Research Article
BibTex RIS Cite

SSEP Modules and Trivial Extensions

Year 2025, Volume: 6 Issue: 2, 82 - 89, 31.12.2025
https://doi.org/10.54559/amesia.1736730

Abstract

In this paper, we study the behavior of modules possessing the Summand Sum Essential Property (SSEP) in the context of trivial extensions of rings. We provide a detailed examination of how the SSEP and the classical Summand Sum Property (SSP) are preserved or characterized when extending a ring by an (R, R)-bimodule. Necessary and sufficient conditions are established under which the trivial extension inherits these properties from the base ring. Our results generalize existing findings on summand properties and contribute to a deeper understanding of module decompositions and essentiality in extended algebraic structures. Several illustrative examples are provided to demonstrate the applicability of the theoretical developments.

References

  • J. L. Garcia, Properties of direct summands of modules, Communications in Algebra 17 (1) (1989) 73-92.
  • M. Alkan, A. Harmancı, On summand sum and summand intersection property of modules, Turkish Journal of Mathematics 26 (2) (2002) 131-147.
  • A. N. Abyzov, T. H. N. Nhan, T. C. Quynh, Modules close to SSP and SIP modules, Lobachevskii Journal of Mathematics 38 (1) (2017) 16-23.
  • I. Amin, Y. Ibrahim, M. F. Yousif, D3-modules, Communications in Algebra 42 (2) (2014) 578-592.
  • F. W. Anderson, K. R. Fuller, Rings and categories of modules, Springer, New York, 1974.
  • D. M. Arnold, J. Hausen, A characterization of modules with the summand intersection property, Communications in Algebra 18 (2) (1990) 519-528.
  • G. F. Birkenmeier, F. Karabacak, A. Tercan, When is the SIP (SSP) property inherited by free modules, Acta Mathematica Hungarica 112 (1-2) (2006) 103-106.
  • J. Clark, C. Lomp, N. Vanaja, R. Wisbauer, Lifting modules: Supplements and projectivity in module theory, Birkhäuser, Basel, 2006.
  • N. V. Dung, D. V. Huynh, P. F. Smith, R. Wisbauer, Pitman research notes in mathematics, Vol. 313, Extending modules, Longman Scientific and Technical, 1994.
  • L. Fuchs, Infinite abelian groups, Academic Press, New York-London, 1970.
  • K. R. Goodearl, Ring theory: Nonsingular rings and modules, CRC Press, 1976.
  • G. Güngöroğlu, A. Harmancı, On some classes of modules, Czechoslovak Mathematical Journal 50 (125) (2000) 839-846.
  • J. Hausen, Modules with the summand intersection property, Communications in Algebra 17 (1) (1989) 135-148.
  • I. Kaplansky, Infinite abelian groups, University of Michigan Press, Ann Arbor, 1954.
  • F. Karabacak, A. Tercan, Matrix rings with summand intersection property, Czechoslovak Mathematical Journal 53 (128) (2003) 621-626.
  • F. Kasch, Modules and rings, Academic Press, 1982.
  • Ö. Taşdemir, F. Karabacak, Generalized SIP-modules, Hacettepe Journal of Mathematics and Statics 48 (4) (2019) 1137-1145.
  • Ö. Taşdemir, F. Karabacak, Generalized SSP-modules, Communications in Algebra 48 (3) (2020) 1068-1078.
  • T. Y. Lam, Graduate texts in mathematics: Lectures on modules and rings, Springer, 2012.
  • S. H. Mohammed, B. J. Müller, Continuous and discrete modules, Vol. 147, London mathematical society lecture note series, Cambridge University Press, Cambridge, 1990.
  • R. N. Roberts, Krull dimension for Artinian modules over quasi-local commutative rings, Quarterly Journal of Mathematics 26 (1) (1975) 269-273.
  • Y. Talebi, A. R. M. Hamzekolaee, On a generalization of lifting modules via SSP-modules, Bulletin of the Iranian Mathematical Society 48 (2) (2022) 343-349.
  • G. V. Wilson, Modules with the summand intersection property, Communications in Algebra 14 (1) (1996) 21-38.
  • E. Doğan, M. Alkan, Modules and matrix rings with SIEP and SSEP properties, Montes Taurus Journal of Pure Applied Mathematics (in press).
There are 24 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Research Article
Authors

Eren Doğan 0000-0003-0027-2930

Mustafa Alkan 0000-0002-4452-4442

Submission Date July 7, 2025
Acceptance Date September 5, 2025
Publication Date December 31, 2025
Published in Issue Year 2025 Volume: 6 Issue: 2

Cite

APA Doğan, E., & Alkan, M. (2025). SSEP Modules and Trivial Extensions. Amesia, 6(2), 82-89. https://doi.org/10.54559/amesia.1736730
AMA Doğan E, Alkan M. SSEP Modules and Trivial Extensions. Amesia. December 2025;6(2):82-89. doi:10.54559/amesia.1736730
Chicago Doğan, Eren, and Mustafa Alkan. “SSEP Modules and Trivial Extensions”. Amesia 6, no. 2 (December 2025): 82-89. https://doi.org/10.54559/amesia.1736730.
EndNote Doğan E, Alkan M (December 1, 2025) SSEP Modules and Trivial Extensions. Amesia 6 2 82–89.
IEEE E. Doğan and M. Alkan, “SSEP Modules and Trivial Extensions”, Amesia, vol. 6, no. 2, pp. 82–89, 2025, doi: 10.54559/amesia.1736730.
ISNAD Doğan, Eren - Alkan, Mustafa. “SSEP Modules and Trivial Extensions”. Amesia 6/2 (December2025), 82-89. https://doi.org/10.54559/amesia.1736730.
JAMA Doğan E, Alkan M. SSEP Modules and Trivial Extensions. Amesia. 2025;6:82–89.
MLA Doğan, Eren and Mustafa Alkan. “SSEP Modules and Trivial Extensions”. Amesia, vol. 6, no. 2, 2025, pp. 82-89, doi:10.54559/amesia.1736730.
Vancouver Doğan E, Alkan M. SSEP Modules and Trivial Extensions. Amesia. 2025;6(2):82-9.


EBSCO  34303                                              

DOAJ 34302 34302

Scilit 34305  

SOBIAD 34304