Research Article
BibTex RIS Cite

Ağırlıklı Ters Uzaklık İnterpolasyon Yöntemiyle Çukurova’da Kimi Toprak Karakteristiklerinin Konumsal Dağılımının Tahmini

Year 2016, Volume: 22 Issue: 3, 377 - 384, 01.05.2016
https://doi.org/10.1501/Tarimbil_0000001396

Abstract

Bu çalışmada Çukurova Aşağı Seyhan Nehir Havzasındaki kimi toprak karakteristiklerinin konumsal dağılımının belirlenmesi için interpolasyon yöntemi kullanılmıştır. Bu toprak karakteristikleri tarımsal arazi yönetimini geliştirmede katkı sağlamaktadır. Çalışma alanında 150 m uzunluğa sahip, 5 m aralık ile 7 paralel transect seçilerek ve 104 adet toprak örneği alınmış ve bu örneklerde kalsiyum karbonat, organik madde, katyon değişim kapasitesi ve kil tane büyüklüğü1. Introductiondağılımından belirlemesi yapılmıştır. Sonuçlara ağırlıklı ters uzaklık interpolasyon yöntemi ATU ve CBS teknolojisi uygulanmıştır. ATU interpolasyon yönteminden elde edilen kalsiyum karbonat, organik madde, katyon değişim kapasitesi ve kil değerleri ile toprak analiz sonuçları benzerlik göstermiştir. İnterpolasyon tekniğinin doğruluğunu belirlemek için çapraz doğrulama yapılmıştır. Organik madde değerlerinin 30-60 cm derinliğindeki interpolasyonu, en yüksek ortalama değişim değeri % 2.82 göstermiş, diğer parametrelerde bu durum gözlenmemiştir

References

  • Agris (1998). AgLink reference manual. Version 5.3, AGRIS Corp., Rosewell, GA, pp. 147-171
  • Atalay İ (2011). Toprak Oluşumu, Sınıflandırılması ve Coğrafyası. Meta Basımevi, İzmir
  • Corwin D L (2005). Geospatial measurement of apparent soil electrical conductivity for characterizing soil spatial variability. In: A` lvarez-Benedı´ J & Mun˜ oz- Carpena R (Eds), Soil-Water-Solute Characterization: An Integrated Approach, USA, pp. 55-69
  • Çağlar K Ö (1949). Toprak Bilgisi, Ankara Üniversitesi Ziraat Fakültesi Yayınları: 10, Ankara
  • Dengiz O (2010). Morphology, physico-chemical properties and classification of soils on terraces of the Tigris River in the South-east. Tarım Bilimleri Dergisi-Journal of Agricultural Sciences 16: 205-212
  • Drummond S T, Sudduth K A, Joshi A, Birrell S J & Kitchen N R (2003). Statistical and neural methods for site-specific yield prediction. Transactions of the American Society of Agricultural Engineers 46(1): 1-10
  • Franzen D W & Peck T R (1995). Field soil sampling density for variable rate fertilization. Journal of Production Agriculture 8: 568-574
  • Frogbrook Z L & Oliver M A (2001). Comparing the spatial predictions of soil organic matter determined by two laboratory methods. Soil Use and Management 17: 235-244
  • Gotway C A, Ferguson R B, Hergert G W & Peterson T A (1996). Comparison of kriging and inverse-distance methods for mapping soil parameters. Soil Science Society of America Journal 60: 1237-1247
  • Horn A L, Düring R A & Gath S (2005). Comparison of the prediction efficiency of two pedotransfer functions for soil cation-exchange capacity. Journal of Plant Nutrition and Soil Science 168: 72-374
  • Inigo V, Alonso-Martirena J I, Marin A & Jimenez- Ballesta R (2012). Spatial property variability in a humid natural Mediterranean environment: La Rioja, Spain. Spanish Journal of Soil Science 2(1): 281-299
  • Jung W K, Kitchen N R, Sudduth K A & Anderson S H (2006). Spatial characteristics of claypan soil properties in an agricultural field. Soil Science Society of America Journal 70: 1387-1397
  • Kravchenko A N & Bullock D G (1999). A comparative study of interpolation methods for mapping soil properties. Agronomy Journal 91(3): 393-400
  • Langella G, Basile A, Bonfante A, Manna P & Terribile F (2012). The LIFE+SOILCONSWEB project: A web based spatial decision support system embedding DSM engines. In: Proceedings of the 5th Global Workshop on Digital Soil Mapping, 10-13 April, Sydney, Australia, pp. 482
  • Mabit L & Bernard C (2010). Spatial distribution and content of soil organic matter in an agricultural field in eastern Canada, as estimated from geostatistical tools. Earth Surface Process and Landforms 35: 278- 283
  • Mueller T G, Pierce F J, Schabenberger O & Warncke D D (2001). Map quality for site-specific fertility management. Soil Science Society of America Journal 65: 1547-1558
  • Öner E, Hocaoğlu B & Uncu L (2005). Tarsus ovasının jeomorfolojik gelişimi ve Gözlükule höyüğü. Türkiye Kuaterner Sempozyumu TURQUA-V Bildiriler Kitabı, 2-5 Haziran, İstanbul, Türkiye, s. 82-89
  • Pal S, Panwar P & Bhatt V K (2010). Analysis and in- terpretation of spatial variability of soil properties is a keystone in site-specific management. Indian Journal of Soil Conservation 38(3): 178-183
  • Piikki K, Söderström M & Stenberg B (2013). Sensor data fusion for topsoil clay mapping. Geoderma 199: 106- 116
  • Richards L A (1954). Diagnosis and Improvement of Saline and Alkalin Soils. U.S. Department of Agriculture, Handbook, 60, 109, Riverside
  • Rhoades J D (1982). Cation exchange capacity. In: A L Page, R H Miller & D R Keeney (Eds), Methods of Soil Analysis. Part 2: Chemical and Microbiological Properties (2nd ed.), American Society of Agronomy, Madison, Wisconsin, USA, pp. 149-157
  • Robinson T P & Matternicht G (2006). Testing the perfor mance of spatial interpolation techniques for mapping soil properties. Computers and Electronics in Agriculture 50: 97-108
  • Sharma P, Shukla K & Mexal G (2011). Spatial variability of soil properties in agricultural fields of southern New Mexico. Soil Science 176(6): 288-302
  • Sheldrick B H & Wang C (1993). Particle size distribution. In: M R Carter (Eds.) Soil Sampling and Methods of Analysis, Canadian Society of Soil Science, Lewis Publishers, Ann Arbor, pp. 499-511
  • Shi W, Liu J, Du Z, Song Y, Chen C & Yue T (2009). Surface modeling of soil pH. Geoderma 150: 113-119
  • Tunçay T, Bayramin İ, Tercan A E & Ünver İ (2013). Spatial variability of some soil properties: A case study of Lower Seyhan river basin in Turkey. Zemdirbyste- Agriculture 100(2): 213-219
  • Wang Y Q & Shao M A (2013). Spatial variability of soil physical properties in a region of the loess plateau of PR China subject to wind and water erosion. Land De gradation and Development 24(3): 296-304

Assessment of Inverse Distance Weighting IDW Interpolation on Spatial Variability of Selected Soil Properties in the Cukurova Plain

Year 2016, Volume: 22 Issue: 3, 377 - 384, 01.05.2016
https://doi.org/10.1501/Tarimbil_0000001396

Abstract

This study attempts to evaluate interpolation technique for mapping spatial distribution of some soil characteristics at the Lower Seyhan River Basin in Cukurova Turkey . These soil characteristics may help to improve agricultural land management practices. In the study area, 7 parallel transects each having 150 m of length were selected at 5 m intervals, and 104 soil samples were collected. In these samples, calcium carbonate, organic matter, cation exchange capacity and clay content from particle size distribution were determined. Inverse distance weighting IDW interpolation and employing of GIS technology were applied on the results. Calcium carbonate, organic matter, cation exchange capacity and clay content values derived from IDW interpolation were consistent with the results of the soil analysis. The verity of the interpolation technique was tested by employing cross validation. Interpolation of organic matter values showed a high mean error in 30-60 cm depth 2.82% while this high deviation was not the case with the other parameters studied

References

  • Agris (1998). AgLink reference manual. Version 5.3, AGRIS Corp., Rosewell, GA, pp. 147-171
  • Atalay İ (2011). Toprak Oluşumu, Sınıflandırılması ve Coğrafyası. Meta Basımevi, İzmir
  • Corwin D L (2005). Geospatial measurement of apparent soil electrical conductivity for characterizing soil spatial variability. In: A` lvarez-Benedı´ J & Mun˜ oz- Carpena R (Eds), Soil-Water-Solute Characterization: An Integrated Approach, USA, pp. 55-69
  • Çağlar K Ö (1949). Toprak Bilgisi, Ankara Üniversitesi Ziraat Fakültesi Yayınları: 10, Ankara
  • Dengiz O (2010). Morphology, physico-chemical properties and classification of soils on terraces of the Tigris River in the South-east. Tarım Bilimleri Dergisi-Journal of Agricultural Sciences 16: 205-212
  • Drummond S T, Sudduth K A, Joshi A, Birrell S J & Kitchen N R (2003). Statistical and neural methods for site-specific yield prediction. Transactions of the American Society of Agricultural Engineers 46(1): 1-10
  • Franzen D W & Peck T R (1995). Field soil sampling density for variable rate fertilization. Journal of Production Agriculture 8: 568-574
  • Frogbrook Z L & Oliver M A (2001). Comparing the spatial predictions of soil organic matter determined by two laboratory methods. Soil Use and Management 17: 235-244
  • Gotway C A, Ferguson R B, Hergert G W & Peterson T A (1996). Comparison of kriging and inverse-distance methods for mapping soil parameters. Soil Science Society of America Journal 60: 1237-1247
  • Horn A L, Düring R A & Gath S (2005). Comparison of the prediction efficiency of two pedotransfer functions for soil cation-exchange capacity. Journal of Plant Nutrition and Soil Science 168: 72-374
  • Inigo V, Alonso-Martirena J I, Marin A & Jimenez- Ballesta R (2012). Spatial property variability in a humid natural Mediterranean environment: La Rioja, Spain. Spanish Journal of Soil Science 2(1): 281-299
  • Jung W K, Kitchen N R, Sudduth K A & Anderson S H (2006). Spatial characteristics of claypan soil properties in an agricultural field. Soil Science Society of America Journal 70: 1387-1397
  • Kravchenko A N & Bullock D G (1999). A comparative study of interpolation methods for mapping soil properties. Agronomy Journal 91(3): 393-400
  • Langella G, Basile A, Bonfante A, Manna P & Terribile F (2012). The LIFE+SOILCONSWEB project: A web based spatial decision support system embedding DSM engines. In: Proceedings of the 5th Global Workshop on Digital Soil Mapping, 10-13 April, Sydney, Australia, pp. 482
  • Mabit L & Bernard C (2010). Spatial distribution and content of soil organic matter in an agricultural field in eastern Canada, as estimated from geostatistical tools. Earth Surface Process and Landforms 35: 278- 283
  • Mueller T G, Pierce F J, Schabenberger O & Warncke D D (2001). Map quality for site-specific fertility management. Soil Science Society of America Journal 65: 1547-1558
  • Öner E, Hocaoğlu B & Uncu L (2005). Tarsus ovasının jeomorfolojik gelişimi ve Gözlükule höyüğü. Türkiye Kuaterner Sempozyumu TURQUA-V Bildiriler Kitabı, 2-5 Haziran, İstanbul, Türkiye, s. 82-89
  • Pal S, Panwar P & Bhatt V K (2010). Analysis and in- terpretation of spatial variability of soil properties is a keystone in site-specific management. Indian Journal of Soil Conservation 38(3): 178-183
  • Piikki K, Söderström M & Stenberg B (2013). Sensor data fusion for topsoil clay mapping. Geoderma 199: 106- 116
  • Richards L A (1954). Diagnosis and Improvement of Saline and Alkalin Soils. U.S. Department of Agriculture, Handbook, 60, 109, Riverside
  • Rhoades J D (1982). Cation exchange capacity. In: A L Page, R H Miller & D R Keeney (Eds), Methods of Soil Analysis. Part 2: Chemical and Microbiological Properties (2nd ed.), American Society of Agronomy, Madison, Wisconsin, USA, pp. 149-157
  • Robinson T P & Matternicht G (2006). Testing the perfor mance of spatial interpolation techniques for mapping soil properties. Computers and Electronics in Agriculture 50: 97-108
  • Sharma P, Shukla K & Mexal G (2011). Spatial variability of soil properties in agricultural fields of southern New Mexico. Soil Science 176(6): 288-302
  • Sheldrick B H & Wang C (1993). Particle size distribution. In: M R Carter (Eds.) Soil Sampling and Methods of Analysis, Canadian Society of Soil Science, Lewis Publishers, Ann Arbor, pp. 499-511
  • Shi W, Liu J, Du Z, Song Y, Chen C & Yue T (2009). Surface modeling of soil pH. Geoderma 150: 113-119
  • Tunçay T, Bayramin İ, Tercan A E & Ünver İ (2013). Spatial variability of some soil properties: A case study of Lower Seyhan river basin in Turkey. Zemdirbyste- Agriculture 100(2): 213-219
  • Wang Y Q & Shao M A (2013). Spatial variability of soil physical properties in a region of the loess plateau of PR China subject to wind and water erosion. Land De gradation and Development 24(3): 296-304
There are 27 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Tülay Tunçay This is me

İlhami Bayramin This is me

Fırat Atalay

İlhami Ünver This is me

Publication Date May 1, 2016
Submission Date January 1, 2016
Published in Issue Year 2016 Volume: 22 Issue: 3

Cite

APA Tunçay, T., Bayramin, İ., Atalay, F., Ünver, İ. (2016). Assessment of Inverse Distance Weighting IDW Interpolation on Spatial Variability of Selected Soil Properties in the Cukurova Plain. Journal of Agricultural Sciences, 22(3), 377-384. https://doi.org/10.1501/Tarimbil_0000001396

Journal of Agricultural Sciences is published open access journal. All articles are published under the terms of the Creative Commons Attribution License (CC BY).