The main problem in the classification problems encountered with gene samples is that the dimension of the data is high although the sample size is small. In such problems, the classifier to be used must be a classifier that allows the processing of high dimensional data and extracts maximum information from a small number of samples at hand. In this context, a classification methodology has been developed, which first transforms the problem of binary or multiple classification into separate pair-wise classification problems. To this end, an online classifier has been adapted to solve pair-wise binary classification problems. The resulting classifier performed better on most of the real problems compared to other popular classifiers.
Gen örnekleriyle ilgili karşılaşılan sınıflandırma problemlerinde en büyük sorun az sayıda örnek elde edilmesine karşın verinin büyük boyutlu olmasıdır. Bu tür problemlerde kullanılacak sınıflandırıcının büyük boyutlu verinin işlenmesine olanak sağlayan ve eldeki az sayıda örnekten maksimum bilgiyi çıkaran bir sınıflandırıcı olması gerekir. Bu kapsamda, öncelikle ikili/çoklu sınıflandırma problemlerini ayrı ayrı eşli ikili sınıflandırma problemlerine çeviren bir sınıflandırma metodolojisi geliştirilmiştir. Bunun için, çevrimiçi bir sınıflandırıcı eşli ikili sınıflandırma problemlerini çözecek şekilde tekrar düzenlenmiştir. Oluşan sınıflandırıcı gerçek problemlerin çoğu üzerinde diğer popüler sınıflandırıcılara göre oldukça iyi bir performans göstermiştir.
Journal Section | Articles |
---|---|
Authors | |
Publication Date | November 29, 2017 |
Submission Date | October 19, 2017 |
Published in Issue | Year 2017 Volume 5, Issue 2, 2017 |
Alphanumeric Journal is hosted on DergiPark, a web based online submission and peer review system powered by TUBİTAK ULAKBIM.