Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, Cilt: 3 Sayı: 1, 178 - 190, 25.04.2024

Öz

Kaynakça

  • Laraib, U., Sargazi, S., Rahdar, A., Khatami, M., et al. (2022). Nanotechnologybased approaches for effective detection of tumor markers: A comprehensive state-of-theart review. International Journal of Biological Macromolecules, 195, 356-383.
  • Lee, P. Y., Osman, J., Low, T. Y., & Jamal, R. (2019). Plasma/serum proteomics: depletion strategies for reducing highabundance proteins for biomarker discovery. Bioanalysis, 11(19), 1799-1812.
  • Bayda, S., Adeel, M., Tuccinardi, T., Cordani, M., et al. (2019). The history of nanoscience and nanotechnology: from chemical–physical applications to nanomedicine. Molecules, 25(1), 112.
  • Phetsang, S., Khwannimit, D., Rattanakit, P., Chanlek, N., et al. (2021). A redox Cu (II)-graphene oxide modified screen printed carbon electrode as a cost-effective and versatile sensing platform for electrochemical label-free immunosensor and non-enzymatic glucose sensor. Frontiers in Chemistry, 9, 671173.
  • Zhang, M., Okazaki, T., Iizumi, Y., Miyako, E., et al. (2016). Preparation of smallsized graphene oxide sheets and their biological applications. Journal of Materials Chemistry B, 4(1), 121-127.
  • Mohan, V. B., Lau, K. T., Hui, D., & Bhattacharyya, D. (2018). Graphene-based materials and their composites: A review on production, applications and product limitations. Composites Part B: Engineering, 142, 200-220.
  • Aslam, B., Basit, M., Nisar, M. A., Khurshid, M., et al. (2016). Proteomics: technologies and their applications. Journal of chromatographic science, 1-15.
  • Lee, P. Y., Saraygord-Afshari, N., & Low, T. Y. (2020). The evolution of twodimensional gel electrophoresis-from proteomics to emerging alternative applications. Journal of Chromatography A, 1615, 460763.
  • Ebhardt, H. A., Root, A., Sander, C., & Aebersold, R. (2015). Applications of targeted proteomics in systems biology and translational medicine. Proteomics, 15(18), 3193-3208.
  • Paul, J., & Veenstra, T. D. (2022). Separation of serum and plasma proteins for in-depth proteomic analysis. Separations, 9(4), 89.
  • Lüling, R., Schmeißer, W., Siegert, M., Mückter, H., et al. (2021). Identification of creatine kinase and alpha‐1 antitrypsin as protein targets of alkylation by sulfur mustard. Drug Testing and Analysis, 13(2), 268-282.
  • Haase, M., Bellomo, R., & Haase-Fielitz, A. (2010). Novel biomarkers, oxidative stress, and the role of labile iron toxicity in cardiopulmonary bypass-associated acute kidney injury. Journal of the American College of Cardiology, 55(19), 2024-2033.
  • Tirumalai, R. S., Chan, K. C., Prieto, D. A., Issaq, H. J., et al. (2003). Characterization of the Low Molecular Weight Human Serum Proteome* S. Molecular & cellular proteomics, 2(10), 1096-1103.
  • Scollo, F., & La Rosa, C. (2020). Amyloidogenic intrinsically disordered proteins: new insights into their self-assembly and their interaction with membranes. Life, 10(8), 144.
  • Roche, S., Tiers, L., Provansal, M., Seveno, M., et al. (2009). Depletion of one, six, twelve or twenty major blood proteins before proteomic analysis: the more the better?. Journal of Proteomics, 72(6), 945-951.
  • Goryainova, O. S., Ivanova, T. I., Rutovskaya, M. V., & Tillib, S. V. (2017). A method for the parallel and sequential generation of single-domain antibodies for the proteomic analysis of human blood plasma. Molecular Biology, 51, 855-864.
  • Chromy, B. A., Gonzales, A. D., Perkins, J., Choi, M. W., et al. (2004). Proteomic analysis of human serum by two-dimensional differential gel electrophoresis after depletion of high-abundant proteins. Journal of Proteome Research, 3(6), 1120-1127.
  • Jacobs, J. M., Adkins, J. N., Qian, W. J., Liu, T., et al. (2005). Utilizing human blood plasma for proteomic biomarker discovery. Journal of proteome research, 4(4), 1073-1085.
  • Henry, N. L., & Hayes, D. F. (2012). Cancer biomarkers. Molecular oncology, 6(2), 140-146.
  • Winstedt, L., Järnum, S., Nordahl, E. A., Olsson, A., et al. (2015). Complete removal of extracellular IgG antibodies in a randomized dose-escalation phase I study with the bacterial enzyme IdeS–a novel therapeutic opportunity. PLoS One, 10(7), e0132011.
  • Ingavle, G. C., Baillie, L. W., Zheng, Y., Lis, E. K., et al. (2015). Affinity binding of antibodies to supermacroporous cryogel adsorbents with immobilized protein A for removal of anthrax toxin protective antigen. Biomaterials, 50, 140-153.
  • Seo, J. S., Lee, S., & Poulter, C. D. (2013). Regioselective covalent immobilization of recombinant antibody-binding proteins A, G, and L for construction of antibody arrays. Journal of the American Chemical Society, 135(24), 8973-8980.
  • Rodriguez, E. L., Poddar, S., Iftekhar, S., Suh, K., et al. (2020). Affinity chromatography: A review of trends and developments over the past 50 years. Journal of Chromatography B, 1157, 122332.
  • Denizli, A., & Pişkin, E. (2001). Dyeligand affinity systems. Journal of Biochemical and Biophysical Methods, 49(1- 3), 391-416.
  • Echan, L. A., Tang, H. Y., Ali‐Khan, N., Lee, K., et al. (2005). Depletion of multiple high‐abundance proteins improves protein profiling capacities of human serum and plasma. Proteomics, 5(13), 3292-3303.
  • DENİZLİ, A. (2011). Purification of antibodies by affinity chromatography. Hacettepe Journal of Biology and Chemistry, 39(1), 1-18.
  • Mazzer, A. R., Perraud, X., Halley, J., O’Hara, J., et al. (2015). Protein A chromatography increases monoclonal antibody aggregation rate during subsequent low pH virus inactivation hold. Journal of Chromatography A, 1415, 83-90.
  • Tsai, H., Lu, Y. H., Liao, H. X., Wu, S. W., et al. (2015). Detection of rabbit IgG by using functional magnetic particles and an enzyme-conjugated antibody with a homemade magnetic microplate. Chemistry Central Journal, 9, 1-7.
  • Topçu, A. A., Kılıç, S., Özgür, E., Türkmen, D., et al. (2022). Inspirations of biomimetic affinity ligands: a review. ACS omega, 7(37), 32897-32907.
  • Andaç, M., & Denizli, A. (2014). Affinity-recognition-based polymeric cryogels for protein depletion studies. Rsc Advances, 4(59), 31130-31141.
  • Puri, N., Gupta, A., & Mishra, A. (2021). Recent advances on nano-adsorbents and nanomembranes for the remediation of water. Journal of Cleaner Production, 322, 129051.
  • Zhu, H., Wu, F., Cui, J., Xu, B., et al. (2022). Diverse Polymer Nanomembranes Toward Task‐Specific Applications. Nanomembranes: Materials, Properties, and Applications, 57-83.
  • Stewart, C. J., Nelson, A., Treumann, A., Skeath, T., et al. (2016). Metabolomic and proteomic analysis of serum from preterm infants with necrotising enterocolitis and lateOnset sepsis. Pediatric research, 79(3), 425-431.
  • Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., et al. (2010). Improved synthesis of graphene oxide. ACS nano, 4(8), 4806-4814.
  • Kuşat, K., Bağlamış, S., Kuru, C. İ., Ulucan, F., Uygun, M., & Akgöl, S. (2022). p(HEMA)-RR241 hydrogel membranes with micron network for IgG depletion in proteomic studies. Journal of Biomaterials Science, Polymer Edition, 33(9), 1181-1197.
  • Holmberg, M., & Hou, X. (2010). Competitive protein adsorption of albumin and immunoglobulin G from human serum onto polymer surfaces. Langmuir, 26(2), 938-942.
  • Demir, E. F., Kuru, C. I., Uygun, M., Aktaş Uygun, D., & Akgöl, S. (2018). Antibody separation using lectin modified poly (HEMA-EDMA) hydrogel membranes. Journal of Biomaterials science, Polymer edition, 29(4), 344-359.
  • Bayramoglu, G., & Arıca, M. Y. (2009). Preparation and characterization of comb type polymer coated poly (HEMA/EGDMA) microspheres containing surface-anchored sulfonic acid: Application in γ-globulin separation. Reactive and Functional Polymers, 69(3), 189-196.

SYNTHESIS OF MEMBRANE STRUCTURES CONTAINING NANOCOMPOSITES FOR IMMUNOGLOBULIN G (IgG) ADSORPTION

Yıl 2024, Cilt: 3 Sayı: 1, 178 - 190, 25.04.2024

Öz

The discovery of markers of many diseases, such as cancer, inflammation, diabetes, cardiovascular diseases and other autoimmune diseases, can be made through the characterization of serum protein or peptide. Proteomics, the large-scale analysis of proteins, will make a major contribution to our understanding of gene function in the post-genomic era. Proteomics is the quantitative and physical mapping of total proteins in a particular cell line, tissue, body fluids, or organism.
In our study, it is aimed to adsorption of antibodies from solutions Accordingly, GO-HEMA membranes were synthesized by photopolymerization method, followed by scanning electron microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR). During IgG binding to GO-HEMA membranes, pH, temperature, concentration and time parameters were examined.

Kaynakça

  • Laraib, U., Sargazi, S., Rahdar, A., Khatami, M., et al. (2022). Nanotechnologybased approaches for effective detection of tumor markers: A comprehensive state-of-theart review. International Journal of Biological Macromolecules, 195, 356-383.
  • Lee, P. Y., Osman, J., Low, T. Y., & Jamal, R. (2019). Plasma/serum proteomics: depletion strategies for reducing highabundance proteins for biomarker discovery. Bioanalysis, 11(19), 1799-1812.
  • Bayda, S., Adeel, M., Tuccinardi, T., Cordani, M., et al. (2019). The history of nanoscience and nanotechnology: from chemical–physical applications to nanomedicine. Molecules, 25(1), 112.
  • Phetsang, S., Khwannimit, D., Rattanakit, P., Chanlek, N., et al. (2021). A redox Cu (II)-graphene oxide modified screen printed carbon electrode as a cost-effective and versatile sensing platform for electrochemical label-free immunosensor and non-enzymatic glucose sensor. Frontiers in Chemistry, 9, 671173.
  • Zhang, M., Okazaki, T., Iizumi, Y., Miyako, E., et al. (2016). Preparation of smallsized graphene oxide sheets and their biological applications. Journal of Materials Chemistry B, 4(1), 121-127.
  • Mohan, V. B., Lau, K. T., Hui, D., & Bhattacharyya, D. (2018). Graphene-based materials and their composites: A review on production, applications and product limitations. Composites Part B: Engineering, 142, 200-220.
  • Aslam, B., Basit, M., Nisar, M. A., Khurshid, M., et al. (2016). Proteomics: technologies and their applications. Journal of chromatographic science, 1-15.
  • Lee, P. Y., Saraygord-Afshari, N., & Low, T. Y. (2020). The evolution of twodimensional gel electrophoresis-from proteomics to emerging alternative applications. Journal of Chromatography A, 1615, 460763.
  • Ebhardt, H. A., Root, A., Sander, C., & Aebersold, R. (2015). Applications of targeted proteomics in systems biology and translational medicine. Proteomics, 15(18), 3193-3208.
  • Paul, J., & Veenstra, T. D. (2022). Separation of serum and plasma proteins for in-depth proteomic analysis. Separations, 9(4), 89.
  • Lüling, R., Schmeißer, W., Siegert, M., Mückter, H., et al. (2021). Identification of creatine kinase and alpha‐1 antitrypsin as protein targets of alkylation by sulfur mustard. Drug Testing and Analysis, 13(2), 268-282.
  • Haase, M., Bellomo, R., & Haase-Fielitz, A. (2010). Novel biomarkers, oxidative stress, and the role of labile iron toxicity in cardiopulmonary bypass-associated acute kidney injury. Journal of the American College of Cardiology, 55(19), 2024-2033.
  • Tirumalai, R. S., Chan, K. C., Prieto, D. A., Issaq, H. J., et al. (2003). Characterization of the Low Molecular Weight Human Serum Proteome* S. Molecular & cellular proteomics, 2(10), 1096-1103.
  • Scollo, F., & La Rosa, C. (2020). Amyloidogenic intrinsically disordered proteins: new insights into their self-assembly and their interaction with membranes. Life, 10(8), 144.
  • Roche, S., Tiers, L., Provansal, M., Seveno, M., et al. (2009). Depletion of one, six, twelve or twenty major blood proteins before proteomic analysis: the more the better?. Journal of Proteomics, 72(6), 945-951.
  • Goryainova, O. S., Ivanova, T. I., Rutovskaya, M. V., & Tillib, S. V. (2017). A method for the parallel and sequential generation of single-domain antibodies for the proteomic analysis of human blood plasma. Molecular Biology, 51, 855-864.
  • Chromy, B. A., Gonzales, A. D., Perkins, J., Choi, M. W., et al. (2004). Proteomic analysis of human serum by two-dimensional differential gel electrophoresis after depletion of high-abundant proteins. Journal of Proteome Research, 3(6), 1120-1127.
  • Jacobs, J. M., Adkins, J. N., Qian, W. J., Liu, T., et al. (2005). Utilizing human blood plasma for proteomic biomarker discovery. Journal of proteome research, 4(4), 1073-1085.
  • Henry, N. L., & Hayes, D. F. (2012). Cancer biomarkers. Molecular oncology, 6(2), 140-146.
  • Winstedt, L., Järnum, S., Nordahl, E. A., Olsson, A., et al. (2015). Complete removal of extracellular IgG antibodies in a randomized dose-escalation phase I study with the bacterial enzyme IdeS–a novel therapeutic opportunity. PLoS One, 10(7), e0132011.
  • Ingavle, G. C., Baillie, L. W., Zheng, Y., Lis, E. K., et al. (2015). Affinity binding of antibodies to supermacroporous cryogel adsorbents with immobilized protein A for removal of anthrax toxin protective antigen. Biomaterials, 50, 140-153.
  • Seo, J. S., Lee, S., & Poulter, C. D. (2013). Regioselective covalent immobilization of recombinant antibody-binding proteins A, G, and L for construction of antibody arrays. Journal of the American Chemical Society, 135(24), 8973-8980.
  • Rodriguez, E. L., Poddar, S., Iftekhar, S., Suh, K., et al. (2020). Affinity chromatography: A review of trends and developments over the past 50 years. Journal of Chromatography B, 1157, 122332.
  • Denizli, A., & Pişkin, E. (2001). Dyeligand affinity systems. Journal of Biochemical and Biophysical Methods, 49(1- 3), 391-416.
  • Echan, L. A., Tang, H. Y., Ali‐Khan, N., Lee, K., et al. (2005). Depletion of multiple high‐abundance proteins improves protein profiling capacities of human serum and plasma. Proteomics, 5(13), 3292-3303.
  • DENİZLİ, A. (2011). Purification of antibodies by affinity chromatography. Hacettepe Journal of Biology and Chemistry, 39(1), 1-18.
  • Mazzer, A. R., Perraud, X., Halley, J., O’Hara, J., et al. (2015). Protein A chromatography increases monoclonal antibody aggregation rate during subsequent low pH virus inactivation hold. Journal of Chromatography A, 1415, 83-90.
  • Tsai, H., Lu, Y. H., Liao, H. X., Wu, S. W., et al. (2015). Detection of rabbit IgG by using functional magnetic particles and an enzyme-conjugated antibody with a homemade magnetic microplate. Chemistry Central Journal, 9, 1-7.
  • Topçu, A. A., Kılıç, S., Özgür, E., Türkmen, D., et al. (2022). Inspirations of biomimetic affinity ligands: a review. ACS omega, 7(37), 32897-32907.
  • Andaç, M., & Denizli, A. (2014). Affinity-recognition-based polymeric cryogels for protein depletion studies. Rsc Advances, 4(59), 31130-31141.
  • Puri, N., Gupta, A., & Mishra, A. (2021). Recent advances on nano-adsorbents and nanomembranes for the remediation of water. Journal of Cleaner Production, 322, 129051.
  • Zhu, H., Wu, F., Cui, J., Xu, B., et al. (2022). Diverse Polymer Nanomembranes Toward Task‐Specific Applications. Nanomembranes: Materials, Properties, and Applications, 57-83.
  • Stewart, C. J., Nelson, A., Treumann, A., Skeath, T., et al. (2016). Metabolomic and proteomic analysis of serum from preterm infants with necrotising enterocolitis and lateOnset sepsis. Pediatric research, 79(3), 425-431.
  • Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., et al. (2010). Improved synthesis of graphene oxide. ACS nano, 4(8), 4806-4814.
  • Kuşat, K., Bağlamış, S., Kuru, C. İ., Ulucan, F., Uygun, M., & Akgöl, S. (2022). p(HEMA)-RR241 hydrogel membranes with micron network for IgG depletion in proteomic studies. Journal of Biomaterials Science, Polymer Edition, 33(9), 1181-1197.
  • Holmberg, M., & Hou, X. (2010). Competitive protein adsorption of albumin and immunoglobulin G from human serum onto polymer surfaces. Langmuir, 26(2), 938-942.
  • Demir, E. F., Kuru, C. I., Uygun, M., Aktaş Uygun, D., & Akgöl, S. (2018). Antibody separation using lectin modified poly (HEMA-EDMA) hydrogel membranes. Journal of Biomaterials science, Polymer edition, 29(4), 344-359.
  • Bayramoglu, G., & Arıca, M. Y. (2009). Preparation and characterization of comb type polymer coated poly (HEMA/EGDMA) microspheres containing surface-anchored sulfonic acid: Application in γ-globulin separation. Reactive and Functional Polymers, 69(3), 189-196.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Proteomik ve Moleküller Arası Etkileşimler, Nanobiyoteknoloji, Farmasotik Biyoteknoloji
Bölüm Research Articles
Yazarlar

Hilal Özçelik 0009-0007-8040-4038

Yasemin Subaşı 0000-0003-0343-6355

Mirza Kibaroğlu 0009-0008-8195-9390

Esra Yaşar 0009-0007-1011-8992

Timuçin Güner 0000-0002-1033-1925

Kaan Tiktaş 0009-0001-5292-8244

Sinan Akgöl 0000-0003-2836-7181

Yayımlanma Tarihi 25 Nisan 2024
Gönderilme Tarihi 5 Mart 2024
Kabul Tarihi 16 Nisan 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 3 Sayı: 1

Kaynak Göster

EndNote Özçelik H, Subaşı Y, Kibaroğlu M, Yaşar E, Güner T, Tiktaş K, Akgöl S (01 Nisan 2024) SYNTHESIS OF MEMBRANE STRUCTURES CONTAINING NANOCOMPOSITES FOR IMMUNOGLOBULIN G (IgG) ADSORPTION. Anatolian Journal of Pharmaceutical Sciences 3 1 178–190.

by.png

This work is licensed by CC by under the Creative Commons Attribution 4.0 International License.