SSEP Modules and Trivial Extensions
Year 2025,
Volume: 6 Issue: 2, 82 - 89, 31.12.2025
Eren Doğan
,
Mustafa Alkan
Abstract
In this paper, we study the behavior of modules possessing the Summand Sum Essential Property (SSEP) in the context of trivial extensions of rings. We provide a detailed examination of how the SSEP and the classical Summand Sum Property (SSP) are preserved or characterized when extending a ring by an (R, R)-bimodule. Necessary and sufficient conditions are established under which the trivial extension inherits these properties from the base ring. Our results generalize existing findings on summand properties and contribute to a deeper understanding of module decompositions and essentiality in extended algebraic structures. Several illustrative examples are provided to demonstrate the applicability of the theoretical developments.
References
-
J. L. Garcia, Properties of direct summands of modules, Communications in Algebra 17 (1) (1989) 73-92.
-
M. Alkan, A. Harmancı, On summand sum and summand intersection property of modules, Turkish Journal of Mathematics 26 (2) (2002) 131-147.
-
A. N. Abyzov, T. H. N. Nhan, T. C. Quynh, Modules close to SSP and SIP modules, Lobachevskii Journal of Mathematics 38 (1) (2017) 16-23.
-
I. Amin, Y. Ibrahim, M. F. Yousif, D3-modules, Communications in Algebra 42 (2) (2014) 578-592.
-
F. W. Anderson, K. R. Fuller, Rings and categories of modules, Springer, New York, 1974.
-
D. M. Arnold, J. Hausen, A characterization of modules with the summand intersection property, Communications in Algebra 18 (2) (1990) 519-528.
-
G. F. Birkenmeier, F. Karabacak, A. Tercan, When is the SIP (SSP) property inherited by free modules, Acta Mathematica Hungarica 112 (1-2) (2006) 103-106.
-
J. Clark, C. Lomp, N. Vanaja, R. Wisbauer, Lifting modules: Supplements and projectivity in module theory, Birkhäuser, Basel, 2006.
-
N. V. Dung, D. V. Huynh, P. F. Smith, R. Wisbauer, Pitman research notes in mathematics, Vol. 313, Extending modules, Longman Scientific and Technical, 1994.
-
L. Fuchs, Infinite abelian groups, Academic Press, New York-London, 1970.
-
K. R. Goodearl, Ring theory: Nonsingular rings and modules, CRC Press, 1976.
-
G. Güngöroğlu, A. Harmancı, On some classes of modules, Czechoslovak Mathematical Journal 50 (125) (2000) 839-846.
-
J. Hausen, Modules with the summand intersection property, Communications in Algebra 17 (1) (1989) 135-148.
-
I. Kaplansky, Infinite abelian groups, University of Michigan Press, Ann Arbor, 1954.
-
F. Karabacak, A. Tercan, Matrix rings with summand intersection property, Czechoslovak Mathematical Journal 53 (128) (2003) 621-626.
-
F. Kasch, Modules and rings, Academic Press, 1982.
-
Ö. Taşdemir, F. Karabacak, Generalized SIP-modules, Hacettepe Journal of Mathematics and Statics 48 (4) (2019) 1137-1145.
-
Ö. Taşdemir, F. Karabacak, Generalized SSP-modules, Communications in Algebra 48 (3) (2020) 1068-1078.
-
T. Y. Lam, Graduate texts in mathematics: Lectures on modules and rings, Springer, 2012.
-
S. H. Mohammed, B. J. Müller, Continuous and discrete modules, Vol. 147, London mathematical society lecture note series, Cambridge University Press, Cambridge, 1990.
-
R. N. Roberts, Krull dimension for Artinian modules over quasi-local commutative rings, Quarterly Journal of Mathematics 26 (1) (1975) 269-273.
-
Y. Talebi, A. R. M. Hamzekolaee, On a generalization of lifting modules via SSP-modules, Bulletin of the Iranian Mathematical Society 48 (2) (2022) 343-349.
-
G. V. Wilson, Modules with the summand intersection property, Communications in Algebra 14 (1) (1996) 21-38.
-
E. Doğan, M. Alkan, Modules and matrix rings with SIEP and SSEP properties, Montes Taurus Journal of Pure Applied Mathematics (in press).