Research Article
BibTex RIS Cite
Year 2022, , 152 - 157, 29.03.2022
https://doi.org/10.38053/acmj.1037458

Abstract

References

  • Botelho-Nevers E, Gagnaire J, Verhoeven PO, et al. Decolonization of Staphylococcus aureus carriage. Med Mal Infect 2017; 47: 305-10.
  • Horn J, Stelzner K, Rudel T, Fraunholz M. Inside job: Staphylococcus aureus host-pathogen interactions. Int J Med Microbiol 2018; 308: 607-24.
  • Zainulabdeen SMS, Dakl AA. Pathogenicity and virulence factors in Staphylococcus aureus. Muthanna J Pure Sci 2021; 8: 109-19.
  • Jin T, Mohammad M, Pullerits R, Ali A. Bacteria and host interplay in Staphylococcus aureus septic arthritis and sepsis. Pathogens 2021; 10: 1-25.
  • Kanyo EC, Nowacki AS, Gordon SM, Shrestha NK. Comparison of mortality, stroke, and relapse for methicillin-resistant versus methicillin-susceptible Staphylococcus aureus infective endocarditis: a retrospective cohort study. Diagn Microbiol Infect Dis 2021; 100: 115395.
  • Naicker PR, Karayem K, Hoek KGP, Harvey J, Wasserman E. Biofilm formation in invasive Staphylococcus aureus isolates is associated with the clonal lineage. Microb Pathog 2016; 90: 41-9.
  • O’Neill E, Pozzi C, Houston P, et al. A novel Staphylococcus aureus biofilm phenotype mediated by the fibronectin-binding proteins, FnBPA and FnBPB. J Bacteriol 2008; 190: 3835-50.
  • Pourzal F, Haghkhah M. Prevalence of biofilm associated genes in different isolates of Staphylococcus aureus. J Med Bacteriol 2020; 9: 9-15.
  • Taj Y, Essa F, Aziz F, Kazmi SU. Study on biofilm-forming properties of clinical isolates of Staphylococcus aureus. J Infect Dev Ctries 2012; 6: 403-9.
  • Oniciuc EA, Cerca N, Nicolau AI. Compositional analysis of biofilms formed by Staphylococcus aureus isolated from food sources. Front Microbiol 2016; 7: 2014-7.
  • Otto M. Staphylococcal biofilms. Microbiol Spectrum 2018; 6: GPP3-0023-2018.
  • Avila-Novoa MG, González-Gómez JP, Guerrero-Medina PJ, et al. Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) strains isolated from dairy products: Relationship of ica-dependent/independent and components of biofilms produced in vitro. Int Dairy J 2021; 119: 105066.
  • Azmi K, Qrei W, Abdeen Z. Screening of genes encoding adhesion factors and biofilm production in methicillin resistant strains of Staphylococcus aureus isolated from Palestinian patients. BMC Genomics 2019; 20: 1-12.
  • Nyenje ME, Green E, Ndip RN. Evaluation of the effect of different growth media and temperature on the suitability of biofilm formation by Enterobacter cloacae strains isolated from food samples in South Africa. Molecules 2013; 18: 9582-93.
  • Sugimoto S, Sato F, Miyakawa R, et al. Broad impact of extracellular DNA on biofilm formation by clinically isolated methicillin-resistant and -sensitive strains of Staphylococcus aureus. Sci Rep 2018; 8: 2254.
  • Lade H, Park JH, Chung SH, et al. Biofilm Formation by Staphylococcus aureus clinical isolates is differentially affected by glucose and sodium chloride supplemented culture media. J Clin Med 2019; 8: 1853.
  • Tang J, Chen J, Liu J, Zhang R, Yang R, Chen L. Effects of different cultivation conditions on Staphylococcus aureus biofilm formation and diversity of adhesin genes. J Food Safety 2012; 32: 210-8.
  • Sudagidan M, Çavuşoğlu C, Bacakoğlu F. Investigation of the virulence genes in methicillin-resistant Staphylococcus aureus strains isolated from biomaterial surfaces. Mikrobiyol Bul 2008; 42: 29-39.
  • Aires-De-Sousa M, Boye K, De Lencastre H, et al. High interlaboratory reproducibility of DNA sequence-based typing of bacteria in a multicenter study. J Clin Microbiol 2006; 44: 619-21.
  • Sudagidan M, Aydin A. Screening virulence properties of Staphylococci isolated from meat and meat products. Wien Tierärztl Mschr 2009; 96: 128-34.
  • Hookey J V, Richardson JF, Cookson BD. Molecular typing of Staphylococcus aureus based on PCR restriction fragment length polymorphism and DNA sequence analysis of the coagulase gene. J Clin Microbiol 1998; 36: 1083-9.
  • Lem P, Spiegelman J, Toye B, Ramotar K. Direct detection of mecA, nuc and 16S rRNA genes in BacT/Alert blood culture bottles. Diagn Microbiol Infect Dis 2001; 41: 165-8.
  • Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing Document M100. 30th ed. Pennsylvania, USA; 2020: 58-66.
  • Stepanović S, Djukić V, Djordjević V, Djukić S. Influence of the incubation atmosphere on the production of biofilm by Staphylococci. Clin Microbiol Infect 2003; 9: 955-8.
  • Sudagidan M, Erdem İ, Çavuşoğlu C, Çiftçioğlu M. Investigation of the surface properties of Staphylococcus epidermidis strains isolated from biomaterials. Mikrobiyol Bul 2010; 44: 93-103.
  • Şahin R, Kaleli İ. Comparison of genotypic and phenotypic characteristics in biofilm production of Staphylococcus aureus isolates. Mikrobiyol Bul 2018; 52: 111-22.
  • Lee S, Choi KH, Yoon Y. Effect of NaCl on biofilm formation of the isolate from Staphylococcus aureus outbreak linked to ham. Korean J Food Sci Anim Resour 2014; 34: 257-61.
  • Knobloch JKM, Horstkotte MA, Rohde H, Mack D. Evaluation of different detection methods of biofilm formation in Staphylococcus aureus. Med Microbiol Immunol 2002; 191: 101-6.
  • Waldrop R, McLaren A, Calara F, McLemore R. Biofilm growth has a threshold response to glucose in vitro. Clin Orthop Relat Res 2014; 472: 3305-10.
  • Agarwal A, Jain A. Glucose & sodium chloride induced biofilm production & ica operon in clinical isolates of Staphylococci. Indian J Med Res 2013; 138: 262-6.
  • McCarthy H, Rudkin JK, Black NS, Gallagher L, O’Neill E, O’Gara JP. Methicillin resistance and the biofilm phenotype in Staphylococcus aureus. Front Cell Infect Microbiol 2015; 5: 1-9.
  • Singh A, Prakash P, Achra A, Singh G, Das A, Singh R. Standardization and classification of in vitro biofilm formation by clinical isolates of Staphylococcus aureus. J Glob Infect Dis 2017; 9: 93-101.
  • Vázquez-Sánchez D, Habimana O, Holck A. Impact of food-related environmental factors on the adherence and biofilm formation of natural Staphylococcus aureus isolates. Curr Microbiol 2013; 66: 110-21.
  • Xu H, Zou Y, Lee HY, Ahn J. Effect of NaCl on the biofilm formation by foodborne pathogens. J Food Sci 2010; 75: 580-5.
  • Lee J-S, Bae Y-M, Lee S-Y, Lee S-Y. Biofilm formation of Staphylococcus aureus on various surfaces and their resistance to chlorine sanitizer. J Food Sci 2015; 80: M2279-86.
  • Sudagidan M, Ozalp VC, Öztürk O, et al. Bacterial surface, biofilm and virulence properties of Listeria monocytogenes strains isolated from smoked salmon and fish contact surfaces. Food Biosci 2021; 101021.

Determination of the effect of glucose, sucrose and sodium chloride addition in different culture media on biofilm formation of methicillin resistant Staphylococcus aureus

Year 2022, , 152 - 157, 29.03.2022
https://doi.org/10.38053/acmj.1037458

Abstract

Aim: Staphylococcus aureus is the most clinically important bacterium among Staphylococci, colonizing 15-36% of the entire population. Biofilm formation is an important virulence factor of S. aureus. Treatment of biofilm-associated S. aureus infections is difficult. This study aimed to investigate the effects of glucose, sucrose, and sodium chloride (NaCl) addition to seven different media on biofilm formation capacity of methicillin resistant S. aureus (MRSA) strains.
Material and Method: Biochemical and molecular methods (spa, nuc, coa, and mecA PCR) were used to identify S. aureus strains. Cefoxitin resistance was determined by the agar disc diffusion method. Biofilm formation of the strains was investigated in 7 different media (Tryptone soya broth (TSB), TSB+1% sucrose, TSB+1% glucose, TSB+4% NaCl, Brain Heart Infusion broth (BHI), BHI+1% glucose, and BHI+4% NaCl) using the microplate test. The growth of strains in 7 different media was determined at 600 nm, and then 96-well microplates were stained with crystal violet and their biofilm formation abilities were determined by measuring absorbance values ​​at 590 nm.
Results: In this study, 53 strains containing spa, nuc, coa, and mecA genes were identified as MRSA with resistance to cefoxitin. When biofilm formation was examined in seven different media using the microplate test, the biofilm formation ability of MRSA strains increased significantly with glucose and sucrose addition to TSB and BHI (P<0.05), while the addition of 4% NaCl decreased the biofilm formation (P<0.05). When the media were compared, it was determined that BHI increased bacterial growth and biofilm formation compared to TSB.
Conclusion: It was concluded that the biofilm formation abilities of MRSA strains increased especially in the presence of glucose. The results showed that biofilm production capacity is affected by environmental factors, especially nutrient content in used media.

References

  • Botelho-Nevers E, Gagnaire J, Verhoeven PO, et al. Decolonization of Staphylococcus aureus carriage. Med Mal Infect 2017; 47: 305-10.
  • Horn J, Stelzner K, Rudel T, Fraunholz M. Inside job: Staphylococcus aureus host-pathogen interactions. Int J Med Microbiol 2018; 308: 607-24.
  • Zainulabdeen SMS, Dakl AA. Pathogenicity and virulence factors in Staphylococcus aureus. Muthanna J Pure Sci 2021; 8: 109-19.
  • Jin T, Mohammad M, Pullerits R, Ali A. Bacteria and host interplay in Staphylococcus aureus septic arthritis and sepsis. Pathogens 2021; 10: 1-25.
  • Kanyo EC, Nowacki AS, Gordon SM, Shrestha NK. Comparison of mortality, stroke, and relapse for methicillin-resistant versus methicillin-susceptible Staphylococcus aureus infective endocarditis: a retrospective cohort study. Diagn Microbiol Infect Dis 2021; 100: 115395.
  • Naicker PR, Karayem K, Hoek KGP, Harvey J, Wasserman E. Biofilm formation in invasive Staphylococcus aureus isolates is associated with the clonal lineage. Microb Pathog 2016; 90: 41-9.
  • O’Neill E, Pozzi C, Houston P, et al. A novel Staphylococcus aureus biofilm phenotype mediated by the fibronectin-binding proteins, FnBPA and FnBPB. J Bacteriol 2008; 190: 3835-50.
  • Pourzal F, Haghkhah M. Prevalence of biofilm associated genes in different isolates of Staphylococcus aureus. J Med Bacteriol 2020; 9: 9-15.
  • Taj Y, Essa F, Aziz F, Kazmi SU. Study on biofilm-forming properties of clinical isolates of Staphylococcus aureus. J Infect Dev Ctries 2012; 6: 403-9.
  • Oniciuc EA, Cerca N, Nicolau AI. Compositional analysis of biofilms formed by Staphylococcus aureus isolated from food sources. Front Microbiol 2016; 7: 2014-7.
  • Otto M. Staphylococcal biofilms. Microbiol Spectrum 2018; 6: GPP3-0023-2018.
  • Avila-Novoa MG, González-Gómez JP, Guerrero-Medina PJ, et al. Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) strains isolated from dairy products: Relationship of ica-dependent/independent and components of biofilms produced in vitro. Int Dairy J 2021; 119: 105066.
  • Azmi K, Qrei W, Abdeen Z. Screening of genes encoding adhesion factors and biofilm production in methicillin resistant strains of Staphylococcus aureus isolated from Palestinian patients. BMC Genomics 2019; 20: 1-12.
  • Nyenje ME, Green E, Ndip RN. Evaluation of the effect of different growth media and temperature on the suitability of biofilm formation by Enterobacter cloacae strains isolated from food samples in South Africa. Molecules 2013; 18: 9582-93.
  • Sugimoto S, Sato F, Miyakawa R, et al. Broad impact of extracellular DNA on biofilm formation by clinically isolated methicillin-resistant and -sensitive strains of Staphylococcus aureus. Sci Rep 2018; 8: 2254.
  • Lade H, Park JH, Chung SH, et al. Biofilm Formation by Staphylococcus aureus clinical isolates is differentially affected by glucose and sodium chloride supplemented culture media. J Clin Med 2019; 8: 1853.
  • Tang J, Chen J, Liu J, Zhang R, Yang R, Chen L. Effects of different cultivation conditions on Staphylococcus aureus biofilm formation and diversity of adhesin genes. J Food Safety 2012; 32: 210-8.
  • Sudagidan M, Çavuşoğlu C, Bacakoğlu F. Investigation of the virulence genes in methicillin-resistant Staphylococcus aureus strains isolated from biomaterial surfaces. Mikrobiyol Bul 2008; 42: 29-39.
  • Aires-De-Sousa M, Boye K, De Lencastre H, et al. High interlaboratory reproducibility of DNA sequence-based typing of bacteria in a multicenter study. J Clin Microbiol 2006; 44: 619-21.
  • Sudagidan M, Aydin A. Screening virulence properties of Staphylococci isolated from meat and meat products. Wien Tierärztl Mschr 2009; 96: 128-34.
  • Hookey J V, Richardson JF, Cookson BD. Molecular typing of Staphylococcus aureus based on PCR restriction fragment length polymorphism and DNA sequence analysis of the coagulase gene. J Clin Microbiol 1998; 36: 1083-9.
  • Lem P, Spiegelman J, Toye B, Ramotar K. Direct detection of mecA, nuc and 16S rRNA genes in BacT/Alert blood culture bottles. Diagn Microbiol Infect Dis 2001; 41: 165-8.
  • Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing Document M100. 30th ed. Pennsylvania, USA; 2020: 58-66.
  • Stepanović S, Djukić V, Djordjević V, Djukić S. Influence of the incubation atmosphere on the production of biofilm by Staphylococci. Clin Microbiol Infect 2003; 9: 955-8.
  • Sudagidan M, Erdem İ, Çavuşoğlu C, Çiftçioğlu M. Investigation of the surface properties of Staphylococcus epidermidis strains isolated from biomaterials. Mikrobiyol Bul 2010; 44: 93-103.
  • Şahin R, Kaleli İ. Comparison of genotypic and phenotypic characteristics in biofilm production of Staphylococcus aureus isolates. Mikrobiyol Bul 2018; 52: 111-22.
  • Lee S, Choi KH, Yoon Y. Effect of NaCl on biofilm formation of the isolate from Staphylococcus aureus outbreak linked to ham. Korean J Food Sci Anim Resour 2014; 34: 257-61.
  • Knobloch JKM, Horstkotte MA, Rohde H, Mack D. Evaluation of different detection methods of biofilm formation in Staphylococcus aureus. Med Microbiol Immunol 2002; 191: 101-6.
  • Waldrop R, McLaren A, Calara F, McLemore R. Biofilm growth has a threshold response to glucose in vitro. Clin Orthop Relat Res 2014; 472: 3305-10.
  • Agarwal A, Jain A. Glucose & sodium chloride induced biofilm production & ica operon in clinical isolates of Staphylococci. Indian J Med Res 2013; 138: 262-6.
  • McCarthy H, Rudkin JK, Black NS, Gallagher L, O’Neill E, O’Gara JP. Methicillin resistance and the biofilm phenotype in Staphylococcus aureus. Front Cell Infect Microbiol 2015; 5: 1-9.
  • Singh A, Prakash P, Achra A, Singh G, Das A, Singh R. Standardization and classification of in vitro biofilm formation by clinical isolates of Staphylococcus aureus. J Glob Infect Dis 2017; 9: 93-101.
  • Vázquez-Sánchez D, Habimana O, Holck A. Impact of food-related environmental factors on the adherence and biofilm formation of natural Staphylococcus aureus isolates. Curr Microbiol 2013; 66: 110-21.
  • Xu H, Zou Y, Lee HY, Ahn J. Effect of NaCl on the biofilm formation by foodborne pathogens. J Food Sci 2010; 75: 580-5.
  • Lee J-S, Bae Y-M, Lee S-Y, Lee S-Y. Biofilm formation of Staphylococcus aureus on various surfaces and their resistance to chlorine sanitizer. J Food Sci 2015; 80: M2279-86.
  • Sudagidan M, Ozalp VC, Öztürk O, et al. Bacterial surface, biofilm and virulence properties of Listeria monocytogenes strains isolated from smoked salmon and fish contact surfaces. Food Biosci 2021; 101021.
There are 36 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Research Articles
Authors

Ali Doğan Dursun 0000-0001-9056-0025

Samet Uçak 0000-0002-3461-2481

Orhan Yavuz 0000-0002-9263-657X

Mediha Nur Zafer Yurt 0000-0002-3064-3811

Behiye Büşra Taşbaşı 0000-0002-2076-3756

Elif Esma Acar 0000-0002-6264-7550

Veli Cengiz Özalp 0000-0002-7659-5990

Mert Sudağıdan 0000-0002-3980-8344

Publication Date March 29, 2022
Published in Issue Year 2022

Cite

AMA Dursun AD, Uçak S, Yavuz O, Yurt MNZ, Taşbaşı BB, Acar EE, Özalp VC, Sudağıdan M. Determination of the effect of glucose, sucrose and sodium chloride addition in different culture media on biofilm formation of methicillin resistant Staphylococcus aureus. Anatolian Curr Med J / ACMJ / acmj. March 2022;4(2):152-157. doi:10.38053/acmj.1037458

TR DİZİN ULAKBİM and International Indexes (1b)

Interuniversity Board (UAK) Equivalency:  Article published in Ulakbim TR Index journal [10 POINTS], and Article published in other (excuding 1a, b, c) international indexed journal (1d) [5 POINTS]

Note: Our journal is not WOS indexed and therefore is not classified as Q.

You can download Council of Higher Education (CoHG) [Yüksek Öğretim Kurumu (YÖK)] Criteria) decisions about predatory/questionable journals and the author's clarification text and journal charge policy from your browser. https://dergipark.org.tr/tr/journal/3449/file/4924/show

Journal Indexes and Platforms: 

TR Dizin ULAKBİM, Google Scholar, Crossref, Worldcat (OCLC), DRJI, EuroPub, OpenAIRE, Turkiye Citation Index, Turk Medline, ROAD, ICI World of Journal's, Index Copernicus, ASOS Index, General Impact Factor, Scilit.


The indexes of the journal's are;

18596


asos-index.png

f9ab67f.png

WorldCat_Logo_H_Color.png

      logo-large-explore.png

images?q=tbn:ANd9GcQgDnBwx0yUPRKuetgIurtELxYERFv20CPAUcPe4jYrrJiwXzac8rGXlzd57gl8iikb1Tk&usqp=CAU

index_copernicus.jpg


84039476_619085835534619_7808805634291269632_n.jpg





The platforms of the journal's are;

COPE.jpg

images?q=tbn:ANd9GcTbq2FM8NTdXECzlOUCeKQ1dvrISFL-LhxhC7zy1ZQeJk-GGKSx2XkWQvrsHxcfhtfHWxM&usqp=CAUicmje_1_orig.png

cc.logo.large.png

ncbi.png

ORCID_logo.pngimages?q=tbn:ANd9GcQlwX77nfpy3Bu9mpMBZa0miWT2sRt2zjAPJKg2V69ODTrjZM1nT1BbhWzTVPsTNKJMZzQ&usqp=CAU


images?q=tbn:ANd9GcTaWSousoprPWGwE-qxwxGH2y0ByZ_zdLMN-Oq93MsZpBVFOTfxi9uXV7tdr39qvyE-U0I&usqp=CAU






The
 
indexes/platforms of the journal are;

TR Dizin Ulakbim, Crossref (DOI), Google Scholar, EuroPub, Directory of Research Journal İndexing (DRJI), Worldcat (OCLC), OpenAIRE, ASOS Index, ROAD, Turkiye Citation Index, ICI World of Journal's, Index Copernicus, Turk Medline, General Impact Factor, Scilit 


EBSCO, DOAJ, OAJI is under evaluation.

Journal articles are evaluated as "Double-Blind Peer Review"