Araştırma Makalesi
BibTex RIS Kaynak Göster

Fluoresan Pseudomonas spp. ile Pamuk Fide Kök Çürüklüğü Hastalıklarının Biyolojik Mücadelesi

Yıl 2016, Cilt: 22 Sayı: 3, 398 - 407, 01.05.2016
https://doi.org/10.1501/Tarimbil_0000001398

Öz

Fide kök çürüklüğü pamuk dahil pek çok bitkide görülen ve ekonomik kayıplara yol açan önemli bir hastalıktır. Fungisitler hastalığa karşı mücadelede kullanılması sonucu, çevre ve insan sağlığı olumsuz yönde etkilenmektedir. Çalışmada, fluoresan pseudomonas FP bakterilerinin fide kök çürüklüğü hastalık etmenlerine karşı in-vitro ve in-vivo koşullarda etkilerinin belirlenmesi amaçlanmıştır. Pamuk ve tarladaki yabancı otların rizosferinden izole edilen 59 adet FP izolatı ile in vitro’da ikili kültür testleri yürütülmüştür. Daha sonra etkili bulunan FP izolatları tohuma uygulanarak fide kök çürüklüğü etmenlerine karşı antagonistik etkileri iklim odasında araştırılmıştır. İkili kültür testlerinde, Rhizoctonia solani’ye karşı en yüksek etkiyi FP40 % 49.60 ; Fusarium sp.’ye karşı en yüksek etkiyi FP51 % 43.80 , FP48 % 43.50 ve FP35 % 43.10 ; Pythium deliense’ye karşı en yüksek etkiyi FP57 % 59.80 , FP52 % 57.80 ve FP56 % 57.60 izolatları göstermiştir. İklim odasında, FP35 ve FP57 izolatları her üç patojene karşı % 70’in üzerinde koruma sağlarken, ticari fungisitler Vitavax, Maxim ve biyofungisit Subtilex kadar etkili bulunmuş ve ümitvar sonuçlar elde edilmiştir.

Kaynakça

  • Abdelzaher H M A & Elnaghy M A (1998). Identification of Pythium carolinianum causing ‘root rot’ of cotton in Egypt and its possible biological control by Pseudomonas fluorescens. Mycopathologia 142(3): 143-151
  • Afsharmanesh H, Ahmadzadeh M & Sharifi-Tehrani A (2006). Biocontrol of Rhizoctonia solani, the causal agent of bean damping-off by fluorescent Pseudomonads. Communications in Agricultural and Applied Biological Sciences 71(3): 1021-1029
  • Agile T & Batson W E (1999). Evaluation of radicle assay for determining the biocontrol activity of rhizobacteri to selected pathogens of the cotton seedling disease complex. Pakistan Journal Phytopathology 11(1): 30-40
  • Agrios G N (1998). Plant Pathology. 3th ed. Academic Press incorporated, London
  • Agrios G N (2005). Plant Pathology. 5th ed. Elsevier Academic Press, London
  • Akpınar M Ö & Benlioğlu K (2008). Pamukta fide kök çürüklüğü etmenlerine karşı bazı biyolojik preparatların etkinliğinin saptanması. Yüksek lisans tezi, Adnan Menderes Üniversitesi Fen Bilimleri Enstitüsü (Basılmamış), Aydın
  • Ardakani S S, Heydari A, Khorasani N A, Arjmandi R & Ehteshami M (2009). Preparation of new biofungicides using antagonistic bacteria and mineral compounds for controlling cotton seedling Damping- off disease. Journal of Plant Protection Research 49(1): 49-55
  • Aşkın A & Katırcıoğlu Z (2008). Ankara ili Ayaş, Beypazarı ve Nallıhan ilçelerindeki domates fideliklerinde çökertene neden olan bazı fungal patojenlere karşı patojen olmayan pseudomonasların etkisinin belirlenmesi. Doktora tezi, Ankara Üniversitesi Fen Bilimleri Enstitüsü (Basılmamış), Ankara
  • Bradow J M (1991). Cotton growth in the presence of a seedling-disease-complex biocontrol and sub-optimal temperatures. In: Proceedings-Beltwide Cotton Production Conference, 6-10 January, San Antonio, USA, 2: 820-824
  • Demir G, Karcılıoğlu A & Onan E (1999). Protection of cotton plants against damping-off disease with rhizobacteri. Journal of Turkish Phytopathology 28(3): 111-118
  • Devay J E (2001). Seedling Diseases 13-14, in Eds., T.L. Kirkpatrick and C.S. Rothrock “Compendium of Cotton Diseases” 2th ed. APS Pres VII+77, Memphis
  • Erdoğan O & Benlioğlu K (2010). Biological control of Verticillium wilt on cotton by use of fluorescent Pseudomonas spp. under field conditions. Biological Control 53(1): 39-45
  • Gamliel A & Katan J (1993). Influence of seed and root exudates of fluorescent Pseudomonas and fungi polarized soil. Phytopathology 82: 320-327
  • Gardener M B B & Fravel D R (2002). Biological control of plant pathogens: Research, commercialization and application in the USA. Online. Plant Health Progress doi: 10. 1094/PHP-2002-0510-01-RV
  • Hassanein N M (2012). Biopotential of some Trichoderma spp. against cotton root rot pathogens and profiles of some of their metabolites. African Journal of Microbiology Research 6(23): 4878-4890
  • Hill D S, Stein J I, Torkewitz A M, Howell C R, Morse N R, Pachlatko J P, Becker J O & Lgon J M (1994). Cloning of genes involved in the synthesis of Pyrrolnitrin from P. fluerescens and role of pyrrolnitrin synthesis in biological control of plant disease. Applied Enviromental Microbiology 60(1): 78-85
  • Hoitink H A (1986). Basis for the control of soil borne plant pathogens with composts. Annual Review Phytopathology 24: 93-114
  • Huppatz J L, Phillips J N & Witrzens B (1983). Laboratory and glasshouse studies of the activity of carboxamide derivates against R. solani in cotton. The American Phytopathology Society 67: 45-47
  • Karimi K, Amini J, Harighi B & Bahramnejad B (2012). Evaluation of biocontrol potential of Pseudomonas and Bacillus spp. against Fusarium wilt of chickpea. Australian Journal Crop Science 6(4): 695-703
  • Laha G & Verma J (1998). Role of fluorescent Pseudomonas in the suppression of root rot and damping-off of cotton. India Phytopathology 51(3): 275-278
  • Mahmood Janlou H A, Nasr Elahnezhad S & Heydari A (2008). Biocontrol potential of some Pseudomonas fluorescens and Bacillus subtilis isolates on seedling damping-off of cotton in field condition. Journal of Plant Protection 22(19): 89-100
  • Martin F N (2000). Rhizoctonia spp. recovered from strawberry roots in Central Coastal California. Phytopathology 90(4): 345-353
  • Nemli T & Sayar I (2002). Aydın Söke yöresinde pamuk çökerten hastalığının yaygınlığı, etmenlerinin ve önlenme olanaklarının araştırılması. Türkiye Bilimsel ve Teknik Araştırma Kurumu, TARP-2535, Ankara, s. 57
  • Pleban S, Ingel F & Chet I (1995). Control of R. solani and S. rolfsii in the greenhouse using endophytic Bacillus spp. European Journal of Plant Pathology 101(6): 665-672
  • Quadt A, Hallmann J & Kloepper J W (1997). Bacterial endophytes in cotton: location and interaction with other plant associated bacteria. Canadian Journal of Microbiology 43: 254-259
  • Ramamoorthy V, Raguchander T & Samiyappan R (2002). Enhancing resistance of tomato and hot pepper to Pythium diseases by seed treatment with fluorescent Pseudomonas. European Journal of Plant Pathology 108: 429-441
  • Waara T, Jansso M & Pettersson K (1993). Phosphorus composition and release in sediment bacteria of the genus Pseudomonas during aerobic and anaerobic conditions. Hydrobiology 253(1-3): 131-140
  • Wang C, Wang D & Zhou Q (2004). Colonization and persistence of a plant growth-promoting bacterium Pseudomonas fluorescens strain CS85, on roots of cotton seedlings. Canadian Journal of Microbiology 50(7): 475-481
  • Weller M D & Cook R J (1986). Increased growth of wheat by seed treatment with Pseudomonas and implication of Pythium control. Canadian Journal of Plant Pathology 8: 328-334
  • Zaki K & Kersten H (1998). Control of cotton seedling damping-off in the field by Burkholderia (Pseudomonas) cepacia. Plant Disease 82: 291-293

Biological Control of Cotton Seedling Diseases by Fluorescent Pseudomonas spp

Yıl 2016, Cilt: 22 Sayı: 3, 398 - 407, 01.05.2016
https://doi.org/10.1501/Tarimbil_0000001398

Öz

Seedling root rot seen in many plants including cotton is an important disease that leads to large economic losses. Human health and the environment are negatively affected as a result of using fungicides for disease control. The goal of this study was to determine the effects of fluorescent Pseudomonas FP bacteria against seedling root rot pathogens both in vitro and in vivo conditions. 59 FP isolates obtained from the rhizosphere of cotton and weeds on the field were tested by dual-culture assays in vitro. After applying effective FP isolates on the seeds, antagonistic effects against the seedling root rot pathogens were investigated in a climate chamber. Resulting of dual-culture tests, FP40 had maximum effect 49.60% against Rhizoctonia solani. Besides, FP51, FP48 and FP35 had highest impact as 43.80%, 43.50%, and 43.10% against Fusarium sp., respectively. Pythium deliense was mostly effected by FP57 59.80% , FP52 57.80% and FP56 57.60% . While isolates FP35 and FP57 provided protection over 70% against all three pathogens in a climate chamber, they were as effective as commercial fungicides Vitavax and Maxim and biofungicide Subtilex and shown promising results

Kaynakça

  • Abdelzaher H M A & Elnaghy M A (1998). Identification of Pythium carolinianum causing ‘root rot’ of cotton in Egypt and its possible biological control by Pseudomonas fluorescens. Mycopathologia 142(3): 143-151
  • Afsharmanesh H, Ahmadzadeh M & Sharifi-Tehrani A (2006). Biocontrol of Rhizoctonia solani, the causal agent of bean damping-off by fluorescent Pseudomonads. Communications in Agricultural and Applied Biological Sciences 71(3): 1021-1029
  • Agile T & Batson W E (1999). Evaluation of radicle assay for determining the biocontrol activity of rhizobacteri to selected pathogens of the cotton seedling disease complex. Pakistan Journal Phytopathology 11(1): 30-40
  • Agrios G N (1998). Plant Pathology. 3th ed. Academic Press incorporated, London
  • Agrios G N (2005). Plant Pathology. 5th ed. Elsevier Academic Press, London
  • Akpınar M Ö & Benlioğlu K (2008). Pamukta fide kök çürüklüğü etmenlerine karşı bazı biyolojik preparatların etkinliğinin saptanması. Yüksek lisans tezi, Adnan Menderes Üniversitesi Fen Bilimleri Enstitüsü (Basılmamış), Aydın
  • Ardakani S S, Heydari A, Khorasani N A, Arjmandi R & Ehteshami M (2009). Preparation of new biofungicides using antagonistic bacteria and mineral compounds for controlling cotton seedling Damping- off disease. Journal of Plant Protection Research 49(1): 49-55
  • Aşkın A & Katırcıoğlu Z (2008). Ankara ili Ayaş, Beypazarı ve Nallıhan ilçelerindeki domates fideliklerinde çökertene neden olan bazı fungal patojenlere karşı patojen olmayan pseudomonasların etkisinin belirlenmesi. Doktora tezi, Ankara Üniversitesi Fen Bilimleri Enstitüsü (Basılmamış), Ankara
  • Bradow J M (1991). Cotton growth in the presence of a seedling-disease-complex biocontrol and sub-optimal temperatures. In: Proceedings-Beltwide Cotton Production Conference, 6-10 January, San Antonio, USA, 2: 820-824
  • Demir G, Karcılıoğlu A & Onan E (1999). Protection of cotton plants against damping-off disease with rhizobacteri. Journal of Turkish Phytopathology 28(3): 111-118
  • Devay J E (2001). Seedling Diseases 13-14, in Eds., T.L. Kirkpatrick and C.S. Rothrock “Compendium of Cotton Diseases” 2th ed. APS Pres VII+77, Memphis
  • Erdoğan O & Benlioğlu K (2010). Biological control of Verticillium wilt on cotton by use of fluorescent Pseudomonas spp. under field conditions. Biological Control 53(1): 39-45
  • Gamliel A & Katan J (1993). Influence of seed and root exudates of fluorescent Pseudomonas and fungi polarized soil. Phytopathology 82: 320-327
  • Gardener M B B & Fravel D R (2002). Biological control of plant pathogens: Research, commercialization and application in the USA. Online. Plant Health Progress doi: 10. 1094/PHP-2002-0510-01-RV
  • Hassanein N M (2012). Biopotential of some Trichoderma spp. against cotton root rot pathogens and profiles of some of their metabolites. African Journal of Microbiology Research 6(23): 4878-4890
  • Hill D S, Stein J I, Torkewitz A M, Howell C R, Morse N R, Pachlatko J P, Becker J O & Lgon J M (1994). Cloning of genes involved in the synthesis of Pyrrolnitrin from P. fluerescens and role of pyrrolnitrin synthesis in biological control of plant disease. Applied Enviromental Microbiology 60(1): 78-85
  • Hoitink H A (1986). Basis for the control of soil borne plant pathogens with composts. Annual Review Phytopathology 24: 93-114
  • Huppatz J L, Phillips J N & Witrzens B (1983). Laboratory and glasshouse studies of the activity of carboxamide derivates against R. solani in cotton. The American Phytopathology Society 67: 45-47
  • Karimi K, Amini J, Harighi B & Bahramnejad B (2012). Evaluation of biocontrol potential of Pseudomonas and Bacillus spp. against Fusarium wilt of chickpea. Australian Journal Crop Science 6(4): 695-703
  • Laha G & Verma J (1998). Role of fluorescent Pseudomonas in the suppression of root rot and damping-off of cotton. India Phytopathology 51(3): 275-278
  • Mahmood Janlou H A, Nasr Elahnezhad S & Heydari A (2008). Biocontrol potential of some Pseudomonas fluorescens and Bacillus subtilis isolates on seedling damping-off of cotton in field condition. Journal of Plant Protection 22(19): 89-100
  • Martin F N (2000). Rhizoctonia spp. recovered from strawberry roots in Central Coastal California. Phytopathology 90(4): 345-353
  • Nemli T & Sayar I (2002). Aydın Söke yöresinde pamuk çökerten hastalığının yaygınlığı, etmenlerinin ve önlenme olanaklarının araştırılması. Türkiye Bilimsel ve Teknik Araştırma Kurumu, TARP-2535, Ankara, s. 57
  • Pleban S, Ingel F & Chet I (1995). Control of R. solani and S. rolfsii in the greenhouse using endophytic Bacillus spp. European Journal of Plant Pathology 101(6): 665-672
  • Quadt A, Hallmann J & Kloepper J W (1997). Bacterial endophytes in cotton: location and interaction with other plant associated bacteria. Canadian Journal of Microbiology 43: 254-259
  • Ramamoorthy V, Raguchander T & Samiyappan R (2002). Enhancing resistance of tomato and hot pepper to Pythium diseases by seed treatment with fluorescent Pseudomonas. European Journal of Plant Pathology 108: 429-441
  • Waara T, Jansso M & Pettersson K (1993). Phosphorus composition and release in sediment bacteria of the genus Pseudomonas during aerobic and anaerobic conditions. Hydrobiology 253(1-3): 131-140
  • Wang C, Wang D & Zhou Q (2004). Colonization and persistence of a plant growth-promoting bacterium Pseudomonas fluorescens strain CS85, on roots of cotton seedlings. Canadian Journal of Microbiology 50(7): 475-481
  • Weller M D & Cook R J (1986). Increased growth of wheat by seed treatment with Pseudomonas and implication of Pythium control. Canadian Journal of Plant Pathology 8: 328-334
  • Zaki K & Kersten H (1998). Control of cotton seedling damping-off in the field by Burkholderia (Pseudomonas) cepacia. Plant Disease 82: 291-293
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Research Article
Yazarlar

Oktay Erdoğan Bu kişi benim

Yüksel Bölek Bu kişi benim

M Erhan Göre Bu kişi benim

Yayımlanma Tarihi 1 Mayıs 2016
Gönderilme Tarihi 1 Ocak 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 22 Sayı: 3

Kaynak Göster

APA Erdoğan, O., Bölek, Y., & Göre, M. E. (2016). Biological Control of Cotton Seedling Diseases by Fluorescent Pseudomonas spp. Journal of Agricultural Sciences, 22(3), 398-407. https://doi.org/10.1501/Tarimbil_0000001398

Journal of Agricultural Sciences is published open access journal. All articles are published under the terms of the Creative Commons Attribution License (CC BY).