The purpose of this study is to investigate mapping of oil rose Rosa damascena parcels in high-resolution satellite imagery using two different methods. This study was carried out within boundaries of Güneykent Municipality in Isparta in where was produced most of oil rose production in Turkey. Quickbird-2 satellite image was used as base cartographic, and ERDAS and e-Cognition software were used classification of satellite imagery. This purpose; rectify, pan-sharpen and histogram equalization processes were made in the satellite data. The base map including borders of parcel at 1/5000 scale was produced to orient in field work. Then field survey was carried out using these bases. In field survey, Land Use Type LUT was determined for each parcel. The digital LUT map was produced using ArcGIS software. Then satellite image was classified to separate the rose parcels. In classification, the methods of pixel and object-based classification were performed on 4, 3 and 2 band combination of Quickbird-2 satellite data. The most appropriate classification method was selected to apply in study. The manufacturer accuracy, user accuracy and kappa value of oil rose class were found respectively as 48.72%, 18.63% and 0.1539 using maximum likelihood decision rule algorithm of supervised classification method. The boundaries of rose parcels were determined best accuracy by using scale: 100, compactness: 0.5, shape: 0.1 parameters in object-based classification. In the thematic maps, accuracy of rose parcels was found 60.78%. In addition, rose rows were separated by using scale: 25, compactness: 0.5, shape: 0.1 parameters. In the pixel-based classification methods, the rose parcels were mixed with other LUT using high-resolution satellite image. These classification methods were not enough successful for determining of rose parcels. But object-based classification methods were found as applicable to identify rose parcels.
Bu çalışmada amaç, yüksek çözünürlüklü uydu verisinde iki farklı yöntem kullanılarak yağ gülü Rosa damascena dikili alanların parsel bazında belirlenebilirliğini araştırmaktır. Çalışma, Türkiye’de yağ gülü üretiminin yoğun olarak yapıldığı Isparta ili Güneykent Belediyesi sınırları içerisinde yürütülmüştür. Çalışmada temel kartografik olarak Quickbird-2 uydu verisi, uydu verilerinin sınıflandırmasında ERDAS ve e-Cognition yazılımları kullanılmıştır. Bu amaçla öncelikle uydu verisinde geometrik düzeltme rectify , görüntü keskinleştirme pan-sharp ve görüntü zenginleştirme histogram equalization işlemleri yapılmış, arazide kullanılmak üzere parsellerin yer aldığı 1/5000 ölçekli altlık veriler oluşturulmuştur. Bu veriler araziye oryantasyon amacıyla kullanılmış ve arazi çalışmaları yürütülmüştür. Arazi çalışmalarında parsel bazında Arazi Kullanım Türleri AKT belirlenmiş, ArcGIS yazılımı ile sayısal AKT haritası hazırlanmıştır. Daha sonra Quickbird-2 uydu verisinin 4, 3 ve 2 bant kombinasyonunda piksel ve obje tabanlı sınıflama metotları kullanılarak gül parselleri belirlenmiş ve en uygun sınıflandırma metodu seçilmiştir. Kontrollü sınıflandırma yöntemi maksimum olabilirlik karar kuralı algoritması ile yapılan sınıflandırmada oluşturulan tematik haritada gül parsellerinin üretici doğruluğu % 48.72, kullanıcı doğruluğu % 18.63, kappa değeri 0.1539 olarak bulunmuştur. Obje tabanlı sınıflandırmada ölçek: 100, bütünlük: 0.5, biçim: 0.1 parametreleri kullanılarak gül parsel sınırlarının en iyi belirlendiği, bu yöntem ile oluşturulan tematik haritada gül parsellerinin % 60.78 doğrulukta ayırt edilebildiği belirlenmiştir. Ayrıca obje tabanlı sınıflandırmada ölçek: 25, bütünlük: 0.5, biçim: 0.1 parametreleri kullanılarak yapılan sınıflamada gül sıralarının ayırt edilebildiği görülmüştür. Yüksek çözünürlüklü uydu verileri kullanılarak yapılan piksel tabanlı sınıflandırmada gül parsellerinin diğer parsellerle karıştığı, bu sınıflama yöntemlerinin gül parsellerinin belirlenmesinde iyi sonuç vermediği, bunun yerine gül parsellerinin daha iyi ayırt edilebildiği obje tabanlı sınıflandırmanın kullanılabileceği tespit edilmiştir
Primary Language | Turkish |
---|---|
Journal Section | Research Article |
Authors | |
Publication Date | January 1, 2017 |
Published in Issue | Year 2017 Volume: 23 Issue: 1 |
Journal of Agricultural Sciences is published open access journal. All articles are published under the terms of the Creative Commons Attribution License (CC BY).