Derleme
BibTex RIS Kaynak Göster

In vivo experimental models of schizophrenia: mechanisms, features, advantages, disadvantages

Yıl 2022, Cilt: 16 Sayı: 2, 114 - 123, 30.08.2022

Öz

The experimental models of human diseases are indispensable research methods which are undesirable to be tested on humans. It is inevitable for researchers who continue their careers in the field of anatomy to be aware of these methods. Here, experimental schizophrenia models that can be used to reveal brain functions and also pathophysiology of schizophrenia are discussed. It is aimed to give general information about the features of the experimental schizophrenia models that can be used by researchers in morphological sciences; therein the references should be considered for the setup of the experimental schizophrenia models. In this review, in vivo model of schizophrenia used on etiopathogenesis, pathophysiology, drug discovery and behavioral analysis are represented. And also we briefly indicate the molecular mechanisms of the experimental models that mimic schizophrenia-like symptoms and its behavioral outputs.

Kaynakça

  • 1. Andreasen NC. Symptoms, signs, and diagnosis of schizophrenia. Lancet 1995;346:477–81.
  • 2. Belforte JE, Zsiros V, Sklar ER, Jiang Z, Yu G, Li Y, Quinlan ME, Nakazawa K. Postnatal NMDA reseptor ablation in corticolimbik interneurons confers schizophrenia like phenotypes. Nat Neurosci 2010;13:76–83.
  • 3. Andreassen OA, Thompson WK, Dale AM. Boosting the power of schizophrenia genetics by leveraging new statistical tools. Schizophr Bull 2014;40:13–17.
  • 4. Uzun Ö. Pozitif – negatif belirtiler. In: Ceylan E, Çetin M, editors. Şizofreni. Vol. 1. İstanbul: Yerküre Tanıtım ve Yayıncılık; 2005. p. 643–56.
  • 5. Foussias G, Remington G. Negative symptoms in schizophrenia: avolition and Occam’s razor. Schizophr Bull 2010;36:359–69.
  • 6. Bayer TA, Falkai P, Maier W. Genetic and non-genetic vulnerability factors in schizophrenia: the basis of the “two hit hypothesis”. J Psychiatr Res 1999;33:543–8.
  • 7. Kim DH, Stahl SM. Antipsychotic drug development. Curr Top Behav Neurosci 2010;4:123–39.
  • 8. Taly A. Novel approaches to drug design for the treatment of schizophrenia. Exp Opin Drug Discov 2013;8:1285–96.
  • 9. Murray RM, Lappin J, Di Forti M. Schizophrenia: from developmental deviance to dopamine dysregulation. Eur Neuropsycho-pharmacol 2008;18:S129–34.
  • 10. Inta D, Monyer H, Sprengel R, Meyer-Lindenberg A, Gass P. A comprehensive review: mice with genetically altered glutamate receptors as models of schizophrenia. Neurosci Biobehav Rev 2010; 34:285–94.
  • 11. Yamazaki M, Harada K, Yamamoto N, Yarimizu J, Okabe M, Shimada T, Ni K, Matsuoka N. ASP5736, a novel 5-HT5A receptor antagonist, a meliorates positive symptoms and cognitive impairment in animal models of schizophrenia. Eur Neuropsychopharmacol 2014;24:1698–708.
  • 12. Penschuck S, Flagstad P, Didriksen M, Leist M, Michael-Titus AT. Decrease in parvalbumin-expressing neurons in the hippocampus and increased phencyclidine-induced locomotor activity in the rat methylazoxymethanol (MAM) model of schizophrenia. Eur J Neurosci 2006;23:279–84.
  • 13. Lipska BK, Jaskiw GE, Braun AR, Weinberger DR. Prefrontal cortical and hippocampal modulation of haloperidol-induced catalepsy and apomorphine-induced stereotypic behaviors in the rat. Biol Psychiatry 1995;38:255–62.
  • 14. Tseng KY, Chambers RA, Lipska BK. Neonatal ventral hippocampal lesion as a heuristic neurodevelopmental model of schizophrenia. Behav Brain Res 2009;204:295–305.
  • 15. Flagstad P, Mork A, Glenthoj BY, van Beek J, Michael-Titus AT, Didreksen M. Disruption of neurogenesis on gestational day 17 in the rat causes behavioral changes relevant to positive and negative schizophrenia symptoms and alters amphetamine-induced dopamine release in nucleus accumbens. Neuropsychopharmacology 2004;29:2052–64.
  • 16. Rodriguez-Murillo L, Gogos JA, Karayiorgou M. The genetic architecture of schizophrenia: new mutations and emerging paradigms. Annu Rev Med 2012;63:63–80.
  • 17. Niwa M, Kamiya A, Murai R, Kubo KI, Gruber AJ, Tomita K, Lu L, Tomisato S, Jaaro-Peled H, Seshadri S, Hiyama H, Huang B, Kohda K, Noda Y, O’Donnell P, Nakajima K, Sawa A, Nabeshima T. Knockdown of DISC1 by in utero gene transfer disturbs postnatal dopaminergic maturation in the frontal cortex and leads to adult behavioral deficits. Neuron 2010;65:480–9.
  • 18. Papaleo F, Yang F, Garcia S, Chen J, Lu B, Crawley JN, Weinberger DR. Dysbindin-1 modulates prefrontal cortical activity and schizophrenia-like behaviors via dopamine/D2 pathways. Mol Psychiatry 2012;17: 85–98.
  • 19. Mei L, Xiong W. Neuregulin 1 in neural development, synaptic plasticity and schizophrenia. Nat Rev Neurosci 2008;9:437–52.
  • 20. Aberg KA, McClay JL, Nerella S, Clark S, Kumar G, Chen W, Khachane AN, Xie L, Hudson A, Gao G, Harada A, Hultman CM, Sullivan PF, Magnusson PKE, van den Oord EJ. Methylome-wide association study of schizophrenia: identifying blood biomarker signatures of environmental insults. JAMA Psychiatry 2014;71:255–64.
  • 21. Ikegame T, Bundo M, Murata Y, Kasai k, Kato T, Iwamoto K. DNA methylation of the BDNF gene and its relevance to psychiatric disorders. J Hum Genet 2013;58:434–8.
  • 22. Van Os J, Kenis G, Rutten BPF. The environment and schizophrenia. Nature 2010;468:203–12.
  • 23. Featherstone RE, Rizos Z, Kapur S, Fletcher PJ. A sensitizing regimen of amphetamine that disrupts attentional set-shifting does not disrupt working or long-term memory. Behav Brain Res 2008;189:170–9.
  • 24. Marcotte ER, Pearson DM, Srivastava LK. Animal models of schizophrenia: a critical review. J Psychiatry Neurosci 2001;26:395–410.
  • 25. Carlsson A. The dopamine theory revisited. In: Hirsch SR, Weinberger DR, editors. Schizophrenia. Oxford: Blackwell Science; 1995. p. 379–400.
  • 26. Dworkin RH, Opler LA. Simple schizophrenia, negative symptoms, and prefrontal hypodopaminergia. Am J Psychiatry 1992;149:1284–5.
  • 27. Papaleo F, Yang F, Garcia S, Chen J, Lu B, Crawley JN, Weinberger DR. Dysbindin-1 modulates prefrontal cortical activity and schizophrenia-like behaviors via dopamine/D2 pathways. Mol Psychiatry 2012;17:85–98.
  • 28. Javitt DC, Zukin SR. Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 1991;148:1301–8.
  • 29. Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD, Heninger GR, Bowers MB Jr, Charney DS. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Arch Gen Psychiatry 1994;51:199–214.
  • 30. Jenkins TA, Harte MK, Reynolds GP. Effect of subchronic phencyclidine administration on sucrose preference and hippo¬campal parvalbumin immunoreactivity in the rat. Neurosci Lett 2010;471:144–7.
  • 31. Cohen J, Struening EL. Opinions about mental illness in the personnel of two large mental hospitals. J Abnorm Psychol 1962;64:349–60.
  • 32. Xia Y, Wang CZ, Liu J, Anastasio NC, Johnson KM. Brain-derived neurotrophic factor prevents phencyclidine induced apoptosis in developing brain by parallel activation of both the ERK and PI-3K/Akt pathways. Neuropharmacology 2010;58:330–6.
  • 33. Seillier A, Giuffrida A. Evaluation of NMDA receptor models of schizophrenia: Divergences in the behavioral effects of sub-chronic PCP and MK-801. Behav Brain Res 2009;204:410–5.
  • 34. Geyer MA, Krebs-Thomson K, Braff DL, Swerdlow NR. Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology (Berl) 2001;156:117–54.
  • 35. Noda A, Noda Y, Kamei H, Ichihara K, Mamiya T, Nagai T, Sugiura S, Furukawa H, Nabeshima T. Phencyclidine impairs latent learning in mice: interaction between glutamatergic systems and sigma(1) receptors. Neuropsychopharmacology 2001;24:451–60.
  • 36. Jentsch JD, Roth RH. The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 1999;20:201–25.
  • 37. Martin MV Mirnics K, Nisenbaum LK, Vawter MP. Olanzapine reversed brain gene expression changes induced by phencyclidine treatment in non-human primates. Mol Neuropsychiatry 2015;1:82–93.
  • 38. Harrison PJ, Burnet PW. The 5-HT2A (serotonin2A) receptor gene in the aetiology, pathophysiology and pharmacotherapy of schizophrenia. J Psychopharmacol 1997;11:18–20.
  • 39. Burnet PW, Eastwood SL, Harrison PJ. [3H]WAY-100635 for 5-HT1A receptor autoradiography in human brain: a comparison with [3H]8-OH-DPAT and demonstration of increased binding in the frontal cortex in schizophrenia. Neurochem Int 1997;30:565–74.
  • 40. Abi-Dargham A, Laruelle M, Aghajanian GK, Charney D, Krystal J. The role of serotonin in the pathophysiology and treatment of schizophrenia. J Neuropsychiatry Clin Neurosci 1997;9:1–17.
  • 41. Geyer MA. Behavioral studies of hallucinogenic drugs in animals: implications for schizophrenia research. Pharmacopsychiatry 1998;31:S73–9.
  • 42. Yamada S, Harano M, Annoh N, Nakamura K, Tanaka M. Involvement of serotonin 2A receptors in phencyclidine-induced disruption of prepulse inhibition of the acoustic startle in rats. Biol Psychiatry 1999;46:832–8.
  • 43. Lewis DA, Pierri JN, Volk DW, Melchitzky DS, Woo TU. Altered GABA neurotransmission and prefrontal cortical dysfunction in schizophrenia. Biol Psychiatry 1999;46:616−26.
  • 44. Homayoun H, Moghaddam B. NMDA receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons. J Neurosci 2007;27:11496–500.
  • 45. Benes FM, Vincent S, Alsterberg G, Bird ED, SanGiovanni JP. Increased GABAA receptor binding in superficial layers of cingulate cortex in schizophrenics. J Neurosci 1992;12:924–9.
  • 46. Akbarian S, Kim JJ, Potkin SG, Hagman JO, Tafazzoli A, Bunney WE, Bunney WE Jr, Jones EG. Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. Arch Gen Psychiatry 1995;52:258–66.
  • 47. Zhang Y, Behrens MM, Lisman JE. Prolonged exposure to NMDAR antagonist suppresses inhibitory synaptic transmission in prefrontal cortex. J Neurophysiol 2008;100:959–65.
  • 48. Japha K, Koch M. Picrotoxin in the medial prefrontal cortex impairs sensorimotor gating in rats: reversal by haloperidol. Psychopharmacology (Berl) 1999;144:347−54.
  • 49. Guidotti A, Auta J, Davis JM, Dong E, Grayson DR, Veldic M, Zhang X, Costa E. GABAergic dysfunction in schizophrenia: new treatment strategies on the horizon. Psychopharmacology (Berl) 2005;180:191–205.
  • 50. Tricoire L, Pelkey KA, Erkkila BE, Jeffries BW, Yuan X, McBain CJ. A blueprint for the spatiotemporal origins of mouse hippocampal interneuron diversity. J Neurosci 2011;31:10948–70.
  • 51. Tregellas, JR, Smucny J, Harris JG, Olincy A, Maharajh K, Kronberg E, Eichman LC, Lyons E, Freedman RE. Intrinsic hippocampal activity as a biomarker for cognition and symptoms in schizophrenia. Am J Psychiatry 2014;171:549–56.
  • 52. Schobel SA, Chaudhury NH, Khan UA, Paniagua B, Styner MA, Asllani I, Inbar BP, Corcoran CM, Lieberman JA, Moore H, Small SA. Imaging patients with psychosis and a mouse model establishes a spatiotemporal pattern of hippocampal dysfunction and implicates glutamate elevation as a pathogenic driver. Neuron 2013;78: 81–93.
  • 53. Levin HS, Eisenberg HM, Benton AL. Frontal lobe and dysfunction. Oxford: Oxford University Press; 1991. 448 p.
  • 54. Le Moal M, Simon H. Mesocorticolimbic dopaminergic network: functional and regulatory roles. Physiol Rev 1991;71:155–234.
  • 55. Jaskiw GE, Weinberger DR. Ibotenic acid lesions of medial prefrontal cortex augment swim-stress-induced locomotion. Pharmacol Biochem Behav 1992;41:607–9.
  • 56. Grace AA. Gating of information flow within the limbic system and the pathophysiology of schizophrenia. Brain Res Brain Res Rev 2000;31:330–41.
  • 57. Mittleman G, Bratt AM, Chase R. Heterogeneity of the hippocampus: effects of subfield lesions on locomotion elicited by dopaminergic agonists. Behav Brain Res 1998;92:31–45.
  • 58. Csernansky JG, Csernansky CA, Kogelman L, Montgomery EM, Bardgett ME. Progressive neurodegeneration after intracerebroventricular kainic acid administration in rats: implications for schizophrenia? Biol Psychiatry 1998;44:1143–50.
  • 59. Lewis DA, Levitt P. Schizophrenia as a disorder of neurodevelopment. Annu Rev Neurosci 2002;25:409–32.
  • 60. Koenig JI, Elmer GI, Shepard PD, Lee PR, Mayo C, Joy B, Hercher E, Brady DL. Prenatal exposure to a repeated variable stress paradigm elicits behavioral and neuroendocrinological changes in the adult offspring: potential relevance to schizophrenia. Behav Brain Res 2005;156:251–61.
  • 61. Meyer U. Prenatal poly(i:C) exposure and other developmental immune activation models in rodent systems. Biol Psychiatry 2014;75:307–15.
  • 62. Moore H, Jentsch JD, Ghajarnia M, Geyer MA, Grace AA. A neurobehavioral systems analysis of adult rats exposed to methylazoxymethanol acetate on E17: implications for the neuropathology of schizophrenia. Biol Psychiatry 2006;60:253–64.
  • 63. Kirsten TB, Taricano M, Flório JC, Palermo-Neto J, Bernardi MM. Prenatal lipopolysaccharide reduces motor activity after an immune challenge in adult male offspring. Behav Brain Res 2010; 211:77−82.
  • 64. Lin YL, Wang S. Prenatal lipopolysaccharide exposure increases depression-like behaviors and reduces hippocampal neurogenesis in adult rats. Behav Brain Res 2014;259:24−34.
  • 65. Powell SB, Sejnowski TJ, Behrens MM. Behavioral and neurochemical consequences of cortical oxidative stress on parvalbumin-interneuron maturation in rodent models of schizophrenia. Neuropharmacology 2012;62:1322−31.
  • 66. Van Vugt RWM, Meyer F, van Hulten JA, Vernooij J, Cools AR, Verheij MMM, Martens GJM. Maternal care affects the phenotype of a rat model for schizophrenia. Front Behav Neurosci 2014; 8:1−9.
  • 67. Davis J, Moylan S, Harvey BH, Maes M, Berk M. Neuroprogression in schizophrenia: pathways underpinning clinical staging and therapeutic corollaries. Aust N Z J Psychiatry 2014;48:512−29.
  • 68. Forrest CM, Khalil OS, Pisar M, Smith RA, Darlington LG, Stone TW. Prenatal activation of toll-like receptors-3 by administration of the viral mimetic poly(I:C) changes synaptic proteins, N-methyl-D-aspartate receptors and neurogenesis markers in offspring. Mol Brain 2012;5:22.
  • 69. Arsenault D, St-Amour I, Cisbani G, Rousseau LS, Cicchetti F. The different effects of LPS and poly I:C prenatal immune challenges on the behavior, development and inflammatory responses in pregnant mice and their offspring. Brain Behav Immun 2014;38:77−90.
  • 70. Bitanihirwe BKY, Peleg-Raibstein D, Mouttet F, Feldon J, Meyer U. Late prenatal immune activation in mice leads to behavioral and neurochemical abnormalities relevant to the negative symptoms of schizophrenia. Neuropsychopharmacology 2010;35:2462−78.
  • 71. Vuillermot S, Weber L, Feldon J, Meyer U. A longitudinal examination of the neurodevelopmental impact of prenatal immune activation in mice reveals primary defects in dopaminergic development relevant to schizophrenia. J Neurosci 2010;30:1270−87.
  • 72. Aderem A, Ulevitch RJ. Toll-like receptors in the induction of the innate immune response. Nature 2000;406:782−7.
  • 73. Ozawa K, Hashimoto K, Kishimoto T, Shimizu, E, Ishikura H, Iyo M. Immune activation during pregnancy in mice leads to dopaminergic hyperfunction and cognitive impairment in the offspring: a neurodevelopmental animal model of schizophrenia. Biol Psychiatry 2006;59:546−54.
  • 74. Lodge DJ, Behrens MM, Grace AA. A loss of parvalbumin containing interneurons is associated with diminished oscillatory activity in an animal of schizophrenia. J Neurosci 2009;29:2344−54.
  • 75. Möller M, Du Preez JL, Viljoen FP, Berk M, Emsley R, Harvey BH. Social isolation rearing induces mitochondrial, immunological, neurochemical and behavioural deficits in rats, and is reversed by clozapine or N-acetyl cysteine. Brain Behav Immun 2013;30:156−67.
  • 76. Möller M, Du Preez JL, Viljoen FP, Berk M, Harvey BH. N-acetyl cysteine reverses social isolation rearing induced changes in cortico-striatal monoamines in rats. Metab Brain Dis 2013;28:687−96.
  • 77. Fone KCF, Porkess MV. Behavioural and neurochemical effects of post-weaning social isolation in rodents–relevance to developmental neuropsychiatric disorders. Neurosci Biobehav Rev 2008;32:1087–102.
  • 78. Ibrahim HM, Healy DJ, Hogg AJ Jr, Meador-Woodruff JH. Nucleus-specific expression of ionotropic glutamate receptor subunit mRNAs and binding sites in primate thalamus. Brain Res Mol Brain Res 2000;79:1–17.
  • 79. Stephan KE, Baldeweg T, Friston KJ. Synaptic plasticity and dysconnection in schizophrenia. Biol Psychiatry 2006;59:929–39.
  • 80. Fradley RL, O’Meara GF, Newman RJ, Andrieux A, Job D, Reynolds DS. STOP knockout and NMDA NR1 hypomorphic mice exhibit deficits in sensorimotor gating. Behav Brain Res 2005;163: 257–64.
  • 81. Miyamota Y, Yamada K, Noda Y, Mori H, Mishina M, Nabeshima T. Hyperfunction of dopaminerjik and serotonergic neuronal systems in mice lacking the NMDA receptor 1 subunit. J Neurosci 2001; 21:750–7.
  • 82. Ming GL, Song H. DISC1 partners with GSK3beta in neurogenesis. Cell 2009;136:990–2.
  • 83. Ibi D, Nagai T, Koike H, Kitahara Y, Mizoguchi H, Niwa M, Jaaro-Peled H, Nitta A, Yoneda, Y, Nabeshima T, Sawa A, Yamada K. Combined effect of neonatal immune activation and mutant DISC1 on phenotypic changes in adulthood. Behav Brain Res 2010;206:32–7.
  • 84. Abazyan B, Nomura J, Kannan G, Ishizuka K, Tamashiro KL, Nucifora F, Pogorelov V, Ladenheim B, Yang C, Krasnova IN, Cadet JL, Pardo C, Mori S, Kamiya A, Vogel MW, Sawa A, Ross CA, Pletnikov MV. Prenatal interaction of mutant DISC1 and immune activation produces adult psychopathology. Biol Psychiatry 2010;68:1172–81.
  • 85. Harrison PJ, Weinberger DR. Schizophrenia genes, gene expression and neuropathology: on the matter of their convergence. Mol Psychiatry 2005;10:40–68.
  • 86. Schurov IL, Handford EJ, Brandon NJ, Whiting PJ. Expression of disrupted in schizophrenia 1 (DISC1) protein in the adult and developing mouse brain indicates its role in neurodevelopment. Mol Psychiatry 2004;9:1100–10.
  • 87. Shen S, Lang B, Nakamoto C, Zhang F, Pu J, Kuan SL, Chatzi C, He S, Mackie I, Brandon NJ, Marquis KL, Day M, Hurko O, McCaig CD, Riedel G, St Clair D. Schizophrenia-related neural and behavioral phenotypes in transgenic mice expressing truncated Disc1. J Neurosci 2008;28:10893–904.
  • 88. Bhardwaj SK, Ryan RT, Wong TP, Srivastava LK. Loss of dysbindin-1, a risk gene for schizophrenia, leads to impaired group 1 metabotropic glutamate receptor function in mice. Front Behav Neurosci 2015;9:72.
  • 89. Xu Y, Sun Y, Ye H, Zhu L, Liu J, Wu X, Wang L, He T, Shen Y, Wu JY, Xu Q. Increased dysbindin-1B isoform expression in schizophrenia and its propensity in aggresome formation. Cell Discov 2015;1:15032.
  • 90. Neeley EW, Berger R, Koenig JI, Leonard S. Strain dependent effects of prenatal stress on gene expression in the rat hippocampus. Physiol Behav 2011;104:334–9.
  • 91. Petrovszki Z, Adam G, Tuboly G, Kekesi G, Benedek G, Keri S, Horvath G. Characterization of gene-environment interactions by behavioral profiling of selectively bred rats: the effect of NMDA receptor inhibition and social isolation. Behav Brain Res 2013;240: 134–45.
  • 92. Nestler EJ, Hyman SE. Animal models of neuropsychiatric disorders. Nat Neurosci 2010;13:1161–9.
  • 93. Weinberger DR, Egan MF, Bertolino A, Callicott JH, Mattay VS, Lipska BK, Berman KF, Goldberg TE. Prefrontal neurons and the genetics of schizophrenia. Biol Psychiatry 2001;50:825–44.
  • 94. Maric NP, Svrakic DM. Why schizophrenia genetics needs epigenetics: a review. Psychiatr Danub 2012;24:2–18.
  • 95. Muraki K, Tanigaki K. Neuronal migration abnormalities and its possible implications for schizophrenia. Front Neurosci 2015;9:74.
  • 96. Ram E, Raphaeli S, Avital A. Prepubertal chronic stress and ketamine administration to rats as a neurodevelopmental model of schizophrenia symptomatology. Int J Neuropsychopharmacol 2013; 16:2307–14.
Yıl 2022, Cilt: 16 Sayı: 2, 114 - 123, 30.08.2022

Öz

Kaynakça

  • 1. Andreasen NC. Symptoms, signs, and diagnosis of schizophrenia. Lancet 1995;346:477–81.
  • 2. Belforte JE, Zsiros V, Sklar ER, Jiang Z, Yu G, Li Y, Quinlan ME, Nakazawa K. Postnatal NMDA reseptor ablation in corticolimbik interneurons confers schizophrenia like phenotypes. Nat Neurosci 2010;13:76–83.
  • 3. Andreassen OA, Thompson WK, Dale AM. Boosting the power of schizophrenia genetics by leveraging new statistical tools. Schizophr Bull 2014;40:13–17.
  • 4. Uzun Ö. Pozitif – negatif belirtiler. In: Ceylan E, Çetin M, editors. Şizofreni. Vol. 1. İstanbul: Yerküre Tanıtım ve Yayıncılık; 2005. p. 643–56.
  • 5. Foussias G, Remington G. Negative symptoms in schizophrenia: avolition and Occam’s razor. Schizophr Bull 2010;36:359–69.
  • 6. Bayer TA, Falkai P, Maier W. Genetic and non-genetic vulnerability factors in schizophrenia: the basis of the “two hit hypothesis”. J Psychiatr Res 1999;33:543–8.
  • 7. Kim DH, Stahl SM. Antipsychotic drug development. Curr Top Behav Neurosci 2010;4:123–39.
  • 8. Taly A. Novel approaches to drug design for the treatment of schizophrenia. Exp Opin Drug Discov 2013;8:1285–96.
  • 9. Murray RM, Lappin J, Di Forti M. Schizophrenia: from developmental deviance to dopamine dysregulation. Eur Neuropsycho-pharmacol 2008;18:S129–34.
  • 10. Inta D, Monyer H, Sprengel R, Meyer-Lindenberg A, Gass P. A comprehensive review: mice with genetically altered glutamate receptors as models of schizophrenia. Neurosci Biobehav Rev 2010; 34:285–94.
  • 11. Yamazaki M, Harada K, Yamamoto N, Yarimizu J, Okabe M, Shimada T, Ni K, Matsuoka N. ASP5736, a novel 5-HT5A receptor antagonist, a meliorates positive symptoms and cognitive impairment in animal models of schizophrenia. Eur Neuropsychopharmacol 2014;24:1698–708.
  • 12. Penschuck S, Flagstad P, Didriksen M, Leist M, Michael-Titus AT. Decrease in parvalbumin-expressing neurons in the hippocampus and increased phencyclidine-induced locomotor activity in the rat methylazoxymethanol (MAM) model of schizophrenia. Eur J Neurosci 2006;23:279–84.
  • 13. Lipska BK, Jaskiw GE, Braun AR, Weinberger DR. Prefrontal cortical and hippocampal modulation of haloperidol-induced catalepsy and apomorphine-induced stereotypic behaviors in the rat. Biol Psychiatry 1995;38:255–62.
  • 14. Tseng KY, Chambers RA, Lipska BK. Neonatal ventral hippocampal lesion as a heuristic neurodevelopmental model of schizophrenia. Behav Brain Res 2009;204:295–305.
  • 15. Flagstad P, Mork A, Glenthoj BY, van Beek J, Michael-Titus AT, Didreksen M. Disruption of neurogenesis on gestational day 17 in the rat causes behavioral changes relevant to positive and negative schizophrenia symptoms and alters amphetamine-induced dopamine release in nucleus accumbens. Neuropsychopharmacology 2004;29:2052–64.
  • 16. Rodriguez-Murillo L, Gogos JA, Karayiorgou M. The genetic architecture of schizophrenia: new mutations and emerging paradigms. Annu Rev Med 2012;63:63–80.
  • 17. Niwa M, Kamiya A, Murai R, Kubo KI, Gruber AJ, Tomita K, Lu L, Tomisato S, Jaaro-Peled H, Seshadri S, Hiyama H, Huang B, Kohda K, Noda Y, O’Donnell P, Nakajima K, Sawa A, Nabeshima T. Knockdown of DISC1 by in utero gene transfer disturbs postnatal dopaminergic maturation in the frontal cortex and leads to adult behavioral deficits. Neuron 2010;65:480–9.
  • 18. Papaleo F, Yang F, Garcia S, Chen J, Lu B, Crawley JN, Weinberger DR. Dysbindin-1 modulates prefrontal cortical activity and schizophrenia-like behaviors via dopamine/D2 pathways. Mol Psychiatry 2012;17: 85–98.
  • 19. Mei L, Xiong W. Neuregulin 1 in neural development, synaptic plasticity and schizophrenia. Nat Rev Neurosci 2008;9:437–52.
  • 20. Aberg KA, McClay JL, Nerella S, Clark S, Kumar G, Chen W, Khachane AN, Xie L, Hudson A, Gao G, Harada A, Hultman CM, Sullivan PF, Magnusson PKE, van den Oord EJ. Methylome-wide association study of schizophrenia: identifying blood biomarker signatures of environmental insults. JAMA Psychiatry 2014;71:255–64.
  • 21. Ikegame T, Bundo M, Murata Y, Kasai k, Kato T, Iwamoto K. DNA methylation of the BDNF gene and its relevance to psychiatric disorders. J Hum Genet 2013;58:434–8.
  • 22. Van Os J, Kenis G, Rutten BPF. The environment and schizophrenia. Nature 2010;468:203–12.
  • 23. Featherstone RE, Rizos Z, Kapur S, Fletcher PJ. A sensitizing regimen of amphetamine that disrupts attentional set-shifting does not disrupt working or long-term memory. Behav Brain Res 2008;189:170–9.
  • 24. Marcotte ER, Pearson DM, Srivastava LK. Animal models of schizophrenia: a critical review. J Psychiatry Neurosci 2001;26:395–410.
  • 25. Carlsson A. The dopamine theory revisited. In: Hirsch SR, Weinberger DR, editors. Schizophrenia. Oxford: Blackwell Science; 1995. p. 379–400.
  • 26. Dworkin RH, Opler LA. Simple schizophrenia, negative symptoms, and prefrontal hypodopaminergia. Am J Psychiatry 1992;149:1284–5.
  • 27. Papaleo F, Yang F, Garcia S, Chen J, Lu B, Crawley JN, Weinberger DR. Dysbindin-1 modulates prefrontal cortical activity and schizophrenia-like behaviors via dopamine/D2 pathways. Mol Psychiatry 2012;17:85–98.
  • 28. Javitt DC, Zukin SR. Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 1991;148:1301–8.
  • 29. Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD, Heninger GR, Bowers MB Jr, Charney DS. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Arch Gen Psychiatry 1994;51:199–214.
  • 30. Jenkins TA, Harte MK, Reynolds GP. Effect of subchronic phencyclidine administration on sucrose preference and hippo¬campal parvalbumin immunoreactivity in the rat. Neurosci Lett 2010;471:144–7.
  • 31. Cohen J, Struening EL. Opinions about mental illness in the personnel of two large mental hospitals. J Abnorm Psychol 1962;64:349–60.
  • 32. Xia Y, Wang CZ, Liu J, Anastasio NC, Johnson KM. Brain-derived neurotrophic factor prevents phencyclidine induced apoptosis in developing brain by parallel activation of both the ERK and PI-3K/Akt pathways. Neuropharmacology 2010;58:330–6.
  • 33. Seillier A, Giuffrida A. Evaluation of NMDA receptor models of schizophrenia: Divergences in the behavioral effects of sub-chronic PCP and MK-801. Behav Brain Res 2009;204:410–5.
  • 34. Geyer MA, Krebs-Thomson K, Braff DL, Swerdlow NR. Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology (Berl) 2001;156:117–54.
  • 35. Noda A, Noda Y, Kamei H, Ichihara K, Mamiya T, Nagai T, Sugiura S, Furukawa H, Nabeshima T. Phencyclidine impairs latent learning in mice: interaction between glutamatergic systems and sigma(1) receptors. Neuropsychopharmacology 2001;24:451–60.
  • 36. Jentsch JD, Roth RH. The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 1999;20:201–25.
  • 37. Martin MV Mirnics K, Nisenbaum LK, Vawter MP. Olanzapine reversed brain gene expression changes induced by phencyclidine treatment in non-human primates. Mol Neuropsychiatry 2015;1:82–93.
  • 38. Harrison PJ, Burnet PW. The 5-HT2A (serotonin2A) receptor gene in the aetiology, pathophysiology and pharmacotherapy of schizophrenia. J Psychopharmacol 1997;11:18–20.
  • 39. Burnet PW, Eastwood SL, Harrison PJ. [3H]WAY-100635 for 5-HT1A receptor autoradiography in human brain: a comparison with [3H]8-OH-DPAT and demonstration of increased binding in the frontal cortex in schizophrenia. Neurochem Int 1997;30:565–74.
  • 40. Abi-Dargham A, Laruelle M, Aghajanian GK, Charney D, Krystal J. The role of serotonin in the pathophysiology and treatment of schizophrenia. J Neuropsychiatry Clin Neurosci 1997;9:1–17.
  • 41. Geyer MA. Behavioral studies of hallucinogenic drugs in animals: implications for schizophrenia research. Pharmacopsychiatry 1998;31:S73–9.
  • 42. Yamada S, Harano M, Annoh N, Nakamura K, Tanaka M. Involvement of serotonin 2A receptors in phencyclidine-induced disruption of prepulse inhibition of the acoustic startle in rats. Biol Psychiatry 1999;46:832–8.
  • 43. Lewis DA, Pierri JN, Volk DW, Melchitzky DS, Woo TU. Altered GABA neurotransmission and prefrontal cortical dysfunction in schizophrenia. Biol Psychiatry 1999;46:616−26.
  • 44. Homayoun H, Moghaddam B. NMDA receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons. J Neurosci 2007;27:11496–500.
  • 45. Benes FM, Vincent S, Alsterberg G, Bird ED, SanGiovanni JP. Increased GABAA receptor binding in superficial layers of cingulate cortex in schizophrenics. J Neurosci 1992;12:924–9.
  • 46. Akbarian S, Kim JJ, Potkin SG, Hagman JO, Tafazzoli A, Bunney WE, Bunney WE Jr, Jones EG. Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. Arch Gen Psychiatry 1995;52:258–66.
  • 47. Zhang Y, Behrens MM, Lisman JE. Prolonged exposure to NMDAR antagonist suppresses inhibitory synaptic transmission in prefrontal cortex. J Neurophysiol 2008;100:959–65.
  • 48. Japha K, Koch M. Picrotoxin in the medial prefrontal cortex impairs sensorimotor gating in rats: reversal by haloperidol. Psychopharmacology (Berl) 1999;144:347−54.
  • 49. Guidotti A, Auta J, Davis JM, Dong E, Grayson DR, Veldic M, Zhang X, Costa E. GABAergic dysfunction in schizophrenia: new treatment strategies on the horizon. Psychopharmacology (Berl) 2005;180:191–205.
  • 50. Tricoire L, Pelkey KA, Erkkila BE, Jeffries BW, Yuan X, McBain CJ. A blueprint for the spatiotemporal origins of mouse hippocampal interneuron diversity. J Neurosci 2011;31:10948–70.
  • 51. Tregellas, JR, Smucny J, Harris JG, Olincy A, Maharajh K, Kronberg E, Eichman LC, Lyons E, Freedman RE. Intrinsic hippocampal activity as a biomarker for cognition and symptoms in schizophrenia. Am J Psychiatry 2014;171:549–56.
  • 52. Schobel SA, Chaudhury NH, Khan UA, Paniagua B, Styner MA, Asllani I, Inbar BP, Corcoran CM, Lieberman JA, Moore H, Small SA. Imaging patients with psychosis and a mouse model establishes a spatiotemporal pattern of hippocampal dysfunction and implicates glutamate elevation as a pathogenic driver. Neuron 2013;78: 81–93.
  • 53. Levin HS, Eisenberg HM, Benton AL. Frontal lobe and dysfunction. Oxford: Oxford University Press; 1991. 448 p.
  • 54. Le Moal M, Simon H. Mesocorticolimbic dopaminergic network: functional and regulatory roles. Physiol Rev 1991;71:155–234.
  • 55. Jaskiw GE, Weinberger DR. Ibotenic acid lesions of medial prefrontal cortex augment swim-stress-induced locomotion. Pharmacol Biochem Behav 1992;41:607–9.
  • 56. Grace AA. Gating of information flow within the limbic system and the pathophysiology of schizophrenia. Brain Res Brain Res Rev 2000;31:330–41.
  • 57. Mittleman G, Bratt AM, Chase R. Heterogeneity of the hippocampus: effects of subfield lesions on locomotion elicited by dopaminergic agonists. Behav Brain Res 1998;92:31–45.
  • 58. Csernansky JG, Csernansky CA, Kogelman L, Montgomery EM, Bardgett ME. Progressive neurodegeneration after intracerebroventricular kainic acid administration in rats: implications for schizophrenia? Biol Psychiatry 1998;44:1143–50.
  • 59. Lewis DA, Levitt P. Schizophrenia as a disorder of neurodevelopment. Annu Rev Neurosci 2002;25:409–32.
  • 60. Koenig JI, Elmer GI, Shepard PD, Lee PR, Mayo C, Joy B, Hercher E, Brady DL. Prenatal exposure to a repeated variable stress paradigm elicits behavioral and neuroendocrinological changes in the adult offspring: potential relevance to schizophrenia. Behav Brain Res 2005;156:251–61.
  • 61. Meyer U. Prenatal poly(i:C) exposure and other developmental immune activation models in rodent systems. Biol Psychiatry 2014;75:307–15.
  • 62. Moore H, Jentsch JD, Ghajarnia M, Geyer MA, Grace AA. A neurobehavioral systems analysis of adult rats exposed to methylazoxymethanol acetate on E17: implications for the neuropathology of schizophrenia. Biol Psychiatry 2006;60:253–64.
  • 63. Kirsten TB, Taricano M, Flório JC, Palermo-Neto J, Bernardi MM. Prenatal lipopolysaccharide reduces motor activity after an immune challenge in adult male offspring. Behav Brain Res 2010; 211:77−82.
  • 64. Lin YL, Wang S. Prenatal lipopolysaccharide exposure increases depression-like behaviors and reduces hippocampal neurogenesis in adult rats. Behav Brain Res 2014;259:24−34.
  • 65. Powell SB, Sejnowski TJ, Behrens MM. Behavioral and neurochemical consequences of cortical oxidative stress on parvalbumin-interneuron maturation in rodent models of schizophrenia. Neuropharmacology 2012;62:1322−31.
  • 66. Van Vugt RWM, Meyer F, van Hulten JA, Vernooij J, Cools AR, Verheij MMM, Martens GJM. Maternal care affects the phenotype of a rat model for schizophrenia. Front Behav Neurosci 2014; 8:1−9.
  • 67. Davis J, Moylan S, Harvey BH, Maes M, Berk M. Neuroprogression in schizophrenia: pathways underpinning clinical staging and therapeutic corollaries. Aust N Z J Psychiatry 2014;48:512−29.
  • 68. Forrest CM, Khalil OS, Pisar M, Smith RA, Darlington LG, Stone TW. Prenatal activation of toll-like receptors-3 by administration of the viral mimetic poly(I:C) changes synaptic proteins, N-methyl-D-aspartate receptors and neurogenesis markers in offspring. Mol Brain 2012;5:22.
  • 69. Arsenault D, St-Amour I, Cisbani G, Rousseau LS, Cicchetti F. The different effects of LPS and poly I:C prenatal immune challenges on the behavior, development and inflammatory responses in pregnant mice and their offspring. Brain Behav Immun 2014;38:77−90.
  • 70. Bitanihirwe BKY, Peleg-Raibstein D, Mouttet F, Feldon J, Meyer U. Late prenatal immune activation in mice leads to behavioral and neurochemical abnormalities relevant to the negative symptoms of schizophrenia. Neuropsychopharmacology 2010;35:2462−78.
  • 71. Vuillermot S, Weber L, Feldon J, Meyer U. A longitudinal examination of the neurodevelopmental impact of prenatal immune activation in mice reveals primary defects in dopaminergic development relevant to schizophrenia. J Neurosci 2010;30:1270−87.
  • 72. Aderem A, Ulevitch RJ. Toll-like receptors in the induction of the innate immune response. Nature 2000;406:782−7.
  • 73. Ozawa K, Hashimoto K, Kishimoto T, Shimizu, E, Ishikura H, Iyo M. Immune activation during pregnancy in mice leads to dopaminergic hyperfunction and cognitive impairment in the offspring: a neurodevelopmental animal model of schizophrenia. Biol Psychiatry 2006;59:546−54.
  • 74. Lodge DJ, Behrens MM, Grace AA. A loss of parvalbumin containing interneurons is associated with diminished oscillatory activity in an animal of schizophrenia. J Neurosci 2009;29:2344−54.
  • 75. Möller M, Du Preez JL, Viljoen FP, Berk M, Emsley R, Harvey BH. Social isolation rearing induces mitochondrial, immunological, neurochemical and behavioural deficits in rats, and is reversed by clozapine or N-acetyl cysteine. Brain Behav Immun 2013;30:156−67.
  • 76. Möller M, Du Preez JL, Viljoen FP, Berk M, Harvey BH. N-acetyl cysteine reverses social isolation rearing induced changes in cortico-striatal monoamines in rats. Metab Brain Dis 2013;28:687−96.
  • 77. Fone KCF, Porkess MV. Behavioural and neurochemical effects of post-weaning social isolation in rodents–relevance to developmental neuropsychiatric disorders. Neurosci Biobehav Rev 2008;32:1087–102.
  • 78. Ibrahim HM, Healy DJ, Hogg AJ Jr, Meador-Woodruff JH. Nucleus-specific expression of ionotropic glutamate receptor subunit mRNAs and binding sites in primate thalamus. Brain Res Mol Brain Res 2000;79:1–17.
  • 79. Stephan KE, Baldeweg T, Friston KJ. Synaptic plasticity and dysconnection in schizophrenia. Biol Psychiatry 2006;59:929–39.
  • 80. Fradley RL, O’Meara GF, Newman RJ, Andrieux A, Job D, Reynolds DS. STOP knockout and NMDA NR1 hypomorphic mice exhibit deficits in sensorimotor gating. Behav Brain Res 2005;163: 257–64.
  • 81. Miyamota Y, Yamada K, Noda Y, Mori H, Mishina M, Nabeshima T. Hyperfunction of dopaminerjik and serotonergic neuronal systems in mice lacking the NMDA receptor 1 subunit. J Neurosci 2001; 21:750–7.
  • 82. Ming GL, Song H. DISC1 partners with GSK3beta in neurogenesis. Cell 2009;136:990–2.
  • 83. Ibi D, Nagai T, Koike H, Kitahara Y, Mizoguchi H, Niwa M, Jaaro-Peled H, Nitta A, Yoneda, Y, Nabeshima T, Sawa A, Yamada K. Combined effect of neonatal immune activation and mutant DISC1 on phenotypic changes in adulthood. Behav Brain Res 2010;206:32–7.
  • 84. Abazyan B, Nomura J, Kannan G, Ishizuka K, Tamashiro KL, Nucifora F, Pogorelov V, Ladenheim B, Yang C, Krasnova IN, Cadet JL, Pardo C, Mori S, Kamiya A, Vogel MW, Sawa A, Ross CA, Pletnikov MV. Prenatal interaction of mutant DISC1 and immune activation produces adult psychopathology. Biol Psychiatry 2010;68:1172–81.
  • 85. Harrison PJ, Weinberger DR. Schizophrenia genes, gene expression and neuropathology: on the matter of their convergence. Mol Psychiatry 2005;10:40–68.
  • 86. Schurov IL, Handford EJ, Brandon NJ, Whiting PJ. Expression of disrupted in schizophrenia 1 (DISC1) protein in the adult and developing mouse brain indicates its role in neurodevelopment. Mol Psychiatry 2004;9:1100–10.
  • 87. Shen S, Lang B, Nakamoto C, Zhang F, Pu J, Kuan SL, Chatzi C, He S, Mackie I, Brandon NJ, Marquis KL, Day M, Hurko O, McCaig CD, Riedel G, St Clair D. Schizophrenia-related neural and behavioral phenotypes in transgenic mice expressing truncated Disc1. J Neurosci 2008;28:10893–904.
  • 88. Bhardwaj SK, Ryan RT, Wong TP, Srivastava LK. Loss of dysbindin-1, a risk gene for schizophrenia, leads to impaired group 1 metabotropic glutamate receptor function in mice. Front Behav Neurosci 2015;9:72.
  • 89. Xu Y, Sun Y, Ye H, Zhu L, Liu J, Wu X, Wang L, He T, Shen Y, Wu JY, Xu Q. Increased dysbindin-1B isoform expression in schizophrenia and its propensity in aggresome formation. Cell Discov 2015;1:15032.
  • 90. Neeley EW, Berger R, Koenig JI, Leonard S. Strain dependent effects of prenatal stress on gene expression in the rat hippocampus. Physiol Behav 2011;104:334–9.
  • 91. Petrovszki Z, Adam G, Tuboly G, Kekesi G, Benedek G, Keri S, Horvath G. Characterization of gene-environment interactions by behavioral profiling of selectively bred rats: the effect of NMDA receptor inhibition and social isolation. Behav Brain Res 2013;240: 134–45.
  • 92. Nestler EJ, Hyman SE. Animal models of neuropsychiatric disorders. Nat Neurosci 2010;13:1161–9.
  • 93. Weinberger DR, Egan MF, Bertolino A, Callicott JH, Mattay VS, Lipska BK, Berman KF, Goldberg TE. Prefrontal neurons and the genetics of schizophrenia. Biol Psychiatry 2001;50:825–44.
  • 94. Maric NP, Svrakic DM. Why schizophrenia genetics needs epigenetics: a review. Psychiatr Danub 2012;24:2–18.
  • 95. Muraki K, Tanigaki K. Neuronal migration abnormalities and its possible implications for schizophrenia. Front Neurosci 2015;9:74.
  • 96. Ram E, Raphaeli S, Avital A. Prepubertal chronic stress and ketamine administration to rats as a neurodevelopmental model of schizophrenia symptomatology. Int J Neuropsychopharmacol 2013; 16:2307–14.
Toplam 96 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sağlık Kurumları Yönetimi
Bölüm Reviews
Yazarlar

Zeynep Mine Altunay Bu kişi benim 0000-0002-7663-7417

Aysel Alphan Bu kişi benim 0000-0001-9624-2036

Esat Adıgüzel Bu kişi benim 0000-0002-1110-5786

Erken Görünüm Tarihi 9 Mayıs 2023
Yayımlanma Tarihi 30 Ağustos 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 16 Sayı: 2

Kaynak Göster

APA Altunay, Z. M., Alphan, A., & Adıgüzel, E. (2022). In vivo experimental models of schizophrenia: mechanisms, features, advantages, disadvantages. Anatomy, 16(2), 114-123.
AMA Altunay ZM, Alphan A, Adıgüzel E. In vivo experimental models of schizophrenia: mechanisms, features, advantages, disadvantages. Anatomy. Ağustos 2022;16(2):114-123.
Chicago Altunay, Zeynep Mine, Aysel Alphan, ve Esat Adıgüzel. “In Vivo Experimental Models of Schizophrenia: Mechanisms, Features, Advantages, Disadvantages”. Anatomy 16, sy. 2 (Ağustos 2022): 114-23.
EndNote Altunay ZM, Alphan A, Adıgüzel E (01 Ağustos 2022) In vivo experimental models of schizophrenia: mechanisms, features, advantages, disadvantages. Anatomy 16 2 114–123.
IEEE Z. M. Altunay, A. Alphan, ve E. Adıgüzel, “In vivo experimental models of schizophrenia: mechanisms, features, advantages, disadvantages”, Anatomy, c. 16, sy. 2, ss. 114–123, 2022.
ISNAD Altunay, Zeynep Mine vd. “In Vivo Experimental Models of Schizophrenia: Mechanisms, Features, Advantages, Disadvantages”. Anatomy 16/2 (Ağustos 2022), 114-123.
JAMA Altunay ZM, Alphan A, Adıgüzel E. In vivo experimental models of schizophrenia: mechanisms, features, advantages, disadvantages. Anatomy. 2022;16:114–123.
MLA Altunay, Zeynep Mine vd. “In Vivo Experimental Models of Schizophrenia: Mechanisms, Features, Advantages, Disadvantages”. Anatomy, c. 16, sy. 2, 2022, ss. 114-23.
Vancouver Altunay ZM, Alphan A, Adıgüzel E. In vivo experimental models of schizophrenia: mechanisms, features, advantages, disadvantages. Anatomy. 2022;16(2):114-23.

Anatomy is the official publication of the Turkish Society of Anatomy and Clinical Anatomy(TSACA).