014. Weekly Epidemiological Record= Relevé épidémiologique hebdomadaire, 2014. 89(43): p. 465-491.
  • 57. Joura, E.A., et al., A 9-valent HPV vaccine against infection and intraepithelial neoplasia in women. New England Journal of Medicine, 2015. 372(8): p. 711-723.
  • 58. Mondiale de la Santé, O. and W.H. Organization, Human papillomavirus vaccines: WHO position paper, May 2017. Weekly Epidemiological Record= Relevé épidémiologique hebdomadaire, 2017. 92(19): p. 241-268.
  • 59. Heard, I., et al., Effectiveness of human papillomavirus vaccination on prevalence of vaccine genotypes in young sexually active women in France. The Journal of infectious diseases, 2017. 215(5): p. 757-763.
  • 60. Kahn, J.A., et al., Substantial decline in vaccine-type human papillomavirus (HPV) among vaccinated young women during the first 8 years after HPV vaccine introduction in a community. Clinical Infectious Diseases, 2016. 63(10): p. 1281-1287.
  • 61. Tanton, C., et al., Human papillomavirus (HPV) in young women in Britain: Population-based evidence of the effectiveness of the bivalent immunisation programme and burden of quadrivalent and 9-valent vaccine types. Papillomavirus Research, 2017. 3: p. 36-41.
  • 62. Brotherton, J.M., P.L. Zuber, and P.J. Bloem, Primary prevention of HPV through vaccination: update on the current global status. Current Obstetrics and Gynecology Reports, 2016. 5(3): p. 210-224.
  • 63. Kim, J., et al., Effect of human papillomavirus vaccination on cervical cancer screening in Alberta. Cmaj, 2016. 188(12): p. E281-E288.
  • 64. Niccolai, L.M., et al., Declines in HPV-associated high-grade cervical lesions after introduction of HPV vaccines in Connecticut, US, 2008-2015Declines in HPV-associated lesions. Clinical Infectious Diseases.
  • 65. Cameron, R.L., et al., The impact of bivalent HPV vaccine on cervical intraepithelial neoplasia by deprivation in Scotland: reducing the gap. J Epidemiol Community Health, 2017. 71(10): p. 954-960.
  • 66. mondiale de la Santé, O. and W.H. Organization, Meeting of the Strategic Advisory Group of Experts on immunization, April 2016–conclusions and recommendations. Weekly Epidemiological Record= Relevé épidémiologique hebdomadaire, 2016. 91(21): p. 266-284.
  • 67. Tung, I.L., D.A. Machalek, and S.M. Garland, Attitudes, knowledge and factors associated with human papillomavirus (HPV) vaccine uptake in adolescent girls and young women in Victoria, Australia. PloS one, 2016. 11(8): p. e0161846.
  • 68. Borena, W., et al., Factors affecting HPV vaccine acceptance in west Austria: Do we need to revise the current immunization scheme? Papillomavirus Research, 2016. 2: p. 173-177.
  • 69. Brotherton, J.M. and P.N. Bloem, Population-based HPV vaccination programmes are safe and effective: 2017 update and the impetus for achieving better global coverage. Best practice & research Clinical obstetrics & gynaecology, 2018. 47: p. 42-58.
  • 70. Brotherton, J.M., et al., HPV vaccine coverage is increasing in Australia. The Medical Journal of Australia, 2017. 206(6): p. 262.
  • 71. Howard, N., et al., What works for human papillomavirus vaccine introduction in low and middle-income countries? Papillomavirus Research, 2017. 4: p. 22-25.

İnsan Papilloma Virüsü (HPV) ve Aşılarının Kullanımı Sonrası Toplumsal Etkileri

Year 2022, Volume: 11 Issue: 1, 143 - 151, 29.04.2022
https://doi.org/10.47493/abantmedj.977792

Abstract

İnsan Papilloma Virüsü (IPV/HPV) deri ve mukozal yüzeylerdeki bazal epitelyal hücreleri enfekte eden papillomavirus ailesine mensup bir DNA virüsüdür. HPV, rahim ağzı (serviks) kanserinin yanı sıra anüs, penis, vulva, vajina ve orofarenks kanserlerinin de nedenidir. HPV virüsünün sosyokültürel ve ekonomik parametrelerden bağımsız olarak hemen her yaşta görülebileceği anlaşılmıştır. Ayrıca enfekte olan kişilerde uzun süre herhangi bir belirti olmasa da virüsün vücuttaki yaşam döngüsü devam edebilmektedir ve uzun vadede kanser gelişimine neden olabilmektedir. HPV kapsid proteinlerine karşı nötralize edici antikorlar üretmenin, enfeksiyona karşı etkili bir profilaktik aşı üretim stratejisi sayesinde gerçekleşebildiği kanıtlanmıştır. Bivalan (2vHPV), quadrivalan (4vHPV) ve nanovalan (9vHPV) olmak üzere üç tip HPV aşısı bulunmaktadır. Bivalan HPV aşısı (2vHPV), servikal kanserlerin yaklaşık %71'inden sorumlu olan en onkojenik HPV tipleri olan 16 ve 18 VLP'leri içermektedir. Quadrivalan HPV (4vHPV) ise, genital siğillerin yaklaşık %90'ından sorumlu olan 6 ve 11'deki VLP'ler ile birlikte 16 ve 18 VLP'leri de içermektedir. Nanovalan (9vHPV) aşıları ise, quadrivalan HPV (4vHPV) içeriğine ek olarak rahim ağzı kanserinde sık sık tespit edilen HPV tipleri 31, 33, 45, 52, 58 VLP'leri de içermektedir. Profilaktik HPV aşılarının immünojenik olduğuna ve HPV enfeksiyonundan önce uygulandıklarında yüksek dereceli servikal intraepitelyal neoplazi (CIN) dahil olmak üzere hedeflenen tipte HPV enfeksiyonlarına ve tipe özgü genital lezyonlara karşı etkili olduğu bilinmektedir. Bu derleme çalışmasında özellikle, HPV virüsünün temel mekanizması, uygulanan aşı tipleri, küresel kullanımı ve aşılama sonrasında görülen toplumsal etkileri ele alınmıştır.

References

  • 1. Schiffman, M., et al., Human papillomavirus and cervical cancer. The Lancet, 2007. 370(9590): p. 890-907.
  • 2. Stoler, M.H., et al., Human papillomavirus type 16 and 18 gene expression in cervical neoplasias. Human pathology, 1992. 23(2): p. 117-128.
  • 3. Zhou, J., et al., The induction of cytotoxic T-lymphocyte precursor cells by recombinant vaccinia virus expressing human papillomavirus type 16 L1. Virology, 1991. 181(1): p. 203-210.
  • 4. Munger, K., et al., Mechanisms of human papillomavirus-induced oncogenesis. Journal of virology, 2004. 78(21): p. 11451-11460.
  • 5. Fehrmann, F. and L.A. Laimins, Human papillomaviruses: targeting differentiating epithelial cells for malignant transformation. Oncogene, 2003. 22(33): p. 5201-5207.
  • 6. Nakagawa, M., et al., Cytotoxic T lymphocyte responses to E6 and E7 proteins of human papillomavirus type 16: relationship to cervical intraepithelial neoplasia. Journal of Infectious Diseases, 1997. 175(4): p. 927-931.
  • 7. Avcı, G.A. and G. Bozdayı, İnsan papilloma virüsü. Kafkas Tıp Bilimleri Dergisi, 2013(3): p. 136-144.
  • 8. Horvath, C.A., et al., Mechanisms of cell entry by human papillomaviruses: an overview. Virology journal, 2010. 7(1): p. 1-7.
  • 9. Baseman, J.G. and L.A. Koutsky, The epidemiology of human papillomavirus infections. Journal of clinical virology, 2005. 32: p. 16-24.
  • 10. Moody, C.A. and L.A. Laimins, Human papillomavirus oncoproteins: pathways to transformation. Nature Reviews Cancer, 2010. 10(8): p. 550-560.
  • 11. Burd, E.M., Human papillomavirus and cervical cancer. Clinical microbiology reviews, 2003. 16(1): p. 1.
  • 12. Ullmann, E.V., On the aetiology of the laryngeal papilloma. Acta Otolaryngol, 1923. 5(4): p. 317-334.
  • 13. Cutts, F.T., et al., Human papillomavirus and HPV vaccines: a review. Bulletin of the World Health Organization, 2007. 85: p. 719-726.
  • 14. SE, A., Ülkemizde servikal kanser epidemiyolojisi ve HPV serotipleri. Ankem Derg, 2007. 21(2): p. 96-98.
  • 15. Cardoso, J.C. and E. Calonje, Cutaneous manifestations of human papillomaviruses: a review. Acta dermatovenerologica Alpina, Pannonica, et Adriatica, 2011. 20(3): p. 145-154.
  • 16. Beutler, B., Immunology, phenotype first: how mutations have established new principles and pathways in immunology. 2008: Springer.
  • 17. Sarısoy, Z.A., et al., Oral kavite ve orofarenks benign ve malign lezyonlarında human papilloma virüs ilişkisi, güncel yaklaşım. Okmeydanı Tıp Dergisi, 2018. 34(1): p. 31-37.
  • 18. Majewski, S. and S. Jablonska, Possible involvement of epidermodysplasia verruciformis human papillomaviruses in the immunopathogenesis of psoriasis: a proposed hypothesis. Experimental dermatology, 2003. 12(6): p. 721-728.
  • 19. Pfister, H., Chapter 8: Human papillomavirus and skin cancer. JNCI Monographs, 2003. 2003(31): p. 52-56.
  • 20. Zur Hausen, H., Papillomaviruses and cancer: from basic studies to clinical application. Nature reviews cancer, 2002. 2(5): p. 342-350.
  • 21. Ceyhan, M., İnsan papilloma virusu (HPV) aşısı uygulamasında ülkemizde mevcut problemler. ANKEM Dergisi, 2007. 21(2): p. 102-104.
  • 22. Akin, L., Türkiye’de cinsel yolla bulaşan enfeksiyonların epidemiyolojisi. Turkiye Klinikleri J Med Sci, 2006. 26: p. 655-65.
  • 23. Münger, K., et al., Mechanisms of human papillomavirus-induced oncogenesis. Journal of virology, 2004. 78(21): p. 11451-11460.
  • 24. Liu, Z., Human papillomavirus infection among male virgins and the potential for non-sexual transmission. 2016, The University of Texas School of Public Health.
  • 25. Schiffman, M. and S.K. Kjaer, Chapter 2: Natural history of anogenital human papillomavirus infection and neoplasia. JNCi Monographs, 2003. 2003(31): p. 14-19.
  • 26. Hancer, V.S., et al., Prevalence of human papilloma virus types in Turkish and Albanian women. Journal of cytology, 2018. 35(4): p. 252.
  • 27. Galloway, D., Serological assays for the detection of HPV antibodies. IARC scientific publications, 1992(119): p. 147-161.
  • 28. Galloway, D.A., Papillomavirus capsids: a new approach to identify serological markers of HPV infection. 1994, Citeseer.
  • 29. Lowy, D.R. and J.T. Schiller, Prophylactic human papillomavirus vaccines. The Journal of clinical investigation, 2006. 116(5): p. 1167-1173.
  • 30. Kirnbauer, R., et al., A virus-like particle enzyme-linked immunosorbent assay detects serum antibodies in a majority of women infected with human papillomavirus type 16. JNCI: Journal of the National Cancer Institute, 1994. 86(7): p. 494-499.
  • 31. Carter, J.J., et al., Comparison of human papillomavirus types 16, 18, and 6 capsid antibody responses following incident infection. Journal of Infectious Diseases, 2000. 181(6): p. 1911-1919.
  • 32. Sun, Y., et al., Human papillomavirus-related serological markers of invasive cervical carcinoma in Brazil. Cancer Epidemiology and Prevention Biomarkers, 1994. 3(4): p. 341-347.
  • 33. Hamšková, E., et al., Presence Of Antibodies To Seven Human Papillomavirus Type 16-Derived. Journal of Infectious Diseases, 1994. 170(6): p. 1424-1431.
  • 34. Moller, M., et al., Antibodies to HPV-16 E6 and E7 proteins as markers for HPV-16-associated invasive cervical cancer. Virology, 1992. 187(2): p. 508-514.
  • 35. Herrero, R., et al., Human papillomavirus and oral cancer: the International Agency for Research on Cancer multicenter study. Journal of the National Cancer Institute, 2003. 95(23): p. 1772-1783.
  • 36. Ho, G.Y., et al., Natural history of human papillomavirus type 16 virus-like particle antibodies in young women. Cancer Epidemiology and Prevention Biomarkers, 2004. 13(1): p. 110-116.
  • 37. Harper, D.M., et al., Efficacy of a bivalent L1 virus-like particle vaccine in prevention of infection with human papillomavirus types 16 and 18 in young women: a randomised controlled trial. The lancet, 2004. 364(9447): p. 1757-1765.
  • 38. Villa, L., et al., High sustained efficacy of a prophylactic quadrivalent human papillomavirus types 6/11/16/18 L1 virus-like particle vaccine through 5 years of follow-up. British journal of cancer, 2006. 95(11): p. 1459-1466.
  • 39. Yang, R., et al., Papillomavirus-like particles stimulate murine bone marrow-derived dendritic cells to produce alpha interferon and Th1 immune responses via MyD88. Journal of virology, 2004. 78(20): p. 11152-11160.
  • 40. Yan, M., et al., Activation of dendritic cells by human papillomavirus‐like particles through TLR4 and NF‐κB‐mediated signalling, moderated by TGF‐β. Immunology and cell biology, 2005. 83(1): p. 83-91.
  • 41. Markowitz, L.E., et al., Human papillomavirus vaccine introduction–the first five years. Vaccine, 2012. 30: p. F139-F148.
  • 42. Lamb, F., et al., Timing of two versus three doses of quadrivalent HPV vaccine and associated effectiveness against condyloma in Sweden: a nationwide cohort study. BMJ open, 2017. 7(6): p. e015021.
  • 43. Perkins, R.B., et al., Impact of number of HPV vaccine doses on genital warts diagnoses among a national cohort of US adolescents. Sexually transmitted diseases, 2017. 44(6): p. 365.
  • 44. Navarro-Illana, E., et al., Effectiveness of HPV vaccines against genital warts in women from Valencia, Spain. Vaccine, 2017. 35(25): p. 3342-3346.
  • 45. Lurie, S., et al., Impact of quadrivalent human papillomavirus vaccine on genital warts in an opportunistic vaccination structure. Gynecologic oncology, 2017. 146(2): p. 299-304.
  • 46. Bollerup, S., et al., Significant reduction in the incidence of genital warts in young men 5 years into the Danish human papillomavirus vaccination program for girls and women. Sexually transmitted diseases, 2016. 43(4): p. 238-242.
  • 47. Guerra, F.M., et al., Early impact of Ontario’s human papillomavirus (HPV) vaccination program on anogenital warts (AGWs): a population-based assessment. Vaccine, 2016. 34(39): p. 4678-4683.
  • 48. Drolet, M., et al., Population-level impact and herd effects following human papillomavirus vaccination programmes: a systematic review and meta-analysis. The Lancet infectious diseases, 2015. 15(5): p. 565-580.
  • 49. Cocchio, S., et al., Decline in hospitalization for genital warts in the Veneto region after an HPV vaccination program: an observational study. BMC infectious diseases, 2017. 17(1): p. 1-7.
  • 50. Serrano, B., et al., Potential impact of a nine-valent vaccine in human papillomavirus related cervical disease. Infectious agents and cancer, 2012. 7(1): p. 1-13.
  • 51. Garland, S.M., et al., Natural history of genital warts: analysis of the placebo arm of 2 randomized phase III trials of a quadrivalent human papillomavirus (types 6, 11, 16, and 18) vaccine. The Journal of infectious diseases, 2009. 199(6): p. 805-814.
  • 52. Kjaer, S.K., et al., A pooled analysis of continued prophylactic efficacy of quadrivalent human papillomavirus (Types 6/11/16/18) vaccine against high-grade cervical and external genital lesions. Cancer prevention research, 2009. 2(10): p. 868-878.
  • 53. Markowitz, L.E., et al., Reduction in human papillomavirus (HPV) prevalence among young women following HPV vaccine introduction in the United States, National Health and Nutrition Examination Surveys, 2003–2010. The Journal of infectious diseases, 2013. 208(3): p. 385-393.
  • 54. Mikolajczyk, R.T., et al., Changes in incidence of anogenital warts diagnoses after the introduction of human papillomavirus vaccination in Germany—an ecologic study. Sexually transmitted diseases, 2013. 40(1): p. 28-31.
  • 55. Kavanagh, K., et al., Changes in the prevalence of human papillomavirus following a national bivalent human papillomavirus vaccination programme in Scotland: a 7-year cross-sectional study. The Lancet infectious diseases, 2017. 17(12): p. 1293-1302.
  • 56. Organization, W.H., Human papillomavirus vaccines: WHO position paper, October 2014. Weekly Epidemiological Record= Relevé épidémiologique hebdomadaire, 2014. 89(43): p. 465-491.
  • 57. Joura, E.A., et al., A 9-valent HPV vaccine against infection and intraepithelial neoplasia in women. New England Journal of Medicine, 2015. 372(8): p. 711-723.
  • 58. Mondiale de la Santé, O. and W.H. Organization, Human papillomavirus vaccines: WHO position paper, May 2017. Weekly Epidemiological Record= Relevé épidémiologique hebdomadaire, 2017. 92(19): p. 241-268.
  • 59. Heard, I., et al., Effectiveness of human papillomavirus vaccination on prevalence of vaccine genotypes in young sexually active women in France. The Journal of infectious diseases, 2017. 215(5): p. 757-763.
  • 60. Kahn, J.A., et al., Substantial decline in vaccine-type human papillomavirus (HPV) among vaccinated young women during the first 8 years after HPV vaccine introduction in a community. Clinical Infectious Diseases, 2016. 63(10): p. 1281-1287.
  • 61. Tanton, C., et al., Human papillomavirus (HPV) in young women in Britain: Population-based evidence of the effectiveness of the bivalent immunisation programme and burden of quadrivalent and 9-valent vaccine types. Papillomavirus Research, 2017. 3: p. 36-41.
  • 62. Brotherton, J.M., P.L. Zuber, and P.J. Bloem, Primary prevention of HPV through vaccination: update on the current global status. Current Obstetrics and Gynecology Reports, 2016. 5(3): p. 210-224.
  • 63. Kim, J., et al., Effect of human papillomavirus vaccination on cervical cancer screening in Alberta. Cmaj, 2016. 188(12): p. E281-E288.
  • 64. Niccolai, L.M., et al., Declines in HPV-associated high-grade cervical lesions after introduction of HPV vaccines in Connecticut, US, 2008-2015Declines in HPV-associated lesions. Clinical Infectious Diseases.
  • 65. Cameron, R.L., et al., The impact of bivalent HPV vaccine on cervical intraepithelial neoplasia by deprivation in Scotland: reducing the gap. J Epidemiol Community Health, 2017. 71(10): p. 954-960.
  • 66. mondiale de la Santé, O. and W.H. Organization, Meeting of the Strategic Advisory Group of Experts on immunization, April 2016–conclusions and recommendations. Weekly Epidemiological Record= Relevé épidémiologique hebdomadaire, 2016. 91(21): p. 266-284.
  • 67. Tung, I.L., D.A. Machalek, and S.M. Garland, Attitudes, knowledge and factors associated with human papillomavirus (HPV) vaccine uptake in adolescent girls and young women in Victoria, Australia. PloS one, 2016. 11(8): p. e0161846.
  • 68. Borena, W., et al., Factors affecting HPV vaccine acceptance in west Austria: Do we need to revise the current immunization scheme? Papillomavirus Research, 2016. 2: p. 173-177.
  • 69. Brotherton, J.M. and P.N. Bloem, Population-based HPV vaccination programmes are safe and effective: 2017 update and the impetus for achieving better global coverage. Best practice & research Clinical obstetrics & gynaecology, 2018. 47: p. 42-58.
  • 70. Brotherton, J.M., et al., HPV vaccine coverage is increasing in Australia. The Medical Journal of Australia, 2017. 206(6): p. 262.
  • 71. Howard, N., et al., What works for human papillomavirus vaccine introduction in low and middle-income countries? Papillomavirus Research, 2017. 4: p. 22-25.
There are 71 citations in total.

Details

Primary Language Turkish
Subjects Clinical Sciences
Journal Section Review
Authors

Aybüke Okay This is me 0000-0002-6772-4316

Semra Soydam Aydın 0000-0002-1670-9677

Levent Akın 0000-0003-4705-413X

Early Pub Date April 26, 2022
Publication Date April 29, 2022
Submission Date August 2, 2021
Published in Issue Year 2022 Volume: 11 Issue: 1

Cite

APA Okay, A., Soydam Aydın, S., & Akın, L. (2022). İnsan Papilloma Virüsü (HPV) ve Aşılarının Kullanımı Sonrası Toplumsal Etkileri. Abant Medical Journal, 11(1), 143-151. https://doi.org/10.47493/abantmedj.977792
AMA Okay A, Soydam Aydın S, Akın L. İnsan Papilloma Virüsü (HPV) ve Aşılarının Kullanımı Sonrası Toplumsal Etkileri. Abant Med J. April 2022;11(1):143-151. doi:10.47493/abantmedj.977792
Chicago Okay, Aybüke, Semra Soydam Aydın, and Levent Akın. “İnsan Papilloma Virüsü (HPV) Ve Aşılarının Kullanımı Sonrası Toplumsal Etkileri”. Abant Medical Journal 11, no. 1 (April 2022): 143-51. https://doi.org/10.47493/abantmedj.977792.
EndNote Okay A, Soydam Aydın S, Akın L (April 1, 2022) İnsan Papilloma Virüsü (HPV) ve Aşılarının Kullanımı Sonrası Toplumsal Etkileri. Abant Medical Journal 11 1 143–151.
IEEE A. Okay, S. Soydam Aydın, and L. Akın, “İnsan Papilloma Virüsü (HPV) ve Aşılarının Kullanımı Sonrası Toplumsal Etkileri”, Abant Med J, vol. 11, no. 1, pp. 143–151, 2022, doi: 10.47493/abantmedj.977792.
ISNAD Okay, Aybüke et al. “İnsan Papilloma Virüsü (HPV) Ve Aşılarının Kullanımı Sonrası Toplumsal Etkileri”. Abant Medical Journal 11/1 (April 2022), 143-151. https://doi.org/10.47493/abantmedj.977792.
JAMA Okay A, Soydam Aydın S, Akın L. İnsan Papilloma Virüsü (HPV) ve Aşılarının Kullanımı Sonrası Toplumsal Etkileri. Abant Med J. 2022;11:143–151.
MLA Okay, Aybüke et al. “İnsan Papilloma Virüsü (HPV) Ve Aşılarının Kullanımı Sonrası Toplumsal Etkileri”. Abant Medical Journal, vol. 11, no. 1, 2022, pp. 143-51, doi:10.47493/abantmedj.977792.
Vancouver Okay A, Soydam Aydın S, Akın L. İnsan Papilloma Virüsü (HPV) ve Aşılarının Kullanımı Sonrası Toplumsal Etkileri. Abant Med J. 2022;11(1):143-51.