Research Article
BibTex RIS Cite

Yaşlandırılmış PH 13-8 Mo Çeliğinin İşlenmesinde Sertlik ve Kesme Parametrelerinin Etkileri

Year 2025, Volume: 3 Issue: 3, 136 - 153, 31.12.2025
https://doi.org/10.70988/ajeas.1831163

Abstract

Bu çalışmada, çökelme sertleşmesi uygulanabilir martenzitik çeliklerden Corrax malzemesinin farklı ısıl işlemler sonrası oluşan mikroyapı ve sertlik değerleri incelenmiş ve işlenebilirlik performansı kuru ve kaplamasız takım kullanılarak yapılan tornalama deneyleri ile değerlendirilmiştir. Corrax malzemesi uygulanan farklı sıcaklıktaki ısıl işlemlere göre sertlik değeri 50 HRC değerine kadar çıkmış, bu sıcaklıktan daha yüksek sıcaklıkta ise (600℃) yapılan yaşlandırma işlemi ile sertlik değerlerinde aşırı yaşlandırmaya bağlı düşüş görülmüştür. İşlenebilirlik testlerinde ise, en yüksek kesme kuvveti değeri A6 numunesinde elde edilmiştir ve bu durum yaşlandırma esnasında meydana gelen dönüşmüş östenit ile ilişkilendirilmiştir. En düşük kesme kuvveti değerleri genel olarak A0 numunesinde elde edilirken, en yüksek kesme kuvveti A6 numunesinde ölçülmüştür. En düşük yüzey pürüzlülük değerleri ise genel olarak A6 numunesinde ölçülmüştür. Genel olarak yaşlandırma işlemleri kesme kuvvetlerinin artmasına neden olurken, çalışmanın en dikkat çekici sonucu en yüksek kesme kuvvetinin, en sert malzeme yerine A6 numunesinde ölçülmüş olmasıdır ve bu durum kalıntı östenitin, işleme esnasında oluşan deformasyon ile martenzite dönüşmesi ile ilişkilendirilmiştir.

Ethical Statement

-

Supporting Institution

-

Project Number

-

Thanks

-

References

  • G. G. Pantazopoulos, T. Papazoglou, P. Psyllaki, G. Sfantos, S. Antoniou, K. Papadimitriou, J. Sideris, “Sliding wear behaviour of a liquid nitrocarburised precipitation-hardening (PH) stainless steel”, Surface and Coatings Technology, 187:1 (2004) 77–85. doi: 10.1016/j.surfcoat.2004.01.015.
  • R. B. Frandsen, T. Christiansen, M. A. J. Somers, “Simultaneous surface engineering and bulk hardening of precipitation hardening stainless steel”, Surface and Coatings Technology, 200:16–17 (2006) 5160–5169. doi: 10.1016/j.surfcoat.2005.04.038.
  • S. Afkhami, V. Javaheri, E. Dabiri, H. Piili, T. Björk, “Effects of manufacturing parameters, heat treatment, and machining on the physical and mechanical properties of 13Cr10Ni1.7Mo2Al0.4Mn0.4Si steel processed by laser powder bed fusion”, Materials Science and Engineering: A, 832 (2022) 142402. doi: 10.1016/j.msea.2021.142402.
  • D. Dong, C. Chang, H. Wang, X. Yan, W. Ma, M. Liu, S. Deng, J. Gardan, R. Bolot, H. Liao, “Selective laser melting (SLM) of CX stainless steel: Theoretical calculation, process optimization and strengthening mechanism”, Journal of Materials Science & Technology, 73 (2021) 151–164. doi: 10.1016/j.jmst.2020.09.031.
  • A. S. Güldibi, U. Köklü, O. Koçar, E. Kocaman, S. Morkavuk, “The effects of aging process after solution heat treatment on drilling machinability of Corrax steel”, Experimental Techniques, 48:2 (2023) 239–257. doi: 10.1007/S40799-023-00656-Y.
  • V. Seetharaman, M. Sundararaman, R. Krishnan, “Precipitation hardening in a PH 13-8 Mo stainless steel”, Materials Science and Engineering, 47:1 (1981) 1–11. doi: 10.1016/0025-5416(81)90034-3.
  • Z. Huang, M. D. Abad, J. K. Ramsey, M. R. de Figueiredo, D. Kaoumi, N. Li, M. Asta, N. Gronbech-Jensen, P. Hosemann, “A high temperature mechanical study on PH 13-8 Mo maraging steel”, Materials Science and Engineering: A, 651 (2016) 574–582. doi: 10.1016/j.msea.2015.10.077.
  • A. Rosenauer, D. Brandl, G. Ressel, S. Lukas, C. Gruber, M. Stockinger, R. Schnitzer, “In situ observations of the microstructural evolution during heat treatment of a PH 13-8 Mo maraging steel”, Advanced Engineering Materials, 25:12 (2023) e202300410. doi: 10.1002/adem.202300410.
  • M. W. Wu, S. W. Ku, H. W. Yen, M. H. Ku, S. H. Chang, K. Ni, Z. S. Shih, C. Tsai, T. W. Hsu, C. L. Li, C. K. Wang, “The synergic effects of heat treatment and building direction on the microstructure and anisotropic mechanical properties of laser powder bed fusion Corrax maraging stainless steel”, Materials Science and Engineering: A, 887 (2023) 145744. doi: 10.1016/j.msea.2023.145744.
  • G. Aydin, J. Andersson, M. A. Valiente Bermejo, “Additive manufacturing of PH 13-8 Mo family: a review”, Applied Sciences, 14:17 (2024) 7572. doi: 10.3390/app14177572.
  • A. Rosenauer, S. Teusl, A. Landefeld, D. Brandl, G. Ressel, T. Hönigmann, M. Stadler, C. Turk, E. Maawad, M. Stockinger, R. Schnitzer, “Effect of intercritical annealing on the microstructure and mechanical properties of a PH 13-8 Mo maraging steel”, Materials Science and Engineering: A, 895 (2024) 146220. doi: 10.1016/j.msea.2024.146220
  • O. Öndin, T. Kıvak, M. Sarıkaya, Ç. V. Yıldırım, “Investigation of the influence of MWCNTs mixed nanofluid on the machinability characteristics of PH 13-8 Mo stainless steel”, Tribology International, 148 (2020) 106323. doi: 10.1016/j.triboint.2020.106323.
  • Y. Bai, C. Zhao, J. Yang, R. Hong, C. Weng, H. Wang, “Microstructure and machinability of selective laser melted high-strength maraging steel with heat treatment”, Journal of Materials Processing Technology, 288 (2021) 116906. doi: 10.1016/j.jmatprotec.2020.116906.
  • U. Persson, H. Chandrasekaran, “Machinability of martensitic steels in milling and the role of hardness”, Proceedings of the 6th International Tooling Conference, Karlstad University, Karlstad, Sweden (2002) 1225–1236.
  • N. Tosun, M. Huseyinoglu, “Effect of MQL on surface roughness in milling of AA7075-T6”, Materials and Manufacturing Processes, 25:8 (2010) 793–798. doi: 10.1080/10426910903496821.
  • F. Rabiei, A. R. Rahimi, M. J. Hadad, M. Ashrafijou, “Performance improvement of minimum quantity lubrication (MQL) technique in surface grinding by modeling and optimization”, Journal of Cleaner Production, 86 (2015) 447–460. doi: 10.1016/j.jclepro.2014.08.045.
  • A. Rasti, M. B. Ghorbani, M. H. Sadrossadat, M. S. Tabrizi, “Stress corrosion behavior of AISI 4340 in high-speed hard milling using MQL”, Journal of Materials Engineering and Performance, 34:17 (2025) 19630–19639. doi: 10.1007/s11665-024-10598-0.
  • T. Singh, P. Singh, J. S. Dureja, M. Dogra, H. Singh, M. S. Bhatti, “A review of near dry machining/minimum quantity lubrication machining of difficult to machine alloys”, International Journal of Machining and Machinability of Materials, 18:3 (2016) 213–251. doi: 10.1504/IJMMM.2016.076276.
  • S. Bissey-Breton, V. Vignal, F. Herbst, J. B. Coudert, “Influence of machining on the microstructure, mechanical properties and corrosion behaviour of a low carbon martensitic stainless steel”, Procedia CIRP, 46 (2016) 331–335. doi: 10.1016/j.procir.2016.04.016.
  • L. Sun, T. H. Simm, T. L. Martin, S. McAdam, D. R. Galvin, K. M. Perkins, P. A. J. Bagot, M. P. Moody, S. W. Ooi, P. Hill, M. J. Rawson, H. K. D. H. Bhadeshia, “A novel ultra-high strength maraging steel with balanced ductility and creep resistance achieved by nanoscale β-NiAl and Laves phase precipitates”, Acta Materialia, 149 (2018) 285–301. doi: 10.1016/j.actamat.2018.02.044.
  • P. Liu, A. H. Stigenberg, J. O. Nilsson, “Quasicrystalline and crystalline precipitation during isothermal tempering in a 12Cr-9Ni-4Mo maraging stainless steel”, Acta Metallurgica et Materialia, 43:7 (1995) 2881–2890. doi: 10.1016/0956-7151(94)00461-P.
  • C. Capdevila, F. G. Caballero, C. García de Andrés, “Analysis of effect of alloying elements on martensite start temperature of steels”, Materials Science and Technology, 19:5 (2003) 581–586. doi: 10.1179/026708303225001902.
  • F. Qian, W. M. Rainforth, “The formation mechanism of reverted austenite in Mn-based maraging steels”, Journal of Materials Science, 54:8 (2019) 6624–6631. doi: 10.1007/s10853-019-03319-9.
  • A. Shahriari, L. Khaksar, A. Nasiri, A. Hadadzadeh, B. S. Amirkhiz, M. Mohammadi, “Microstructure and corrosion behavior of a novel additively manufactured maraging stainless steel”, Electrochimica Acta, 339 (2020) 135925. doi: 10.1016/j.electacta.2020.135925.
  • S. Zhang, D. Lv, J. Xiong, “The effect of reversed austenite on mechanical properties of 13Cr4NiMo steel: a CPFEM study”, Journal of Materials Research and Technology, 18 (2022) 2963–2976. doi: 10.1016/j.jmrt.2022.03.186.
  • B. Özlü, “Investigation of the effect of cutting parameters on cutting force, surface roughness and chip shape in turning of Sleipner cold work tool steel”, Journal of the Faculty of Engineering and Architecture of Gazi University, 36:3 (2021) 1241–1251. doi: 10.17341/gazimmfd.668169.
  • A. Çiçek, F. Kara, T. Kıvak, E. Ekici, “Evaluation of machinability of hardened and cryo-treated AISI H13 hot work tool steel with ceramic inserts”, International Journal of Refractory Metals and Hard Materials, 41 (2013) 461–469. doi: 10.1016/j.ijrmhm.2013.06.004.
  • J. Zhao, X. Ai, Z. L. Li, “Finite element analysis of cutting forces in high speed machining”, Materials Science Forum, 532–533 (2006) 753–756. doi: 10.4028/www.scientific.net/MSF.532-533.753.
  • H. Demir, S. Gündüz, M. A. Erden, “Influence of the heat treatment on the microstructure and machinability of AISI H13 hot work tool steel”, The International Journal of Advanced Manufacturing Technology, 95:5 (2017) 2951–2958. doi: 10.1007/s00170-017-1426-3.
  • H. Liu, L. X. Du, J. Hu, H. Y. Wu, X. H. Gao, R. D. K. Misra, “Interplay between reversed austenite and plastic deformation in a directly quenched and intercritically annealed 0.04C–5Mn low-Al steel”, Journal of Alloys and Compounds, 695 (2017) 2072–2082. doi: 10.1016/j.jallcom.2016.11.046.
  • M. Li, T. Yu, L. Yang, H. Li, R. Zhang, W. Wang, “Parameter optimization during minimum quantity lubrication milling of TC4 alloy with graphene-dispersed vegetable-oil-based cutting fluid”, Journal of Cleaner Production, 209 (2019) 1508–1522. doi: 10.1016/j.jclepro.2018.11.147.
  • I. Ciftci, “Machining of austenitic stainless steels using CVD multi-layer coated cemented carbide tools”, Tribology International, 39:6 (2006) 565–569. doi: 10.1016/j.triboint.2005.05.005.
  • P. Muñoz, Z. Cassier, “Influence of the critical cutting speed on the surface finish of turned steel”, Wear, 218:1 (1998) 103–109. doi: 10.1016/S0043-1648(98)00156-2.
  • H. Gürbüz, U. Şeker, F. Kafkas, “AISI 316L çeliğinin tornalanmasında kesici takım formlarının yüzey bütünlüğü üzerine etkisi”, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 35:1 (2019) 225–240. doi: 10.17341/gazimmfd.454386.
  • M. S. Carrilero, R. Bienvenido, J. M. Sánchez, M. Álvarez, A. González, M. Marcos, “A SEM and EDS insight into the BUL and BUE differences in the turning processes of AA2024 Al–Cu alloy”, International Journal of Machine Tools and Manufacture, 42:2 (2002) 215–220. doi: 10.1016/S0890-6955(01)00112-2.
  • C. M. Taylor, F. Díaz, R. Alegre, T. Khan, P. Arrazola, J. Griffin, S. Turner, “Investigating the performance of 410, PH13-8Mo and 300M steels in a turning process with a focus on surface finish”, Materials & Design, 195 (2020) 109062. doi: 10.1016/j.matdes.2020.109062.
  • H. Zhang, P. Mi, L. Hao, H. Zhou, W. Yan, K. Zhao, B. Xu, M. Sun, “Evolution of toughening mechanisms in PH13-8Mo stainless steel during aging treatment”, Materials, 16:10 (2023) 3630. doi: 10.3390/ma16103630.
  • M. S. Alsoufi, S. A. Bawazeer, “Probabilistic analysis of surface integrity in CNC turning: influence of thermal conductivity and hardness on roughness and waviness distributions”, Machines, 13:5 (2025) 385. doi: 10.3390/machines13050385.
  • S. RaoCh, “Comparison of surface roughness of cold work and hot work tool steels in hard turning”, International Journal of Recent Advances in Mechanical Engineering, 4:1 (2015). doi: 10.14810/ijmech.2015.4109.
  • P. Bober, K. Zgodavová, M. Čička, M. Mihaliková, J. Brindza, “Predictive quality analytics of surface roughness in turning operation using polynomial and artificial neural network models”, Processes, 12:1 (2024) 206. doi: 10.3390/pr12010206.

Effect of Hardness and Cutting Parameters on Machining of Aged PH 13-8 Mo Steel

Year 2025, Volume: 3 Issue: 3, 136 - 153, 31.12.2025
https://doi.org/10.70988/ajeas.1831163

Abstract

In this study, the effects of different heat treatment conditions on the microstructure, hardness, and machinability performance of precipitation-hardenable martensitic Corrax steel were investigated. Following various heat treatments, microstructural evolution and hardness variations were examined, while machinability performance was evaluated through dry turning experiments conducted with uncoated cutting tools. The results revealed that the hardness of the Corrax material increased up to 50 HRC depending on the applied heat treatment temperature; however, when aged at higher temperatures (600 °C), a decrease in hardness occurred due to over-aging. In the machinability tests, the highest cutting force was observed in the A6 specimen, which was attributed to the formation of reverted austenite during the aging process. Conversely, the lowest cutting force values were generally obtained in the A0 specimen. The lowest surface roughness values were also predominantly measured in the A6 specimen. Overall, the aging treatments led to an increase in cutting forces. The most remarkable finding of the study was that the maximum cutting force was not recorded in the hardest specimen but in the A6 condition, a phenomenon associated with the transformation of retained austenite into martensite under machining-induced deformation.

Project Number

-

References

  • G. G. Pantazopoulos, T. Papazoglou, P. Psyllaki, G. Sfantos, S. Antoniou, K. Papadimitriou, J. Sideris, “Sliding wear behaviour of a liquid nitrocarburised precipitation-hardening (PH) stainless steel”, Surface and Coatings Technology, 187:1 (2004) 77–85. doi: 10.1016/j.surfcoat.2004.01.015.
  • R. B. Frandsen, T. Christiansen, M. A. J. Somers, “Simultaneous surface engineering and bulk hardening of precipitation hardening stainless steel”, Surface and Coatings Technology, 200:16–17 (2006) 5160–5169. doi: 10.1016/j.surfcoat.2005.04.038.
  • S. Afkhami, V. Javaheri, E. Dabiri, H. Piili, T. Björk, “Effects of manufacturing parameters, heat treatment, and machining on the physical and mechanical properties of 13Cr10Ni1.7Mo2Al0.4Mn0.4Si steel processed by laser powder bed fusion”, Materials Science and Engineering: A, 832 (2022) 142402. doi: 10.1016/j.msea.2021.142402.
  • D. Dong, C. Chang, H. Wang, X. Yan, W. Ma, M. Liu, S. Deng, J. Gardan, R. Bolot, H. Liao, “Selective laser melting (SLM) of CX stainless steel: Theoretical calculation, process optimization and strengthening mechanism”, Journal of Materials Science & Technology, 73 (2021) 151–164. doi: 10.1016/j.jmst.2020.09.031.
  • A. S. Güldibi, U. Köklü, O. Koçar, E. Kocaman, S. Morkavuk, “The effects of aging process after solution heat treatment on drilling machinability of Corrax steel”, Experimental Techniques, 48:2 (2023) 239–257. doi: 10.1007/S40799-023-00656-Y.
  • V. Seetharaman, M. Sundararaman, R. Krishnan, “Precipitation hardening in a PH 13-8 Mo stainless steel”, Materials Science and Engineering, 47:1 (1981) 1–11. doi: 10.1016/0025-5416(81)90034-3.
  • Z. Huang, M. D. Abad, J. K. Ramsey, M. R. de Figueiredo, D. Kaoumi, N. Li, M. Asta, N. Gronbech-Jensen, P. Hosemann, “A high temperature mechanical study on PH 13-8 Mo maraging steel”, Materials Science and Engineering: A, 651 (2016) 574–582. doi: 10.1016/j.msea.2015.10.077.
  • A. Rosenauer, D. Brandl, G. Ressel, S. Lukas, C. Gruber, M. Stockinger, R. Schnitzer, “In situ observations of the microstructural evolution during heat treatment of a PH 13-8 Mo maraging steel”, Advanced Engineering Materials, 25:12 (2023) e202300410. doi: 10.1002/adem.202300410.
  • M. W. Wu, S. W. Ku, H. W. Yen, M. H. Ku, S. H. Chang, K. Ni, Z. S. Shih, C. Tsai, T. W. Hsu, C. L. Li, C. K. Wang, “The synergic effects of heat treatment and building direction on the microstructure and anisotropic mechanical properties of laser powder bed fusion Corrax maraging stainless steel”, Materials Science and Engineering: A, 887 (2023) 145744. doi: 10.1016/j.msea.2023.145744.
  • G. Aydin, J. Andersson, M. A. Valiente Bermejo, “Additive manufacturing of PH 13-8 Mo family: a review”, Applied Sciences, 14:17 (2024) 7572. doi: 10.3390/app14177572.
  • A. Rosenauer, S. Teusl, A. Landefeld, D. Brandl, G. Ressel, T. Hönigmann, M. Stadler, C. Turk, E. Maawad, M. Stockinger, R. Schnitzer, “Effect of intercritical annealing on the microstructure and mechanical properties of a PH 13-8 Mo maraging steel”, Materials Science and Engineering: A, 895 (2024) 146220. doi: 10.1016/j.msea.2024.146220
  • O. Öndin, T. Kıvak, M. Sarıkaya, Ç. V. Yıldırım, “Investigation of the influence of MWCNTs mixed nanofluid on the machinability characteristics of PH 13-8 Mo stainless steel”, Tribology International, 148 (2020) 106323. doi: 10.1016/j.triboint.2020.106323.
  • Y. Bai, C. Zhao, J. Yang, R. Hong, C. Weng, H. Wang, “Microstructure and machinability of selective laser melted high-strength maraging steel with heat treatment”, Journal of Materials Processing Technology, 288 (2021) 116906. doi: 10.1016/j.jmatprotec.2020.116906.
  • U. Persson, H. Chandrasekaran, “Machinability of martensitic steels in milling and the role of hardness”, Proceedings of the 6th International Tooling Conference, Karlstad University, Karlstad, Sweden (2002) 1225–1236.
  • N. Tosun, M. Huseyinoglu, “Effect of MQL on surface roughness in milling of AA7075-T6”, Materials and Manufacturing Processes, 25:8 (2010) 793–798. doi: 10.1080/10426910903496821.
  • F. Rabiei, A. R. Rahimi, M. J. Hadad, M. Ashrafijou, “Performance improvement of minimum quantity lubrication (MQL) technique in surface grinding by modeling and optimization”, Journal of Cleaner Production, 86 (2015) 447–460. doi: 10.1016/j.jclepro.2014.08.045.
  • A. Rasti, M. B. Ghorbani, M. H. Sadrossadat, M. S. Tabrizi, “Stress corrosion behavior of AISI 4340 in high-speed hard milling using MQL”, Journal of Materials Engineering and Performance, 34:17 (2025) 19630–19639. doi: 10.1007/s11665-024-10598-0.
  • T. Singh, P. Singh, J. S. Dureja, M. Dogra, H. Singh, M. S. Bhatti, “A review of near dry machining/minimum quantity lubrication machining of difficult to machine alloys”, International Journal of Machining and Machinability of Materials, 18:3 (2016) 213–251. doi: 10.1504/IJMMM.2016.076276.
  • S. Bissey-Breton, V. Vignal, F. Herbst, J. B. Coudert, “Influence of machining on the microstructure, mechanical properties and corrosion behaviour of a low carbon martensitic stainless steel”, Procedia CIRP, 46 (2016) 331–335. doi: 10.1016/j.procir.2016.04.016.
  • L. Sun, T. H. Simm, T. L. Martin, S. McAdam, D. R. Galvin, K. M. Perkins, P. A. J. Bagot, M. P. Moody, S. W. Ooi, P. Hill, M. J. Rawson, H. K. D. H. Bhadeshia, “A novel ultra-high strength maraging steel with balanced ductility and creep resistance achieved by nanoscale β-NiAl and Laves phase precipitates”, Acta Materialia, 149 (2018) 285–301. doi: 10.1016/j.actamat.2018.02.044.
  • P. Liu, A. H. Stigenberg, J. O. Nilsson, “Quasicrystalline and crystalline precipitation during isothermal tempering in a 12Cr-9Ni-4Mo maraging stainless steel”, Acta Metallurgica et Materialia, 43:7 (1995) 2881–2890. doi: 10.1016/0956-7151(94)00461-P.
  • C. Capdevila, F. G. Caballero, C. García de Andrés, “Analysis of effect of alloying elements on martensite start temperature of steels”, Materials Science and Technology, 19:5 (2003) 581–586. doi: 10.1179/026708303225001902.
  • F. Qian, W. M. Rainforth, “The formation mechanism of reverted austenite in Mn-based maraging steels”, Journal of Materials Science, 54:8 (2019) 6624–6631. doi: 10.1007/s10853-019-03319-9.
  • A. Shahriari, L. Khaksar, A. Nasiri, A. Hadadzadeh, B. S. Amirkhiz, M. Mohammadi, “Microstructure and corrosion behavior of a novel additively manufactured maraging stainless steel”, Electrochimica Acta, 339 (2020) 135925. doi: 10.1016/j.electacta.2020.135925.
  • S. Zhang, D. Lv, J. Xiong, “The effect of reversed austenite on mechanical properties of 13Cr4NiMo steel: a CPFEM study”, Journal of Materials Research and Technology, 18 (2022) 2963–2976. doi: 10.1016/j.jmrt.2022.03.186.
  • B. Özlü, “Investigation of the effect of cutting parameters on cutting force, surface roughness and chip shape in turning of Sleipner cold work tool steel”, Journal of the Faculty of Engineering and Architecture of Gazi University, 36:3 (2021) 1241–1251. doi: 10.17341/gazimmfd.668169.
  • A. Çiçek, F. Kara, T. Kıvak, E. Ekici, “Evaluation of machinability of hardened and cryo-treated AISI H13 hot work tool steel with ceramic inserts”, International Journal of Refractory Metals and Hard Materials, 41 (2013) 461–469. doi: 10.1016/j.ijrmhm.2013.06.004.
  • J. Zhao, X. Ai, Z. L. Li, “Finite element analysis of cutting forces in high speed machining”, Materials Science Forum, 532–533 (2006) 753–756. doi: 10.4028/www.scientific.net/MSF.532-533.753.
  • H. Demir, S. Gündüz, M. A. Erden, “Influence of the heat treatment on the microstructure and machinability of AISI H13 hot work tool steel”, The International Journal of Advanced Manufacturing Technology, 95:5 (2017) 2951–2958. doi: 10.1007/s00170-017-1426-3.
  • H. Liu, L. X. Du, J. Hu, H. Y. Wu, X. H. Gao, R. D. K. Misra, “Interplay between reversed austenite and plastic deformation in a directly quenched and intercritically annealed 0.04C–5Mn low-Al steel”, Journal of Alloys and Compounds, 695 (2017) 2072–2082. doi: 10.1016/j.jallcom.2016.11.046.
  • M. Li, T. Yu, L. Yang, H. Li, R. Zhang, W. Wang, “Parameter optimization during minimum quantity lubrication milling of TC4 alloy with graphene-dispersed vegetable-oil-based cutting fluid”, Journal of Cleaner Production, 209 (2019) 1508–1522. doi: 10.1016/j.jclepro.2018.11.147.
  • I. Ciftci, “Machining of austenitic stainless steels using CVD multi-layer coated cemented carbide tools”, Tribology International, 39:6 (2006) 565–569. doi: 10.1016/j.triboint.2005.05.005.
  • P. Muñoz, Z. Cassier, “Influence of the critical cutting speed on the surface finish of turned steel”, Wear, 218:1 (1998) 103–109. doi: 10.1016/S0043-1648(98)00156-2.
  • H. Gürbüz, U. Şeker, F. Kafkas, “AISI 316L çeliğinin tornalanmasında kesici takım formlarının yüzey bütünlüğü üzerine etkisi”, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 35:1 (2019) 225–240. doi: 10.17341/gazimmfd.454386.
  • M. S. Carrilero, R. Bienvenido, J. M. Sánchez, M. Álvarez, A. González, M. Marcos, “A SEM and EDS insight into the BUL and BUE differences in the turning processes of AA2024 Al–Cu alloy”, International Journal of Machine Tools and Manufacture, 42:2 (2002) 215–220. doi: 10.1016/S0890-6955(01)00112-2.
  • C. M. Taylor, F. Díaz, R. Alegre, T. Khan, P. Arrazola, J. Griffin, S. Turner, “Investigating the performance of 410, PH13-8Mo and 300M steels in a turning process with a focus on surface finish”, Materials & Design, 195 (2020) 109062. doi: 10.1016/j.matdes.2020.109062.
  • H. Zhang, P. Mi, L. Hao, H. Zhou, W. Yan, K. Zhao, B. Xu, M. Sun, “Evolution of toughening mechanisms in PH13-8Mo stainless steel during aging treatment”, Materials, 16:10 (2023) 3630. doi: 10.3390/ma16103630.
  • M. S. Alsoufi, S. A. Bawazeer, “Probabilistic analysis of surface integrity in CNC turning: influence of thermal conductivity and hardness on roughness and waviness distributions”, Machines, 13:5 (2025) 385. doi: 10.3390/machines13050385.
  • S. RaoCh, “Comparison of surface roughness of cold work and hot work tool steels in hard turning”, International Journal of Recent Advances in Mechanical Engineering, 4:1 (2015). doi: 10.14810/ijmech.2015.4109.
  • P. Bober, K. Zgodavová, M. Čička, M. Mihaliková, J. Brindza, “Predictive quality analytics of surface roughness in turning operation using polynomial and artificial neural network models”, Processes, 12:1 (2024) 206. doi: 10.3390/pr12010206.
There are 40 citations in total.

Details

Primary Language Turkish
Subjects Machine Design and Machine Equipment
Journal Section Research Article
Authors

Ahmet Serdar Güldibi 0000-0001-7021-060X

Barış Özlü 0000-0002-8594-1234

Halil Demir 0000-0002-9802-083X

Project Number -
Submission Date November 28, 2025
Acceptance Date December 18, 2025
Publication Date December 31, 2025
Published in Issue Year 2025 Volume: 3 Issue: 3

Cite

IEEE A. S. Güldibi, B. Özlü, and H. Demir, “Yaşlandırılmış PH 13-8 Mo Çeliğinin İşlenmesinde Sertlik ve Kesme Parametrelerinin Etkileri”, AJEAS, vol. 3, no. 3, pp. 136–153, 2025, doi: 10.70988/ajeas.1831163.

Alpha Journal of Engineering and Applied Sciences © 2023 is licensed under the Creative Commons Attribution 4.0 International License (CC BY)