Research Article
BibTex RIS Cite

Year 2026, Issue: Advanced Online Publication
https://doi.org/10.30519/ahtr.1542430

Abstract

References

  • Ahn, H., Kim, K.J., & Han, I. (2006). Mobile advertisement recommender system using collaborative filtering: MAR-CF. In: Proceedings of the 2006 Conference of the Korea Society of Management Information Systems, pp 709-715.
  • Alyari, F., & Navimipour, N.J. (2018). Recommender systems: A systematic review of the state-of-the-art literature and suggestions for future research. Kybernetes, 47(5), 985-1017. https://doi.org/10.1108/K-06-2017-0196
  • Arentze, T., Kemperman, A., & Aksenov, P. (2018). Estimating a latent-class user model for travel recommender systems. Information Technology & Tourism, 19, 61-82. https://doi.org/10.1007/s40558-018-0105-z
  • Aygün, C., & Yıldız, O. (2016). Development of content-based book recommendation system using genetic algorithm. 24th Signal Processing and Communication Application Conference (SIU), Proceedings Book (pp.1025-1028). https://doi.org/10.1109/SIU.2016.7495917
  • Bahramian, Z., Abbaspour, R. A., & Claramunt, C. (2018). Toward geospatial collaborative tourism recommender systems. In S. Chaudhuri, & N. Ray (Eds.), GIS Applications in the Tourism and Hospitality Industry (pp.212-248). Hershey, PA: IGI Global. https://doi.org/10.4018/978-1-5225-5088-4.ch010
  • Baig, M.Z., Khatoon, H., Raza, S.S., & Pasta, M.Q. (2019). Theoretical foundations for recommender Systems. In O. Khalid, S.U. Khan, & A.Y. Zomaya (Eds.), Big data recommender systems, Volume: 1. Algorithms, Architectures, Big Data, Security and Trust. (pp. 9-26). London: The Institution of Engineering and Technology. https://doi.org/10.1049/PBPC035F_ch2
  • Borràs, J., Moreno, A., & Valls, A. (2014). Intelligent tourism recommender systems: A survey. Expert Systems with Applications, 41(16), 7370-7389. https://doi.org/10.1016/j.eswa.2014.06.007
  • Braunhofer, M., Elahi, M., & Ricci, F. (2015). User personality and the new user problem in a context-aware point of interest recommender system. In I. Tussyadiah, & A. Inversini (Eds.), Information and Communication Technologies in Tourism (pp. 537-549). Springer, Cham. https://doi.org/10.1007/978-3-319-14343-9_39
  • Chaturvedi, R., Verma, S., Ali, F., & Kumar, S. (2024). Reshaping tourist experience with AI-enabled technologies: A comprehensive review and future research agenda. International Journal of Human–Computer Interaction, 40(18), 5517–5533. https://doi.org/10.1080/10447318.2023.2238353
  • Dongsheng, L., Jianxun L., Le, Z., Kan R., Tun, L., Tao, W., & Xing, X. (2024). Recommender systems: Frontiers and practices. Singapore: Springer Nature Pte Ltd. https://doi.org/10.1007/978-981-99-8964-5
  • Elahi, M., Khosh Kholgh, D., Kiarostami, M. S., Oussalah, M., & Saghari, S. (2023). Hybrid recommendation by incorporating the sentiment of product reviews. Information Sciences, 625, 738-756. https://doi.org/10.1016/j.ins.2023.01.051
  • Esmaeili, E., Mardani, S., Golpayegani, S.A.H., & Madar, Z.Z. (2020). A novel tourism recommender system in the context of social commerce. Expert Systems with Applications, 149, 113301. https://doi.org/10.1016/j.eswa.2020.113301
  • Garcia, I., Sebastia, L., & Onaindia, E. (2011). On the design of individual and group recommender systems for tourism. Expert Systems with Applications, 38(6), 7683-7692. https://doi.org/10.1016/j.eswa.2010.12.143
  • Gavalas, D., Konstantopoulos, C., Mastakas, K., & Pantziou, G. (2014). Mobile recommender systems in tourism. Journal of Network and Computer Applications, 39, 319-333. https://doi.org/10.1016/j.jnca.2013.04.006
  • Jalilvand, M.R., & Ghasemi, H. (2024). Augmented reality technology in tourism and hospitality research: a review from 2010 to 2024. Journal of Science and Technology Policy Management, Vol. ahead-of-print No. ahead-of-print. https://doi.org/10.1108/JSTPM-04-2024-0136
  • Kar, M. Roy, & S. Datta (2024). Recommender Systems: Algorithms and their Applications, Transactions on Computer Systems and Networks. Singapore: Springer Nature Pte Ltd.
  • Kar, P., Roy, M., & Datta, S. (2024a). Collaborative filtering and content-based systems. In P. Kar, M. Roy, & S. Datta (Eds.), Recommender Systems: Algorithms and their Applications, Transactions on Computer Systems and Networks (pp. 19-30). Singapore: Springer Nature Pte Ltd. https://doi.org/10.1007/978-981-97-0538-2_3
  • Kar, P., Roy, M., & Datta, S. (2024b). Overview of recommendation systems. In P. Kar, M. Roy, & S. Datta (Eds.), Recommender Systems: Algorithms and their Applications, Transactions on Computer Systems and Networks (pp. 11-17). Singapore: Springer Nature Pte Ltd. https://doi.org/10.1007/978-981-97-0538-2_2
  • Kirilenko, A. P., Stepchenkova, S. O., Kim, H., & Li, X. (Robert). (2018). Automated sentiment analysis in tourism: Comparison of approaches. Journal of Travel Research, 57(8), 1012-1025. https://doi.org/10.1177/0047287517729757
  • Knani, M., Echchakoui, S., & Ladhari, R. (2022). Artificial intelligence in tourism and hospitality: Bibliometric analysis and research agenda. International Journal of Hospitality Management, 107, 103317. https://doi.org/10.1016/j.ijhm.2022.103317
  • Ko, H., Lee, S., Park, Y., & Choi, A. (2022). A survey of recommendation systems: Recommendation models, techniques, and application fields. Electronics, 11(1), 141. https://doi.org/10.3390/electronics11010141
  • Kumar, P.P., Vairachilai, S., Potluri, S., & Mohanty, S.N. (2021). Recommender Systems: Algorithms and Applications. Oxon, UK: CRC Press.
  • Leong, L. Y., Hew, T. S., Tan, G. W. H., Ooi, K. B., & Lee, V. H. (2021). Tourism research progress–A bibliometric analysis of tourism review publications. Tourism Review, 76(1), 1-26. https://doi.org/10.1108/TR-11-2019-0449
  • Lu, J., Wu, D., Mao, M., Wang, W., & Zhang, G. (2015). Recommender system application developments: A survey. Decision Support Systems, 74, 12-32, https://doi.org/10.1016/j.dss.2015.03.008
  • Massimo, D., & Ricci, F. (2022). Building effective recommender systems for tourists. AI Magazine, 43(2), 209-24. https://doi.org/10.1002/aaai.12057
  • Mavrić, B., Öğretmenoğlu, M., & Akova, O. (2021). Bibliometric analysis of slow tourism. Advances in Hospitality and Tourism Research (AHTR), 9(1), 157-178. https://doi.org/10.30519/ahtr.794656
  • Moreno, A., Valls, A., Isern, D., Marin, L., & Borràs, J. (2013). SigTur/E-Destination: Ontology-based personalized recommendation of tourism and leisure activities, Engineering Applications of Artificial Intelligence, 26(1), 633-651. https://doi.org/10.1016/j.engappai.2012.02.014
  • Nilashi, M., bin Ibrahim, O., Ithnin, N., & Sarmin, N. H. (2015). A multi-criteria collaborative filtering recommender system for the tourism domain using Expectation Maximization (EM) and PCA-ANFIS. Electronic Commerce Research and Applications, 14(6), 542-562. https://doi.org/10.1016/j.elerap.2015.08.004
  • Niñerola, A., Sánchez-Rebull, M. V., & Hernández-Lara, A. B. (2019). Tourism research on sustainability: A bibliometric analysis. Sustainability, 11(5), 1377. https://doi.org/10.3390/su11051377
  • Ning, X., Desrosiers, C., & Karypis, G. (2015). A comprehensive survey of neighborhood-based recommendation methods. (pp 37-76) In: Ricci F., Rokach L. & Shapira B. (Eds.) Recommender Systems Handbook. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7637-6_2
  • Noguera, J. M., Barranco, M. J., Segura, R. J., & Martínez, L. (2012). A mobile 3D-GIS hybrid recommender system for tourism. Information Sciences, 215, 37-52. https://doi.org/10.1016/j.ins.2012.05.010
  • Noorian, A. (2024). Integrating user reviews and risk factors from social networks in a multi-objective recommender system. Electronic Commerce Research. https://doi.org/10.1007/s10660-024-09944-0
  • Núñez, J. C. S., Gómez‐Pulido, J. A., & Ramírez, R.R. (2024). Machine learning applied to tourism: A systematic review. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 14(5), e1549. https://doi.org/10.1002/widm.1549
  • Renjith, S., Sreekumar, A., & Jathavedan, M. (2020). An extensive study on the evolution of context-aware personalized travel recommender systems. Information Processing & Management, 57(1), 102078. https://doi.org/10.1016/j.ipm.2019.102078
  • Ricci, F. (2022). Recommender systems in tourism. In Z. Xiang et al. (eds.), Handbook of e-Tourism (pp. 457-474). Switzerland: Springer Nature AG. https://doi.org/10.1007/978-3-030-05324-6_26-1
  • Ricci, F., Rokach L., & Shapira B. (2015). Recommender Systems: Introduction and Challenges. In F. Ricci, L. Rokach, & B. Shapira (Eds.), Recommender Systems Handbook (pp. 1-34). Boston, MA: Springer. https://doi.org/10.1007/978-1-4899-7637-6
  • Ricci, F., Rokach, L., & Shapira, B. (2022). Recommender Systems Handbook (3rd Ed.). Springer. https://doi.org/10.1007/978-1-0716-2197-4
  • Rosário, A. T., & Dias, J. C. (2024). Exploring the landscape of smart tourism: A systematic bibliometric review of the literature of the Internet of Things. Administrative Sciences, 14(2), 22. https://doi.org/10.3390/admsci14020022
  • Roy, D., & Dutta, M. A (2022). Systematic review and research perspective on recommender systems. Journal of Big Data, 9(59), 1-36. https://doi.org/10.1186/s40537-022-00592-5
  • Sampaio, C., Farinha, L., & Sebastião, J. R. (2023). Tourism industry at times of crisis: A bibliometric approach and research agenda. Journal of Hospitality and Tourism Insights, 6(4), 1464–1484. https://doi.org/10.1108/JHTI-08-2021-0223
  • Shekhar, S. (2023). Bibliometric analysis and literature review of mountain tourism. Advances in Hospitality and Tourism Research (AHTR), 11(2), 317-340. https://doi.org/10.30519/ahtr.1143501
  • Sinha, B.B., & Dhanalakshmi, R. (2022). Evolution of recommender paradigm optimization over time. Journal of King Saud University-Computer and Information Sciences, 34(4), 1047-1059. https://doi.org/10.1016/j.jksuci.2019.06.008
  • Solano-Barliza, A., Arregocés-Julio, I., Aarón-Gonzalvez, M., Zamora-Musa, R., De-La-Hoz-Franco, E., Escorcia-Gutierrez, J., & Acosta-Coll, M. (2024). Recommender systems applied to the tourism industry: A literature review. Cogent Business & Management, 11(1). https://doi.org/10.1080/23311975.2024.2367088
  • Subramaniyaswamy, V., Manogaran, G., Logesh, R., Vijayakumar, V., Chilamkurti, N., Malathi, D., & Senthilselvan, N. (2019). An ontology-driven personalized food recommendation in IoT-based healthcare system. The Journal of Supercomputing, 75(6), 3184-3216. https://doi.org/10.1007/s11227-018-2331-8 (Retracted article. See vol. 79, pg. 5847, 2023)
  • Wang, S., Wang, Y., Sivrikaya, F., Albayrak, S., & Anelli, V.W. (2023). Data science for next-generation recommender systems. International Journal of Data Science and Analytics, 16, 135-145. https://doi.org/10.1007/s41060-023-00404-w
  • Zhang, D. (2024). Automated Tourism Path Recommendation System Using Convolutional Neural Network based Bidirectional Long Short-Term Memory. 2024 Second International Conference on Data Science and Information System (ICDSIS), Hassan, India, 2024, pp. 1-5. https://doi.org/10.1109/ICDSIS61070.2024.10594175
  • Zhang, Q., Lu, J., & Jin, Y. (2021). Artificial intelligence in recommender systems. Complex & Intelligent Systems, 7, 439-457. https://doi.org/10.1007/s40747-020-00212-w

Bibliometric Analysis of Publications on Recommender Systems in Tourism: Web of Science Case

Year 2026, Issue: Advanced Online Publication
https://doi.org/10.30519/ahtr.1542430

Abstract

This study conducts a comprehensive bibliometric analysis of 495 scholarly publications on recommender systems (RSs) in tourism indexed in the Web of Science database, with the aim of mapping research trends, identifying influential contributions, and revealing key scholarly networks. The findings indicate that artificial intelligence (AI) and machine learning (ML) constitute the dominant technological drivers, with computer science and information systems serving as the leading disciplinary domains. Notably, there is a growing interdisciplinary integration with social sciences, environmental studies, and business-related research. Europe and Asia emerge as the primary contributors, particularly Spain, China, and Italy, which demonstrate strong research output and collaborative networks. Co-authorship and co-citation analyses reveal four major research clusters centred on hybrid recommendation models, deep learning approaches, and personalized user experience optimization. The results underscore the field’s accelerating interdisciplinary expansion and its concentration within specific global hubs. By systematically mapping the intellectual landscape, identifying existing research gaps, and outlining future research trajectories, this study offers valuable insights for academics, practitioners, and policymakers seeking to understand the evolution, current state, and potential impact of RSs within the tourism sector.

References

  • Ahn, H., Kim, K.J., & Han, I. (2006). Mobile advertisement recommender system using collaborative filtering: MAR-CF. In: Proceedings of the 2006 Conference of the Korea Society of Management Information Systems, pp 709-715.
  • Alyari, F., & Navimipour, N.J. (2018). Recommender systems: A systematic review of the state-of-the-art literature and suggestions for future research. Kybernetes, 47(5), 985-1017. https://doi.org/10.1108/K-06-2017-0196
  • Arentze, T., Kemperman, A., & Aksenov, P. (2018). Estimating a latent-class user model for travel recommender systems. Information Technology & Tourism, 19, 61-82. https://doi.org/10.1007/s40558-018-0105-z
  • Aygün, C., & Yıldız, O. (2016). Development of content-based book recommendation system using genetic algorithm. 24th Signal Processing and Communication Application Conference (SIU), Proceedings Book (pp.1025-1028). https://doi.org/10.1109/SIU.2016.7495917
  • Bahramian, Z., Abbaspour, R. A., & Claramunt, C. (2018). Toward geospatial collaborative tourism recommender systems. In S. Chaudhuri, & N. Ray (Eds.), GIS Applications in the Tourism and Hospitality Industry (pp.212-248). Hershey, PA: IGI Global. https://doi.org/10.4018/978-1-5225-5088-4.ch010
  • Baig, M.Z., Khatoon, H., Raza, S.S., & Pasta, M.Q. (2019). Theoretical foundations for recommender Systems. In O. Khalid, S.U. Khan, & A.Y. Zomaya (Eds.), Big data recommender systems, Volume: 1. Algorithms, Architectures, Big Data, Security and Trust. (pp. 9-26). London: The Institution of Engineering and Technology. https://doi.org/10.1049/PBPC035F_ch2
  • Borràs, J., Moreno, A., & Valls, A. (2014). Intelligent tourism recommender systems: A survey. Expert Systems with Applications, 41(16), 7370-7389. https://doi.org/10.1016/j.eswa.2014.06.007
  • Braunhofer, M., Elahi, M., & Ricci, F. (2015). User personality and the new user problem in a context-aware point of interest recommender system. In I. Tussyadiah, & A. Inversini (Eds.), Information and Communication Technologies in Tourism (pp. 537-549). Springer, Cham. https://doi.org/10.1007/978-3-319-14343-9_39
  • Chaturvedi, R., Verma, S., Ali, F., & Kumar, S. (2024). Reshaping tourist experience with AI-enabled technologies: A comprehensive review and future research agenda. International Journal of Human–Computer Interaction, 40(18), 5517–5533. https://doi.org/10.1080/10447318.2023.2238353
  • Dongsheng, L., Jianxun L., Le, Z., Kan R., Tun, L., Tao, W., & Xing, X. (2024). Recommender systems: Frontiers and practices. Singapore: Springer Nature Pte Ltd. https://doi.org/10.1007/978-981-99-8964-5
  • Elahi, M., Khosh Kholgh, D., Kiarostami, M. S., Oussalah, M., & Saghari, S. (2023). Hybrid recommendation by incorporating the sentiment of product reviews. Information Sciences, 625, 738-756. https://doi.org/10.1016/j.ins.2023.01.051
  • Esmaeili, E., Mardani, S., Golpayegani, S.A.H., & Madar, Z.Z. (2020). A novel tourism recommender system in the context of social commerce. Expert Systems with Applications, 149, 113301. https://doi.org/10.1016/j.eswa.2020.113301
  • Garcia, I., Sebastia, L., & Onaindia, E. (2011). On the design of individual and group recommender systems for tourism. Expert Systems with Applications, 38(6), 7683-7692. https://doi.org/10.1016/j.eswa.2010.12.143
  • Gavalas, D., Konstantopoulos, C., Mastakas, K., & Pantziou, G. (2014). Mobile recommender systems in tourism. Journal of Network and Computer Applications, 39, 319-333. https://doi.org/10.1016/j.jnca.2013.04.006
  • Jalilvand, M.R., & Ghasemi, H. (2024). Augmented reality technology in tourism and hospitality research: a review from 2010 to 2024. Journal of Science and Technology Policy Management, Vol. ahead-of-print No. ahead-of-print. https://doi.org/10.1108/JSTPM-04-2024-0136
  • Kar, M. Roy, & S. Datta (2024). Recommender Systems: Algorithms and their Applications, Transactions on Computer Systems and Networks. Singapore: Springer Nature Pte Ltd.
  • Kar, P., Roy, M., & Datta, S. (2024a). Collaborative filtering and content-based systems. In P. Kar, M. Roy, & S. Datta (Eds.), Recommender Systems: Algorithms and their Applications, Transactions on Computer Systems and Networks (pp. 19-30). Singapore: Springer Nature Pte Ltd. https://doi.org/10.1007/978-981-97-0538-2_3
  • Kar, P., Roy, M., & Datta, S. (2024b). Overview of recommendation systems. In P. Kar, M. Roy, & S. Datta (Eds.), Recommender Systems: Algorithms and their Applications, Transactions on Computer Systems and Networks (pp. 11-17). Singapore: Springer Nature Pte Ltd. https://doi.org/10.1007/978-981-97-0538-2_2
  • Kirilenko, A. P., Stepchenkova, S. O., Kim, H., & Li, X. (Robert). (2018). Automated sentiment analysis in tourism: Comparison of approaches. Journal of Travel Research, 57(8), 1012-1025. https://doi.org/10.1177/0047287517729757
  • Knani, M., Echchakoui, S., & Ladhari, R. (2022). Artificial intelligence in tourism and hospitality: Bibliometric analysis and research agenda. International Journal of Hospitality Management, 107, 103317. https://doi.org/10.1016/j.ijhm.2022.103317
  • Ko, H., Lee, S., Park, Y., & Choi, A. (2022). A survey of recommendation systems: Recommendation models, techniques, and application fields. Electronics, 11(1), 141. https://doi.org/10.3390/electronics11010141
  • Kumar, P.P., Vairachilai, S., Potluri, S., & Mohanty, S.N. (2021). Recommender Systems: Algorithms and Applications. Oxon, UK: CRC Press.
  • Leong, L. Y., Hew, T. S., Tan, G. W. H., Ooi, K. B., & Lee, V. H. (2021). Tourism research progress–A bibliometric analysis of tourism review publications. Tourism Review, 76(1), 1-26. https://doi.org/10.1108/TR-11-2019-0449
  • Lu, J., Wu, D., Mao, M., Wang, W., & Zhang, G. (2015). Recommender system application developments: A survey. Decision Support Systems, 74, 12-32, https://doi.org/10.1016/j.dss.2015.03.008
  • Massimo, D., & Ricci, F. (2022). Building effective recommender systems for tourists. AI Magazine, 43(2), 209-24. https://doi.org/10.1002/aaai.12057
  • Mavrić, B., Öğretmenoğlu, M., & Akova, O. (2021). Bibliometric analysis of slow tourism. Advances in Hospitality and Tourism Research (AHTR), 9(1), 157-178. https://doi.org/10.30519/ahtr.794656
  • Moreno, A., Valls, A., Isern, D., Marin, L., & Borràs, J. (2013). SigTur/E-Destination: Ontology-based personalized recommendation of tourism and leisure activities, Engineering Applications of Artificial Intelligence, 26(1), 633-651. https://doi.org/10.1016/j.engappai.2012.02.014
  • Nilashi, M., bin Ibrahim, O., Ithnin, N., & Sarmin, N. H. (2015). A multi-criteria collaborative filtering recommender system for the tourism domain using Expectation Maximization (EM) and PCA-ANFIS. Electronic Commerce Research and Applications, 14(6), 542-562. https://doi.org/10.1016/j.elerap.2015.08.004
  • Niñerola, A., Sánchez-Rebull, M. V., & Hernández-Lara, A. B. (2019). Tourism research on sustainability: A bibliometric analysis. Sustainability, 11(5), 1377. https://doi.org/10.3390/su11051377
  • Ning, X., Desrosiers, C., & Karypis, G. (2015). A comprehensive survey of neighborhood-based recommendation methods. (pp 37-76) In: Ricci F., Rokach L. & Shapira B. (Eds.) Recommender Systems Handbook. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7637-6_2
  • Noguera, J. M., Barranco, M. J., Segura, R. J., & Martínez, L. (2012). A mobile 3D-GIS hybrid recommender system for tourism. Information Sciences, 215, 37-52. https://doi.org/10.1016/j.ins.2012.05.010
  • Noorian, A. (2024). Integrating user reviews and risk factors from social networks in a multi-objective recommender system. Electronic Commerce Research. https://doi.org/10.1007/s10660-024-09944-0
  • Núñez, J. C. S., Gómez‐Pulido, J. A., & Ramírez, R.R. (2024). Machine learning applied to tourism: A systematic review. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 14(5), e1549. https://doi.org/10.1002/widm.1549
  • Renjith, S., Sreekumar, A., & Jathavedan, M. (2020). An extensive study on the evolution of context-aware personalized travel recommender systems. Information Processing & Management, 57(1), 102078. https://doi.org/10.1016/j.ipm.2019.102078
  • Ricci, F. (2022). Recommender systems in tourism. In Z. Xiang et al. (eds.), Handbook of e-Tourism (pp. 457-474). Switzerland: Springer Nature AG. https://doi.org/10.1007/978-3-030-05324-6_26-1
  • Ricci, F., Rokach L., & Shapira B. (2015). Recommender Systems: Introduction and Challenges. In F. Ricci, L. Rokach, & B. Shapira (Eds.), Recommender Systems Handbook (pp. 1-34). Boston, MA: Springer. https://doi.org/10.1007/978-1-4899-7637-6
  • Ricci, F., Rokach, L., & Shapira, B. (2022). Recommender Systems Handbook (3rd Ed.). Springer. https://doi.org/10.1007/978-1-0716-2197-4
  • Rosário, A. T., & Dias, J. C. (2024). Exploring the landscape of smart tourism: A systematic bibliometric review of the literature of the Internet of Things. Administrative Sciences, 14(2), 22. https://doi.org/10.3390/admsci14020022
  • Roy, D., & Dutta, M. A (2022). Systematic review and research perspective on recommender systems. Journal of Big Data, 9(59), 1-36. https://doi.org/10.1186/s40537-022-00592-5
  • Sampaio, C., Farinha, L., & Sebastião, J. R. (2023). Tourism industry at times of crisis: A bibliometric approach and research agenda. Journal of Hospitality and Tourism Insights, 6(4), 1464–1484. https://doi.org/10.1108/JHTI-08-2021-0223
  • Shekhar, S. (2023). Bibliometric analysis and literature review of mountain tourism. Advances in Hospitality and Tourism Research (AHTR), 11(2), 317-340. https://doi.org/10.30519/ahtr.1143501
  • Sinha, B.B., & Dhanalakshmi, R. (2022). Evolution of recommender paradigm optimization over time. Journal of King Saud University-Computer and Information Sciences, 34(4), 1047-1059. https://doi.org/10.1016/j.jksuci.2019.06.008
  • Solano-Barliza, A., Arregocés-Julio, I., Aarón-Gonzalvez, M., Zamora-Musa, R., De-La-Hoz-Franco, E., Escorcia-Gutierrez, J., & Acosta-Coll, M. (2024). Recommender systems applied to the tourism industry: A literature review. Cogent Business & Management, 11(1). https://doi.org/10.1080/23311975.2024.2367088
  • Subramaniyaswamy, V., Manogaran, G., Logesh, R., Vijayakumar, V., Chilamkurti, N., Malathi, D., & Senthilselvan, N. (2019). An ontology-driven personalized food recommendation in IoT-based healthcare system. The Journal of Supercomputing, 75(6), 3184-3216. https://doi.org/10.1007/s11227-018-2331-8 (Retracted article. See vol. 79, pg. 5847, 2023)
  • Wang, S., Wang, Y., Sivrikaya, F., Albayrak, S., & Anelli, V.W. (2023). Data science for next-generation recommender systems. International Journal of Data Science and Analytics, 16, 135-145. https://doi.org/10.1007/s41060-023-00404-w
  • Zhang, D. (2024). Automated Tourism Path Recommendation System Using Convolutional Neural Network based Bidirectional Long Short-Term Memory. 2024 Second International Conference on Data Science and Information System (ICDSIS), Hassan, India, 2024, pp. 1-5. https://doi.org/10.1109/ICDSIS61070.2024.10594175
  • Zhang, Q., Lu, J., & Jin, Y. (2021). Artificial intelligence in recommender systems. Complex & Intelligent Systems, 7, 439-457. https://doi.org/10.1007/s40747-020-00212-w
There are 47 citations in total.

Details

Primary Language English
Subjects Tourism (Other)
Journal Section Research Article
Authors

Murat Çuhadar 0000-0003-0434-1550

Submission Date September 2, 2024
Acceptance Date July 11, 2025
Early Pub Date August 6, 2025
Published in Issue Year 2026 Issue: Advanced Online Publication

Cite

APA Çuhadar, M. (2025). Bibliometric Analysis of Publications on Recommender Systems in Tourism: Web of Science Case. Advances in Hospitality and Tourism Research (AHTR)(Advanced Online Publication). https://doi.org/10.30519/ahtr.1542430


Follow us on our journal's social media account

 social-network-fb-logo-facebook-icon.png